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Magnetic field in Quantum Mechanics

The state of the system is described by a vector ψ in a Hilbert
space and its time evolution is governed by the Schrödinger
equation

i~
∂ψ

∂t
= Hψ

with H being a linear self-adjoint operator representing the
total energy of the system.

Hamiltonian of charged particle in electromagnetic field

H =
1
2m

(~P − q ~A)2 + qϕ,

where ~A and ϕ are potentials for which it applies:

~B = rot~A, ~E = −gradϕ− ∂ ~A

∂t
.
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Why self-adjointness is required?
The Spectrum of the linear operator assigned to observable
must be identical to the set of values that can be measured for
that quantity.

Spectrum of self-adjoint operators is real!

Question
Can Quantum theory be extended by non-self-adjoint operators
playing the role of observables?
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Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

Question
Can Quantum theory be extended by non-self-adjoint operators
playing the role of observables?

There is large class of operators with real spectrum
(measurable in principle) as a consequence of certain
symmetries instead of self-adjointness.
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Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

This unconventional representation of observables is consistent
with fundamental axioms of Quantum Mechanics if, and only
if, the non-self-adjoint observable H is quasi-self-adjoint, i.e:

H∗ = ΘHΘ−1, (1)

where Θ is positive, bounded and boundedly invertible
operator called metric.
H is self-adjoint with modified inner product 〈·|·〉Θ := 〈·|Θ ·〉

〈φ|Hψ〉Θ = 〈φ|Θ Θ−1H∗Θ ψ〉 = 〈Hφ|Θ ψ〉 = 〈Hφ|ψ〉Θ.
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Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

H is quasi-self-adjoint if, and only if, it is similar to a
self-adjoint operator.
There exists a self-adjoint operator h and a bounded and
boundedly invertible operator Ω such that

h = ΩHΩ−1. (2)

Indeed if H satisfies (1), then h from (2) is self-adjoint
provided that we set Ω := Θ1/2. Vice versa, an operator H
satisfying (2) is quasi-self-adjoint with Θ := Ω · Ω.
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Black holes

Stability of rotating Black holes

[Andersson 2005], [Jaramillo 2015]

The apparent horizon is the boundary between the light that is
trapped inside a black hole and the light that is able to escape
gravity at a given time. More specifically we will focus on
marginally outer trapped surfaces (MOTS) that possess the
stability notion that guarantees their physical consistency as
models of black hole horizons.
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Black holes

Stability of rotating black holes

Let us consider n−dimensional spacetime (M, gab) and
spacelike, closed (compact and without boundary) and
orientable surface S with codimension−2 embedded in
(M, gab).

MOTS-stability notion admits a spectral characterization in
terms of the so-called principal eigenvalue of the operator

LSψ =
[
−∆ + 2ΩaDa − (|Ω|2 − DaΩa − 1

2
RS + Gabk

alb)
]
ψ

defined on the apparent horizon S.
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Black holes

By substitution:

Ωa =
ie

~c
Aa RS =

4me

~2 ϕ, Gabk
alb = −2m

~2 V

passes the stability operator LS to Hamiltonian of
non-relativistic charged particle.
Applies

~2

2m
LS = H,

where

H =
1
2m

(
− i~D − e

c
A
)2

+ eϕ+ V .

Potential A purely imaginary!
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My research

Dirac operator

We introduce relativistic Dirac operator Da on circle with
complex-valued magnetic potential a : (−π, π)→ C and
mass m:

(Daψ)(x) :=

(
m −i∂x − a

−i∂x − a −m

)(
ψ1
ψ2

)
,

with domain

DomDa :=

{
ψ =

(
ψ1
ψ2

)
∈W 1,2((−π, π);C2) : ψ(−π) = ψ(π)

}
.

Operátor Da is self-adjoint ⇐⇒ Im a = 0.
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My research

Theorem
Operator Da is quasi-self-adjoint if, and only if

Im〈a〉 = 0,

with metric operator

(Θψ)(x) :=

(
exp

(
2 ImA(x)

)
0

0 exp
(
2 ImA(x)

))(ψ1
ψ2

)
.

Operator Da satisfies the similarity relation

ΩaDaΩ−1
a = D〈a〉,

(Ωaψ)(x) :=

(
exp(i〈a〉x − iA(x)) 0

0 exp(i〈a〉x − iA(x))

)(
ψ1
ψ2

)
.
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My research

Spectrum

We obtain the spectrum by solving the equation Daψ = λψ:(
m −i∂x − a

−i∂x − a −m

)(
ψ1
ψ2

)
= λ

(
ψ1
ψ2

)
,

σ(Da) =
{
±
√
m2 + (n − 〈a〉)2

}
n∈Z

,

σ(D∗a ) =
{
±
√
m2 + (n − 〈a〉)2

}
n∈Z

.
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My research

Spectrum

Eigenfunctions of Da:

ψn(x) =
1√
4πλn

(√
λn + m√
λn −m

)
exp
(
i(
√
λ2
n −m2x + A(x))

)
.

The eigenfunctions of the adjoint D∗a are given by:

φn(x) =
1√
4πλn

(√
λn + m√
λn −m

)
exp
(
i(

√
λ2
n −m2x + A(x))

)
.

The normalisation factors are chosen in such a way that the
standard biorthogonal condition 〈ψm|φn〉 = δmn holds.
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My research

Basis properties

Definition (Riesz basis)

{ψn}+∞
n=1 is Riesz basis on Hilbert space H, if there

exists orthonormal basis {en}+∞
n=1 on Hilbert space

H and bounded invertible operator ξ that satisfies:

ξen = ψn ∀n ∈ N.
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My research

Basis properties

Theorem
The eigenfunctions of Da form a Riesz basis.

If Im〈a〉 = 0 =⇒ λn = λn, we can write eigenvectors using
ON basis

en(x) :=
1√
4πλn

(√
λn + m√
λn −m

)
exp
(
i
√
λ2
n −m2x + i ReA(x)

)
and bounded positive function ξ(x)

ξ(x) := exp(− ImA(x)),

as:

ψn(x) = ξ(x)en(x),

φn(x) = ξ−1(x)en(x).
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Conclusion

Relevance of complex magnetic field in physics.

My results for Dirac operator with complex magnetic potential
on circle:

The purely real spectrum of Da under the condition
Im〈a〉 = 0, which represents more general condition than
self-adjointness (ie. Im a = 0)
However drastic change in basis properties.
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