Electron production from the open-heavy flavor decay in relativistic heavy-ion collision at STAR

Mr.Ayanabha Das, M.Sc.

Advisor: Dr. Barbara Antonina Trzeciak, Ph.D.

Consultant: Mgr. Ing. Leszek Kosarzewski, Ph.D.

FACULTY OF NUCLEAR SCIENCES AND PHYSICAL ENGINEERING CZECH TECHNICAL UNIVERSITY IN PRAGUE (CVUT)

JCF Winter School 2022

17th June, 2022

Overview

- Introduction
- Theory
- The STAR experiment
- Data analysis
- Previous works
- Results
- Outlook

I. Introduction

Theoretical vision

Theoretical vision

Heavy-Ion collision: Formation of Quark-Gluon Plasma (QGP)

To investigate the properies of QGP, the probes needs to be produced in the stage of early collision process and to interact with the medium

2. Theory

- Heavy-ion collision
- From the prespective of hard probes
- Heavy flavors
- Non-photonic electron measurements

Heavy-ion collisions

Creation of strongly interacting quark-gluon plasma

From the prespective of hard probes

- Hard probes: large masses, generally with $p_T > 2$ GeV/c \checkmark
- Unique probes for studying QGP properties
 - I. produced at the early stage of collision
 - 2. Interact differently with QGP in comparison

with other quarks

Collisional processes: elastic scatterings Radiative processes: gluon radiation due to exchange of color forces between heavy quarks and medium

Heavy flavors

D and B Mesons

Particle	Mass MeV/c^2	Composition	$I(J^P)$	Antiparticle
D^0	1864.84 ± 0.05	$c\overline{u}$	$1/2(0^{-})$	\overline{D}^0
D^+	1869.66 ± 0.05	$c\overline{d}$	$1/2(0^{-})$	D^-
B^0	5279.65 ± 0.12	$u\overline{b}$	$1/2(0^{-})$	\overline{B}^0
B^+	5279.34 ± 0.12	$d\overline{b}$	$1/2(0^{-})$	B^-

Measurements of heavy quark decays:

9.6%

Non-photonic electrons measurements

Inclusive electrons (INCL) = Photonic electrons (PE) + Nonphotonic electrons (NPE)

Heavy flavor electrons (HFE) = Nonphotonic electrons (NPE) – Hadron decay electrons

- $D^+ \stackrel{*}{\to} e^+$ semileptonic B.R. $(16.07 \pm 0.30)\%$ • $D^0 \to e^+ X$ B.R. $(6.49 \pm 0.11)\%$
- $B^+ \rightarrow e^+$ semileptonic B.R. $(10.8 \pm 0.4)\%$ • $B^0 \rightarrow e^+ X$ B.R. $(10.1 \pm 0.4)\%$

(a) Heavy quarkonia contributions
 (b) Vector meson decays
 (c) Drell-Yan contributions

3. The STAR experiment

- Detector systems
- Physics motivation
- Current goals and past results

Detector systems

Adapted from Yang, Yi. The STAR Detector Upgrades for the BES-II and Beyond Physics Program.

Vertex Position Detector (VPD):

Lead converters and plastic scintillators measure the position of the primary vertex and also to serve as a Minimum Bias trigger Time Projection Chamber (TPC):

Gas chamber for momentum measurement, charged particle identification via energy loss

Time of Flight (TOF):

Timing information of VPD and number of hits in resistive plate chambers to calculate the time of flight of particles

Barrel Electromagnetic
 Calorimeter (BEMC):

Measurement of deposited energy of particles to distinguish electrons from hadrons

Physics motivation

Study of medium properties:

I. Elliptic flow (v_2)

$$v_2^{HF} = \frac{N^{inc}v_2^{inc} - N^{pho}v_2^{pho} - \sum ratio \cdot N^{inc}v_2^h}{p \cdot N^{inc} - N^{pho}}$$

2. Nuclear modification factors

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

$$R_{CP} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{central}/dp_T}{dN_{peripheral}/dp_T}$$

Current goals and past results

- identification of photonic electrons out of our inclusive electron sample
- purity estimation (inclusive electrons)
- addition of BEMC information to optimize electron identification (high p_T)

(a) R_{AA} vs p_T for STAR Au + Au collisions of at $\sqrt{s} = 200$ GeV showing strong yield suppression at high p_T

iloc

JCF WINTER SCHOOL

4. Data analysis

- Event and track selection
- Data sample
- Distribution of primary vertex
- Electron identification
- Histograms before and after electron identification

Event and track selection

- Collision type: Au+Au
- Center-of-mass energy: $\sqrt{S_{NN}} = 54 \text{ GeV}$
- Production: PI8ic ; picoDst production: SL20c
- Centrality bin = 0 60 %
- Trgsetupname: AuAu54production2017
- TriggerID: 580001, 580021

Data sample

Distribution of primary vertex

Electron identification

- I. TPC • cuts on particle energy loss
 - to identify the electrons and reduce hadron contamination (mainly pions)

 $n\sigma_x = \frac{1}{\sigma_{dE/dx}} \ln \frac{\langle dE/dx \rangle_{measured,x}}{\langle dE/dx \rangle_r}$

- cuts on particle velocity ($\beta = v/c \simeq 1$) 2. TOF –
 - distinguish electrons from hadrons until the point which all the particles have a velocity close to c
- 3. BEMC –
- cuts on energy-to-momentum ratio, E/p
 - provides a larger amount of statistics at the beginning to improve the purity

```
if (pT < 1.25 || only TPC){
       p < 0.8, 3.5 * p - 2.8 < nSigma(e) < 2;</pre>
       p > 0.8, 0 < nSigma(e) < 2;</pre>
       ifTOF: |1 - 1/beta | < 0.025;
} else {
       if ( ifTOF, no BEMC){
                p < 0.8, 3.5 * p - 2.8 < nSigma(e) < 2;</pre>
                p > 0.8, 0 < nSigma(e) < 2;</pre>
                ifTOF: |1 - 1/beta | < 0.025;
       } else if ( ifBEMC, no TOF){
                0.6 < EO/p < 1.5;
                0.5 < nSigma(e) < 2;
       } else if (ifTOF & ifBEMC){
                1 - 1/beta < 0.025;
                0.6 < EO/p < 1.5;
                -0.5 < nSigma(e) < 2;
       }:
```

I/β vs p before and after electron identification

$n\sigma_e$ vs p before and after electron identification

E/p vs p before and after electron identification

5. Previous works (Carolina Sergi Lopes)

- BEMC hot towers
- Photonic electron tagging

BEMC hot towers

- Check if BEMC information is reliable and if some towers fire more often than the average
- For each of the 614 runs, a tower is marked as hot if the number of hits is 3σ above the average
- Hit will be rejected if it corresponds to a hot tower during a certain run

Photonic electron tagging

Partner electron cut			
gp_T	$> 0.25~{\rm GeV/c}$		
nHitsFit	> 15		
$ \eta $	< 1.0		
$n\sigma_{el}$	< 3.0		

- Statistical method to obtain number of PE
- Inclusive target electron candidate is associated to partner electron candidate
- Invariant mass spectra of e+e- pairs: peak at low invariant mass indicates the photonic electrons from conversions (dominant)
- To extract the background, the UL LS pairs technique is employed $= 4000 \frac{\times 10^3}{\Gamma}$

6. Current results

- Fitting of pure samples
- Multigaussian fit
- Purity estimation

Fitting of pure samples: protons

Fitting of pure samples: protons

Fitting of pure samples: Kaons

Fitting of pure samples: photonic electrons

Fitting of pure samples: photonic electrons

Fitting of pure samples: merged pions

- $|n\sigma_{Pi}| > 5$
- |M² 0.019| < 0.003

Fitting of pure samples: merged pions

JCF WINTER SCHOOL

- The nSigma histogram is used after implementing TOF and BEMC cut value
- Total range is divided into smaller momentum bins with an increase of 0.02 GeV/c
- Each bins are being fitted with multigaussian function to constrain the yield for different particle

Electron with TOF & BEMC

h_nSigE_0.20_0.22

h_nSigE_0.56_0.58

h_nSigE_0.92_0.94

h_nSigE_2.65_2.80

Parameters from multigaussian fit

- Parameters from multigaussian fittings are presenting large uncertainties
- requirements of further analysis

Purity estimation

Total fitting function

- $f^{total} = C_e \cdot Gaus(\mu_e, \sigma_e) + C_\pi \cdot Gaus(\mu_\pi, \sigma_\pi) + C_K \cdot Gaus(\mu_K, \sigma_K) \\ + C_{merged \ \pi} \cdot Gaus(\mu_{merged \ \pi}, \sigma_{merged \ \pi}) + C_p \cdot Gaus(\mu_p, \sigma_p)$
 - Calculation of purity for inclusive electrons:

purity =
$$\frac{\int_{n\sigma \ cut} f^e}{\int_{n\sigma \ cut} f^{total}}$$
$$f^e = C_e \cdot Gaus(\mu_e, \sigma_e)$$

7. Outlook

Future steps

Future steps

- Obtain an accurate purity of the inclusive electron sample
- Perform simulations to obtain the reconstruction efficiency
- Optimization of electron identification cuts using BEMC
- Efficiency of electron reconstruction to be analyzed via simulations
- Calculation of yields of nonphotonic electrons in different centrality classes to obtain R_{AA} and R_{CP}; comparison with other collision energies
- Inclusion of other NPE contributions to obtain more accurate information of electrons from heavy-flavor hadron decays

THANK YOU

AYANABHA DAS (CVUT) | NPE ANALYSIS AT 54 GEV | JCF WINTER SCHOOL