Predictions for future EICs with the BK equation What can it tell us about parton saturation?

Dagmar Bendová
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

(E)JČF workshop in Bílý potok
$13^{\text {th }}$ June, 2022

Q1: What is the structure of hadrons and how does it evolve with increasing energy?

Q2: How does the structure of a free proton changes when
it's bound inside a nucleus?

Parton model

- Partons $=$ constituent particles inside hadrons (Feynman)
- From our current perspective - quarks and gluons
- Valence quarks determine the quantum numbers of hadrons

Parton model

- Partons $=$ constituent particles inside hadrons (Feynman)
- From our current perspective - quarks and gluons
- Valence quarks determine the quantum numbers of hadrons
- However certain sum rules are not fulfilled with only (valence) quarks
- Fraction of the proton momentum carried by all q and \bar{q} together
- Naive expectation

$$
\int_{0}^{1} x \Sigma(x) \mathrm{d} x=1
$$

- Experimental value

$$
\int_{0}^{1} x \Sigma(x) \mathrm{d} x \approx 0.5
$$

\rightarrow sea quarks and gluons are also part of hadrons!

Deep Inelastic Scattering (DIS)

- Probes inner structure of hadrons.
- DIS cross section

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[y^{2} F_{1}\left(x, Q^{2}\right)+(1-y) \frac{F_{2}\left(x, Q^{2}\right)}{x}\right] \tag{1}
\end{equation*}
$$

- F_{1}, F_{2} - structure functions, include photon-proton interaction.

$$
\begin{gathered}
W_{\gamma^{*} p}^{2}=(P+q)^{2} \\
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
x=\frac{Q^{2}}{2 P \cdot q} \\
y=\frac{P \cdot Q}{P \cdot k}
\end{gathered}
$$

DIS in Feynmann's parton model picture

- Scattering of γ^{*} on one of the constituent partons.
- Infinite momentum frame - incoming particles carry only longitudinal momentum.
- Partons carry fraction x of the proton momentum P.
- Electron-parton scattering cross section

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y)+\frac{y^{2}}{2}\right] \sum_{i} e_{i}^{2} f_{i}(x) \tag{2}
\end{equation*}
$$

- If partons are ferminons:

$$
\begin{aligned}
F_{1}(x) & =\frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \\
F_{2}(x) & =\sum_{i} e_{i}^{2} x f_{i}(x) \\
F_{2}(x) & =2 x F_{1}(x)
\end{aligned}
$$

- Independence on Q^{2} (Bjorken scaling) \rightarrow violated at low- x due to gluon branching

Evolution of proton structure

- Composition of the proton changes with x and Q^{2}.
- At low energies proton dominated by valence quarks.
- At large energies gluons dominate.

Are gluons growing to infinity?

- Untamed grow of gluon densities towards low-X
- The gluon distribution function would diverge
- Unphysically large values of the cross section (unitarity violation)
- Gluon recombination slows down the evolution of gluon densities.
- So far, there has been no direct observation of saturation effects!

Evolution of parton densities and saturation

- Evolution with increasing Q^{2} described by DGLAP equations.
- By fixing the scale of the process, one can fix the position in $\ln Q^{2}$.

Evolution of parton densities and saturation

- Evolution with increasing Q^{2} described by DGLAP equations.
- By fixing the scale of the process, one can fix the position in $\ln Q^{2}$.
- Going to smaller x, one can reach the saturation scale $Q_{S}^{2}(x)$
- Below $Q_{S}^{2}(x) \rightarrow$ dilute regime, linear evolution of the gluon density (BFKL).
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

Evolution of parton densities and saturation

C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

- Evolution with increasing Q^{2} described by DGLAP equations.
- By fixing the scale of the process, one can fix the position in $\ln Q^{2}$.
- Going to smaller x, one can reach the saturation scale $Q_{S}^{2}(x)$
- Below $Q_{S}^{2}(x) \rightarrow$ dilute regime, linear evolution of the gluon density (BFKL).
- Above $Q_{S}^{2}(x) \rightarrow$ dense regime, non-linear evolution of the gluon density (JIMWLK, $B K$).

QCD phenomenology at high energies

Color dipole model (of DIS)

- Electron (or a hadron with large EM field) emits a virtual photon
- Photon interacts via its $q \bar{q}$ Fock state with the hadron in the target rest frame.
\rightarrow both γ^{*} and $q \bar{q}$ are colorless
- The scattering amplitude is proportional to:
- $\gamma^{*} \rightarrow q \bar{q}$ wave function (QED)
- Dipole-hadron cross section (QCD is here!)

- r - transverse size of the $q \bar{q}$ dipole
- z-fraction of photon momentum carried by quark
- b-impact parameter
- x - light-front momentum fraction of the proton carried by gluons attached to the dipole

Balitsky-Kovchegov equation in QCD phenomenology

- The dipole-hadron cross section

$$
\frac{\mathrm{d} \sigma_{q \bar{q}}}{\mathrm{~d} \vec{b}}=2 N(x, \vec{r}, \vec{b})
$$

Balitsky-Kovchegov equation in QCD phenomenology

- The dipole-hadron cross section

$$
\frac{\mathrm{d} \sigma_{q \bar{q}}}{\mathrm{~d} \vec{b}}=2 N(x, \vec{r}, \vec{b})
$$

- BK phenomenology has been successful in description of inclusive observables using the Ansatz

$$
N(x, \vec{r}, \vec{b}) \rightarrow N(x, r)
$$

Balitsky-Kovchegov equation in QCD phenomenology

- The dipole-hadron cross section

$$
\frac{\mathrm{d} \sigma_{q \bar{q}}}{\mathrm{~d} \vec{b}}=2 N(x, \vec{r}, \vec{b})
$$

- BK phenomenology has been successful in description of inclusive observables using the Ansatz

$$
N(x, \vec{r}, \vec{b}) \rightarrow N(x, r)
$$

- We are interested in the next step of the full $N(x, \vec{r}, \vec{b})$ evolution

$$
N(x, \vec{r}, \vec{b}) \rightarrow N(x, r, b)
$$

Balitsky-Kovchegov evolution equation (at LO)

- Evolution of the scattering amplitude N of a $q \bar{q}$ dipole off a hadronic target.
\rightarrow Dynamical balance between the gluon emission and recombination.

Balitsky-Kovchegov evolution equation (at LO)

- Evolution of the scattering amplitude N of a $q \bar{q}$ dipole off a hadronic target.
\rightarrow Dynamical balance between the gluon emission and recombination.

$$
\begin{array}{r}
\frac{\partial N\left(r_{x y}, b_{x y}, Y\right)}{\partial Y}=\int \mathrm{d} \vec{r}_{x z} K\left(r_{x y}, r_{x z}, r_{z y}\right)\left[N\left(r_{x z}, b_{x z}, Y\right)+N\left(r_{z y}, b_{z y}, Y\right)\right. \\
\left.\quad-N\left(r_{x y}, b_{x y}, Y\right)-N\left(r_{x z}, b_{x z}, Y\right) N\left(r_{z y}, b_{z y}, Y\right)\right]
\end{array}
$$

Balitsky-Kovchegov evolution equation (at LO)

- Evolution of the scattering amplitude N of a $q \bar{q}$ dipole off a hadronic target.
\rightarrow Dynamical balance between the gluon emission and recombination.

$$
\begin{array}{r}
\frac{\partial N\left(r_{x y}, b_{x y}, Y\right)}{\partial Y}=\int \mathrm{d} \vec{r}_{x z} K\left(r_{x y}, r_{x z}, r_{z y}\right)\left[N\left(r_{x z}, b_{x z}, Y\right)+N\left(r_{z y}, b_{z y}, Y\right)\right. \\
\left.\quad-N\left(r_{x y}, b_{x y}, Y\right)-N\left(r_{x z}, b_{x z}, Y\right) N\left(r_{z y}, b_{z y}, Y\right)\right]
\end{array}
$$

- Dipole and the target hadron are interconnected
\rightarrow evolution of the dipole structure gives information about target structure

Evolution kernel

- Describes the probability of a gluon emission.
- Different approximations of the calculation lead to several forms of kernels

Evolution kernel

- Describes the probability of a gluon emission.
- Different approximations of the calculation lead to several forms of kernels
- Leading order

$$
K^{L O}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\alpha_{S} N_{C}}{2 \pi^{2}} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}
$$

Evolution kernel

- Describes the probability of a gluon emission.
- Different approximations of the calculation lead to several forms of kernels
- Leading order

$$
K^{L O}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\alpha_{S} N_{C}}{2 \pi^{2}} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}
$$

- Running coupling kernel

$$
K^{r c}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\alpha_{S}\left(r_{x y}^{2}\right) N_{C}}{2 \pi^{2}}\left[\frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}+\frac{1}{r_{x z}^{2}}\left(\frac{\alpha_{S}\left(r_{x z}^{2}\right)}{\alpha_{S}\left(r_{z y}^{2}\right)}-1\right)+\frac{1}{r_{z y}^{2}}\left(\frac{\alpha_{S}\left(r_{z y}^{2}\right)}{\alpha_{S}\left(r_{x z}^{2}\right)}-1\right)\right]
$$

Evolution kernel

- Describes the probability of a gluon emission.
- Different approximations of the calculation lead to several forms of kernels
- Leading order

$$
K^{L O}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\alpha_{S} N_{C}}{2 \pi^{2}} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}
$$

- Running coupling kernel

$$
K^{r c}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\alpha_{S}\left(r_{x y}^{2}\right) N_{C}}{2 \pi^{2}}\left[\frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}+\frac{1}{r_{x z}^{2}}\left(\frac{\alpha_{S}\left(r_{x z}^{2}\right)}{\alpha_{S}\left(r_{z y}^{2}\right)}-1\right)+\frac{1}{r_{z y}^{2}}\left(\frac{\alpha_{S}\left(r_{z y}^{2}\right)}{\alpha_{S}\left(r_{x z}^{2}\right)}-1\right)\right]
$$

- Collinearly improved kernel

$$
K^{c i}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\alpha_{S}\left(r^{2}\right) N_{C}}{2 \pi^{2}} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}\left[\frac{r_{x y}^{2}}{\min \left(r_{x z}^{2}, r_{z y}^{2}\right)}\right]^{ \pm \bar{\alpha}_{S} A_{1}} K_{D L A}\left(\sqrt{L_{r_{x z} r_{x y}} L_{r_{z y}} r_{x y}}\right)
$$

Implementation of impact-parameter dependence

- The equation is solved using a new initial condition that takes into account the location of the end-points of the dipole

$$
\begin{gathered}
N(\vec{r}, \vec{b}, Y=0)=1-\exp \left[-\frac{1}{2} \frac{Q_{S}^{2}}{4} r^{2} T\left(\vec{b}_{q_{1}}, \vec{b}_{q_{2}}\right)\right] \\
T\left(\vec{b}_{q_{1}}, \vec{b}_{q_{2}}\right)=\exp \left(-\frac{b_{q_{1}}^{2}}{2 B}\right)+\exp \left(-\frac{b_{q_{2}}^{2}}{2 B}\right)
\end{gathered}
$$

Implementation of impact-parameter dependence

- The equation is solved using a new initial condition that takes into account the location of the end-points of the dipole

$$
\begin{gathered}
N(\vec{r}, \vec{b}, Y=0)=1-\exp \left[-\frac{1}{2} \frac{Q_{S}^{2}}{4} r^{2} T\left(\vec{b}_{q_{1}}, \vec{b}_{q_{2}}\right)\right] \\
T\left(\vec{b}_{q_{1}}, \vec{b}_{q_{2}}\right)=\exp \left(-\frac{b_{q_{1}}^{2}}{2 B}\right)+\exp \left(-\frac{b_{q_{2}}^{2}}{2 B}\right)
\end{gathered}
$$

\vec{r}

- The r behavior mimics the models for the b-independent dipole amplitude.
- The b behavior contains an exponential fall-off for dipole-ends far away from the target.

The problem of Coulomb tails

- Evolution with an exponentially falling initial condition and $K^{r c}$ (dashed lines) increases the contribution at large impact parameters into a power-like growth.
- Complications for phenomenological applications.
- Evolution at high- b can be suppressed by suppressing large daughter dipoles.

J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. D 99, 051502

The problem of Coulomb tails

- Evolution with an exponentially falling initial condition and $K^{r c}$ (dashed lines) increases the contribution at large impact parameters into a power-like growth.
- Complications for phenomenological applications.
- Evolution at high- b can be suppressed by suppressing large daughter dipoles.

- Using the collinearly improved kernel $K^{c i}$ (full lines)
- Large daughter dipoles are suppressed as a result of time-ordering of the emissions.
- Suppression by several orders of magnitude at large b.

Modification of b-BK to the nuclear case

- Glauber-Gribov approach (b-BK-GG)
- Solution of the b-BK for proton target coupled to Glauber-Gribov prescription

$$
\begin{gathered}
N_{\mathrm{GG}}^{A}\left(r_{x y}, b_{x y}, Y\right)=\left[1-\exp \left(-\frac{1}{2} T_{A}\left(b_{x y}\right) \sigma_{q \bar{q}}\left(Y, r_{x y}\right)\right)\right] \\
\sigma_{q \bar{q}}\left(Y, r_{x y}\right)=\int \mathrm{d}^{2} b 2 N^{p}\left(r_{x y}, b_{x y}, Y\right)
\end{gathered}
$$

- Nuclear thickness function $T_{A}\left(b_{x y}\right)$ obtained from a Woods-Saxon distribution
- Approach followed in other studies, however the compatibility of BK + GG not clear

Modification of b-BK to the nuclear case

- Glauber-Gribov approach (b-BK-GG)
- Solution of the b-BK for proton target coupled to Glauber-Gribov prescription

$$
\begin{gathered}
N_{\mathrm{GG}}^{A}\left(r_{x y}, b_{x y}, Y\right)=\left[1-\exp \left(-\frac{1}{2} T_{A}\left(b_{x y}\right) \sigma_{q \bar{q}}\left(Y, r_{x y}\right)\right)\right] \\
\sigma_{q \bar{q}}\left(Y, r_{x y}\right)=\int \mathrm{d}^{2} b 2 N^{p}\left(r_{x y}, b_{x y}, Y\right)
\end{gathered}
$$

- Nuclear thickness function $T_{A}\left(b_{x y}\right)$ obtained from a Woods-Saxon distribution
- Approach followed in other studies, however the compatibility of BK + GG not clear
- Nuclear BK evolution (b-BK-A)
- The initial condition represents a specific nucleus

$$
\begin{gathered}
N^{A}\left(r_{x y}, b_{x y}, Y=0\right)=1-\exp \left[-\frac{1}{2} \frac{Q_{s_{0}}^{2}(A)}{4} r_{x y}^{2} T_{A}\left(b_{q_{1}}, b_{q_{2}}\right)\right] \\
T_{A}\left(b_{q_{1}}, b_{q_{2}}\right)=k\left[T_{A}\left(b_{q_{1}}\right)+T_{A}\left(b_{q_{2}}\right)\right]
\end{gathered}
$$

$\rightarrow T_{A}\left(b_{q_{i}}\right)$ uses the Woods-Saxon distribution

Balitsky-Kovchegov equation applied to QCD observables

Deep inelastic scattering

- Structure function F_{2}

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha}\left(\sigma_{T}^{\gamma^{*} p}+\sigma_{L}^{\gamma^{*} p}\right)
$$

Deep inelastic scattering

- Structure function F_{2}

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha}\left(\sigma_{T}^{\gamma^{*} p}+\sigma_{L}^{\gamma^{*} p}\right)
$$

- The γ^{*} p cross section is calculated using
- $\gamma^{*} \rightarrow q \bar{q}$ wave function
- Dipole-hadron cross section

$$
\sigma_{q \bar{q}}(x, \vec{r})=2 \int \mathrm{~d}^{2} b N(x, \vec{r}, \vec{b})
$$

DIS: Proton structure function $F_{2}\left(x, Q^{2}\right)$

- Good agreement with the data measured at HERA ${ }^{[1]}$.
- Results obtained without any additional ad-hoc terms (or parameters) needed to describe the data correctly.

DB, J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. D 100, 054015

[^0]
DIS: Nuclear structure function $F_{2}\left(x, Q^{2}\right)$

- A sizeable difference between the b-BK-GG and b-BK-A approaches
\rightarrow the difference clearly depends on x, Q^{2}, and also A

J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. C 102 (2020) 044318

DIS: Nuclear suppression factors

- Ca: b-BK-GG and b-BK-A describe data.
- For Pb , a x-dependent difference is clearly observed between the $\mathrm{b}-\mathrm{BK}-\mathrm{GG}$ and b-BK-A approaches.

J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. C 102 (2020) 044318

Diffractive DIS

- Diffractive structure function $F_{2}^{D(3)}$

$$
\begin{gathered}
F_{2}^{D(3)}\left(Q^{2}, \beta, x_{\mathbb{P}}\right)=F_{q \bar{q}, L}^{D}+F_{q \bar{q}, T}^{D}+F_{q \bar{q} g, T}^{D} \\
x_{\mathbb{P}}=\frac{Q^{2}+M_{X}^{2}}{Q^{2}+W^{2}} ; \quad \beta=\frac{Q^{2}}{Q^{2}+M_{X}^{2}} ; \quad x=\beta x_{\mathbb{P}}
\end{gathered}
$$

Diffractive DIS

- Diffractive structure function $F_{2}^{D(3)}$

$$
\begin{gathered}
F_{2}^{D(3)}\left(Q^{2}, \beta, x_{\mathbb{P}}\right)=F_{q \bar{q}, L}^{D}+F_{q \bar{q}, T}^{D}+F_{q \bar{q} g, T}^{D} \\
x_{\mathbb{P}}=\frac{Q^{2}+M_{X}^{2}}{Q^{2}+W^{2}} ; \quad \beta=\frac{Q^{2}}{Q^{2}+M_{X}^{2}} ; \quad x=\beta x_{\mathbb{P}}
\end{gathered}
$$

- $F_{2}^{D(3)}\left(Q^{2}, \beta, x_{\mathbb{P}}\right)$ has a different sensitivity to the dipole-target amplitude (especially in the gluon part) than the inclusive F_{2}

Diffractive DIS: proton structure functions and the reduced cross section

- A reasonable agreement with the HERA data on the diffractive reduced cross section.
- Results obtained with b-BK amplitudes predict smaller proton $F_{2}^{D(3)}$ compared to other models.

DB, J. Cepila, J. G. Contreras, V.P. Goncalves, M. Matas; Eur. Phys. J. C81 (2021), 211.

Diffractive DIS: nuclear structure functions

- Results of the b-BK-A approach are shown for Ca and Pb at low Q^{2} and large β
- F_{2}^{D} ratio slightly larger for heavier nuclei
- $q \bar{q} g$ component (green line) strongly suppressed at larger A.

DB, J. Cepila, J. G. Contreras, V.P. Goncalves, M. Matas; Eur. Phys. J. C81 (2021), 211.

Production of vector mesons

- The dipole interacts with the target hadron
$\rightarrow \mathrm{VM}$ is formed as a result of the interaction
- The scattering amplitude is given as a convolution of
- The photon-meson wave function
- The dipole-target cross section
- A schematic picture:

Production of vector mesons in $\gamma \mathrm{p}$ and $\gamma \mathrm{Pb}$ collisions

- Predictions compared to HERA and LHC data
- Good agreement of the predictions with data for wide range of VM types
- Comparison with the first $J / \psi|t|$-distribution measurement at ALICE (right)

DB, J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. D 100, 054015.

ALICE Collaboration; Phys. Lett. B 817 (2021) 136280.

Vector mesons in $\gamma \mathrm{Pb}$ collisions

- Coherent J/ ψ photoproduction
- Comparison to the LHC data from UPC
- LHC Run 1 data (left) prefer the b-BK-A.
- LHC Run 2 data don't provide a clear message.

DB, J. Cepila, J. G. Contreras, M. Matas; Phys. Lett. B 817 (2021) 136306

Deeply virtual Compton scattering

- Process similar to DIS, however a real γ is formed.
- The target hadron remains intact.
- A rapidity gap separates the two final states.
- DVCS process probes directly the QCD dynamics of the dipole-target interaction.
- Gluons dominate the interaction at large energies - direct probe of gluon GPD.

DVCS predictions

- Comparison to HERA data in a good agreement
- b-BK model shows a milder W-dependence.
- Predictions for EIC and LHeC energies
- Positions of the diffractive minima for proton clearly displaced among different models.

DB, J. Cepila, J. G. Contreras, M. Matas; Eur. Phys. Journal C 82 (2022) 99

Conclusions

- Solutions to the b-BK equation obtained for proton and nuclear targets

Conclusions

- Solutions to the b-BK equation obtained for proton and nuclear targets
- Successful application of dipole amplitudes obtained by solving b-BK into several QCD processes

Conclusions

- Solutions to the b-BK equation obtained for proton and nuclear targets
- Successful application of dipole amplitudes obtained by solving b-BK into several QCD processes
- Presented results are of an interest for measurements at current and future facilities such as LHC, EIC or LHeC

Conclusions

- Solutions to the b-BK equation obtained for proton and nuclear targets
- Successful application of dipole amplitudes obtained by solving b-BK into several QCD processes
- Presented results are of an interest for measurements at current and future facilities such as LHC, EIC or LHeC
- Measurements of nuclear structure functions and nuclear suppression
- Saturation - it's expected to onset sooner in nuclei than for protons
- The tomography picture of hadrons from exclusive processes
\rightarrow measurements of TMDs and GPDs

Conclusions

- Solutions to the b-BK equation obtained for proton and nuclear targets
- Successful application of dipole amplitudes obtained by solving b-BK into several QCD processes
- Presented results are of an interest for measurements at current and future facilities such as LHC, EIC or LHeC
- Measurements of nuclear structure functions and nuclear suppression
- Saturation - it's expected to onset sooner in nuclei than for protons
- The tomography picture of hadrons from exclusive processes
\rightarrow measurements of TMDs and GPDs
- New measurements can improve our models and their input

Conclusions

- Solutions to the b-BK equation obtained for proton and nuclear targets
- Successful application of dipole amplitudes obtained by solving b-BK into several QCD processes
- Presented results are of an interest for measurements at current and future facilities such as LHC, EIC or LHeC
- Measurements of nuclear structure functions and nuclear suppression
- Saturation - it's expected to onset sooner in nuclei than for protons
- The tomography picture of hadrons from exclusive processes
\rightarrow measurements of TMDs and GPDs
- New measurements can improve our models and their input
- Most important - better understanding of QCD at high energies ahead of us!

WEDNESDAY HIKE!!!

Ultimate hike via all the hills around Bíly potok

Jizerky: fakt velký výlet

Uloženo ve složce Místa a trasy

A shorter variant

Beyond the (SM) limits!

[^0]: ${ }^{[1]}$ H1, ZEUS: JHEP 01 (2010) 109.

