Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion

Imaginary magnetic field in Relativistic Quantum Mechanics

Alexandra Ridziková 16th June 2022

Magnetic field in Quantum Mechanics	Imaginary magnetic field?	Magnetic Dirac

Content

1 Magnetic field in Quantum Mechanics

2 Imaginary magnetic field?

- Quasi-Hermitian Quantum Mechanics
- Black holes

Magnetic Dirac operator on circleMy research

4 Conclusion

◇□> ▲□> ▲目> ▲目> ▲□>

ENAEN E VOO

Magnetic field in Quantum Mechanics

• The state of the system is described by a vector ψ in a Hilbert space and its time evolution is governed by the Schrödinger equation

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi$$

with H being a linear self-adjoint operator representing the total energy of the system.

• Hamiltonian of charged particle in electromagnetic field

$$H = \frac{1}{2m}(\vec{P} - q\vec{A})^2 + q\varphi,$$

where $ec{A}$ and arphi are potentials for which it applies:

$$\vec{B} = \operatorname{rot} \vec{A}, \qquad \vec{E} = -\operatorname{grad} \varphi - \frac{\partial \vec{A}}{\partial t}.$$

Magnetic field in Quantum Mechanics

• The state of the system is described by a vector ψ in a Hilbert space and its time evolution is governed by the Schrödinger equation

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi$$

with H being a linear self-adjoint operator representing the total energy of the system.

• Hamiltonian of charged particle in electromagnetic field

$$H=\frac{1}{2m}(\vec{P}-q\vec{A})^2+q\varphi,$$

where \vec{A} and φ are potentials for which it applies:

$$\vec{B} = \operatorname{rot} \vec{A}, \qquad \vec{E} = -\operatorname{grad} \varphi - \frac{\partial \vec{A}}{\partial t}.$$

Magnetic field in Quantum Mechanics ○●	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclusion

• Why self-adjointness is required?

The Spectrum of the linear operator assigned to observable must be identical to the set of values that can be measured for that quantity.

• Spectrum of self-adjoint operators is real!

Question

Can Quantum theory be extended by non-self-adjoint operators playing the role of observables?

Magnetic field in Quantum Mechanics ○●	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclusion

• Why self-adjointness is required?

The Spectrum of the linear operator assigned to observable must be identical to the set of values that can be measured for that quantity.

• Spectrum of self-adjoint operators is real!

Question

Can Quantum theory be extended by non-self-adjoint operators playing the role of observables?

Imaginary magnetic field? ●○○○○○○ Magnetic Dirac operator on circleConclusion0000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Content

1 Magnetic field in Quantum Mechanics

2 Imaginary magnetic field? • Quasi-Hermitian Quantum Mechanics • Black holes

Magnetic Dirac operator on circle
 My research

4 Conclusion

Magnetic field in Quantum Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circleConclusion0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

Question

Can Quantum theory be extended by non-self-adjoint operators playing the role of observables?

• There is large class of operators with real spectrum (measurable in principle) as a consequence of certain symmetries instead of self-adjointness.

Magnetic field in Quantum Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

Question

Can Quantum theory be extended by non-self-adjoint operators playing the role of observables?

• There is large class of operators with real spectrum (measurable in principle) as a consequence of certain symmetries instead of self-adjointness.

Imaginary magnetic field?

Magnetic Dirac operator on circleConclusion0000000000

Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

• This unconventional representation of observables is consistent with fundamental axioms of Quantum Mechanics if, and only if, the *non-self-adjoint* observable *H* is *quasi-self-adjoint*, i.e:

$$H^* = \Theta H \Theta^{-1}, \tag{1}$$

where Θ is positive, bounded and boundedly invertible operator called *metric*.

• *H* is self-adjoint with modified inner product $\langle \cdot | \cdot \rangle_{\Theta} := \langle \cdot | \Theta \cdot \rangle$

 $\langle \phi | H\psi \rangle_{\Theta} = \langle \phi | \Theta \; \Theta^{-1} H^* \Theta \; \psi \rangle = \langle H\phi | \Theta \; \psi \rangle = \langle H\phi | \psi \rangle_{\Theta}.$

Imaginary magnetic field?

Magnetic Dirac operator on circleConclusion0000000000

Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

• This unconventional representation of observables is consistent with fundamental axioms of Quantum Mechanics if, and only if, the *non-self-adjoint* observable *H* is *quasi-self-adjoint*, i.e:

$$H^* = \Theta H \Theta^{-1}, \tag{1}$$

where Θ is positive, bounded and boundedly invertible operator called *metric*.

• *H* is self-adjoint with modified inner product $\langle \cdot | \cdot \rangle_{\Theta} := \langle \cdot | \Theta \cdot \rangle$

$$\langle \phi | H\psi \rangle_{\Theta} = \langle \phi | \Theta \; \Theta^{-1} H^* \Theta \; \psi \rangle = \langle H\phi | \Theta \; \psi \rangle = \langle H\phi | \psi \rangle_{\Theta}.$$

Imaginary magnetic field?

Magnetic Dirac operator on circleConclusion0000000000

Quasi-Hermitian Quantum Mechanics

Quasi-Hermitian Quantum Mechanics

- *H* is quasi-self-adjoint if, and only if, it is *similar* to a self-adjoint operator.
- There exists a *self-adjoint* operator *h* and a bounded and boundedly invertible operator Ω such that

$$h = \Omega H \Omega^{-1}.$$
 (2)

Indeed if *H* satisfies (1), then *h* from (2) is self-adjoint provided that we set $\Omega := \Theta^{1/2}$. Vice versa, an operator *H* satisfying (2) is quasi-self-adjoint with $\Theta := \Omega \cdot \Omega$.

Magnetic field in Quantum Mechanics	Imaginary magnetic field?	Magnetic Dirac operator on circle	Conclusion
Black holes			
Content			

1 Magnetic field in Quantum Mechanics

2 Imaginary magnetic field? • Quasi-Hermitian Quantum Mechanics • Black holes

Magnetic Dirac operator on circleMy research

Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion

Black holes

Stability of rotating Black holes

• [Andersson 2005], [Jaramillo 2015]

• The apparent horizon is the boundary between the light that is trapped inside a black hole and the light that is able to escape gravity at a given time. More specifically we will focus on *marginally outer trapped surfaces (MOTS)* that possess the stability notion that guarantees their physical consistency as models of black hole horizons.

Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion

Black holes

Stability of rotating Black holes

• [Andersson 2005], [Jaramillo 2015]

• The apparent horizon is the boundary between the light that is trapped inside a black hole and the light that is able to escape gravity at a given time. More specifically we will focus on *marginally outer trapped surfaces (MOTS)* that possess the stability notion that guarantees their physical consistency as models of black hole horizons.

Magnetic field in Quantum Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle O

Conclusion

Black holes

Stability of rotating black holes

- Let us consider n-dimensional spacetime (M, g_{ab}) and spacelike, closed (compact and without boundary) and orientable surface S with codimension-2 embedded in (M, g_{ab}).
- MOTS-stability notion admits a spectral characterization in terms of the so-called principal eigenvalue of the operator

$$L_{\mathcal{S}}\psi = \left[-\Delta + 2\Omega^{a}D_{a} - \left(|\Omega|^{2} - D_{a}\Omega^{a} - \frac{1}{2}R_{\mathcal{S}} + G_{ab}k^{a}l^{b}\right)\right]\psi$$

defined on the apparent horizon S.

Magnetic field in Quantum Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle Co

Conclusion

Black holes

Stability of rotating black holes

- Let us consider n-dimensional spacetime (M, g_{ab}) and spacelike, closed (compact and without boundary) and orientable surface S with codimension-2 embedded in (M, g_{ab}).
- MOTS-stability notion admits a spectral characterization in terms of the so-called principal eigenvalue of the operator

$$L_{\mathcal{S}}\psi = \Big[-\Delta + 2\Omega^{a}D_{a} - (|\Omega|^{2} - D_{a}\Omega^{a} - \frac{1}{2}R_{\mathcal{S}} + G_{ab}k^{a}l^{b})\Big]\psi$$

defined on the apparent horizon \mathcal{S} .

Magnetic field in Quantum Mechanics	Imaginary magnetic field?	Magnetic Dirac operator on circle	Conclusion
Black holes			

• By substitution:

$$\Omega_{a} = \frac{ie}{\hbar c} A_{a} \qquad R_{S} = \frac{4me}{\hbar^{2}} \varphi, \qquad G_{ab} k^{a} l^{b} = -\frac{2m}{\hbar^{2}} V$$

passes the stability operator L_S to Hamiltonian of non-relativistic charged particle.

Applies

$$\frac{\hbar^2}{2m}L_{\mathcal{S}}=H,$$

where

$$H = \frac{1}{2m} \left(-i\hbar D - \frac{e}{c} \mathbf{A} \right)^2 + e\varphi + V.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Potential A purely imaginary!

Magnetic field in Quantum Mechanics	Imaginary magnetic field? ○○○○○○●	Magnetic Dirac operator on circle	Conclusion
Black holes			

• By substitution:

$$\Omega_{a} = \frac{ie}{\hbar c} A_{a} \qquad R_{S} = \frac{4me}{\hbar^{2}} \varphi, \qquad G_{ab} k^{a} l^{b} = -\frac{2m}{\hbar^{2}} V$$

passes the stability operator L_S to Hamiltonian of non-relativistic charged particle.

Applies

$$\frac{\hbar^2}{2m}L_{\mathcal{S}}=H,$$

where

$$H = \frac{1}{2m} \left(-i\hbar D - \frac{e}{c} A \right)^2 + e\varphi + V.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Potential A purely imaginary!

Magnetic field in Quantum Mechanics	Imaginary magnetic field? ○○○○○○●	Magnetic Dirac operator on circle	Conclusion
Black holes			

• By substitution:

$$\Omega_{a} = \frac{ie}{\hbar c} A_{a} \qquad R_{S} = \frac{4me}{\hbar^{2}} \varphi, \qquad G_{ab} k^{a} l^{b} = -\frac{2m}{\hbar^{2}} V$$

passes the stability operator L_S to Hamiltonian of non-relativistic charged particle.

Applies

$$\frac{\hbar^2}{2m}L_{\mathcal{S}}=H,$$

where

$$H = \frac{1}{2m} \left(-i\hbar D - \frac{e}{c} A \right)^2 + e\varphi + V.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Potential A purely imaginary!

Magnetic	field	Quantum	Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle

Content

1 Magnetic field in Quantum Mechanics

2 Imaginary magnetic field? • Quasi-Hermitian Quantum Mechanics • Black holes

Magnetic Dirac operator on circleMy research

4 Conclusion

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclusion
My research			
Content			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1 Magnetic field in Quantum Mechanics

2 Imaginary magnetic field? • Quasi-Hermitian Quantum Mechanics • Black holes

Magnetic Dirac operator on circleMy research

4 Conclusion

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle ○○●○○○○○	Conclusion
My research			
Dirac operator			

 We introduce relativistic Dirac operator D_a on circle with complex-valued magnetic potential a : (-π, π) → C and mass m:

$$(D_a\psi)(x):=\begin{pmatrix}m&-i\partial_x-a\\-i\partial_x-a&-m\end{pmatrix}\begin{pmatrix}\psi_1\\\psi_2\end{pmatrix},$$

with domain

$$\mathsf{Dom}\, D_{\boldsymbol{a}} := \left\{ \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in W^{1,2}((-\pi,\pi);\mathbb{C}^2) : \psi(-\pi) = \psi(\pi) \right\}.$$

• Operator D_a is self-adjoint $\iff \text{Im } a = 0$.

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle ○○●○○○○○	Conclusion
My research			
Dirac operator			

 We introduce relativistic Dirac operator D_a on circle with complex-valued magnetic potential a : (-π, π) → C and mass m:

$$(D_a\psi)(x):=\begin{pmatrix}m&-i\partial_x-a\\-i\partial_x-a&-m\end{pmatrix}\begin{pmatrix}\psi_1\\\psi_2\end{pmatrix},$$

with domain

$$\mathsf{Dom}\, D_{\mathsf{a}} := \left\{ \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in W^{1,2}((-\pi,\pi);\mathbb{C}^2) : \psi(-\pi) = \psi(\pi) \right\}.$$

• Operator D_a is self-adjoint $\iff \text{Im } a = 0$.

Magnetic	field	Quantum	Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion

My research

Theorem

• Operator D_a is quasi-self-adjoint if, and only if

 $\operatorname{Im}\langle a\rangle = 0,$

with metric operator

$$(\Theta\psi)(x) := \begin{pmatrix} \exp\left(2\operatorname{\mathsf{Im}} A(x)\right) & 0\\ 0 & \exp\left(2\operatorname{\mathsf{Im}} A(x)\right) \end{pmatrix} \begin{pmatrix} \psi_1\\ \psi_2 \end{pmatrix}$$

• Operator D_a satisfies the similarity relation

 $\Omega_a D_a \Omega_a^{-1} = D_{\langle a \rangle}$

$$(\Omega_a \psi)(x) := \begin{pmatrix} \exp(i\langle a \rangle x - iA(x)) & 0 \\ 0 & \exp(i\langle a \rangle x - iA(x)) \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}.$$

Magnetic	field	Quantum	Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion

My research

Theorem

• Operator D_a is quasi-self-adjoint if, and only if

 $\operatorname{Im}\langle a\rangle = 0,$

with metric operator

$$(\Theta\psi)(x) := \begin{pmatrix} \exp\left(2\operatorname{\mathsf{Im}} A(x)\right) & 0\\ 0 & \exp\left(2\operatorname{\mathsf{Im}} A(x)\right) \end{pmatrix} \begin{pmatrix} \psi_1\\ \psi_2 \end{pmatrix}$$

• Operator D_a satisfies the similarity relation

$$\Omega_{a}D_{a}\Omega_{a}^{-1}=D_{\langle a \rangle}$$

$$(\Omega_a \psi)(x) := \begin{pmatrix} \exp(i \langle a \rangle x - i A(x)) & 0 \\ 0 & \exp(i \langle a \rangle x - i A(x)) \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}.$$

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle ○○○○●○○○	Conclusion
My research			
Spectrum			

• We obtain the spectrum by solving the equation $D_a\psi = \lambda\psi$:

$$\begin{pmatrix} m & -i\partial_x - a \\ -i\partial_x - a & -m \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \lambda \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},$$

$$\sigma(D_a) = \left\{ \pm \sqrt{m^2 + (n - \langle a \rangle)^2} \right\}_{n \in \mathbb{Z}},$$

$$\sigma(D_a^*) = \left\{ \pm \sqrt{m^2 + (n - \langle \overline{a} \rangle)^2} \right\}_{n \in \mathbb{Z}}.$$

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle ○○○○●○○○	Conclusion
My research			
Spectrum			

• We obtain the spectrum by solving the equation $D_a\psi = \lambda\psi$:

$$\begin{pmatrix} m & -i\partial_x - a \\ -i\partial_x - a & -m \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \lambda \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},$$

$$\sigma(D_{a}) = \left\{ \pm \sqrt{m^{2} + (n - \langle a \rangle)^{2}} \right\}_{n \in \mathbb{Z}},$$

$$\sigma(D_a^*) = \left\{ \pm \sqrt{m^2 + (n - \langle \overline{a} \rangle)^2} \right\}_{n \in \mathbb{Z}}.$$

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle ○○○○●○○○	Conclusion
My research			
Spectrum			

• We obtain the spectrum by solving the equation $D_a\psi = \lambda\psi$:

$$\begin{pmatrix} m & -i\partial_x - a \\ -i\partial_x - a & -m \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \lambda \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},$$

$$\sigma(D_{a}) = \left\{ \pm \sqrt{m^{2} + (n - \langle a \rangle)^{2}} \right\}_{n \in \mathbb{Z}},$$

$$\sigma(D_a^*) = \left\{ \pm \sqrt{m^2 + (n - \langle \overline{a} \rangle)^2} \right\}_{n \in \mathbb{Z}}.$$

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclusion
My research			
Spectrum			

• Eigenfunctions of D_a :

$$\psi_n(x) = \frac{1}{\sqrt{4\pi\lambda_n}} \left(\frac{\sqrt{\lambda_n + m}}{\sqrt{\lambda_n - m}} \right) \exp\left(i \left(\sqrt{\lambda_n^2 - m^2} x + A(x) \right) \right).$$

• The eigenfunctions of the adjoint D_a^* are given by:

$$\phi_n(x) = \frac{1}{\sqrt{4\pi\lambda_n}} \left(\frac{\sqrt{\lambda_n} + m}{\sqrt{\lambda_n} - m} \right) \exp\left(i(\sqrt{\lambda_n^2 - m^2}x + \overline{A(x)})\right).$$

• The normalisation factors are chosen in such a way that the standard biorthogonal condition $\langle \psi_m | \phi_n \rangle = \delta_{mn}$ holds.

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclusion
My research			
Spectrum			

• Eigenfunctions of D_a :

$$\psi_n(x) = \frac{1}{\sqrt{4\pi\lambda_n}} \left(\frac{\sqrt{\lambda_n + m}}{\sqrt{\lambda_n - m}} \right) \exp\left(i \left(\sqrt{\lambda_n^2 - m^2} x + A(x) \right) \right).$$

• The eigenfunctions of the adjoint D_a^* are given by:

$$\phi_n(x) = \frac{1}{\sqrt{4\pi\lambda_n}} \left(\frac{\sqrt{\lambda_n} + m}{\sqrt{\lambda_n} - m} \right) \exp\left(i(\sqrt{\lambda_n^2 - m^2}x + \overline{A(x)})\right).$$

• The normalisation factors are chosen in such a way that the standard biorthogonal condition $\langle \psi_m | \phi_n \rangle = \delta_{mn}$ holds.

Magnetic field in Quantum Mechanics

Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion

My research

Basis properties

Definition (Riesz basis)

 $\{\psi_n\}_{n=1}^{+\infty}$ is Riesz basis on Hilbert space \mathcal{H} , if there exists orthonormal basis $\{e_n\}_{n=1}^{+\infty}$ on Hilbert space \mathcal{H} and bounded invertible operator ξ that satisfies:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$\xi e_n = \psi_n \qquad \forall n \in \mathbb{N}.$$

Magnetic field in Quantum Mechanics	Imaginary magnetic field?	Magnetic Dirac operator on circle ○○○○○○○●	Conclusion
My research			

Theorem

Basis properties

The eigenfunctions of D_a form a Riesz basis.

• If $Im\langle a \rangle = 0 \implies \lambda_n = \overline{\lambda_n}$, we can write eigenvectors using ON basis

$$e_n(x) := \frac{1}{\sqrt{4\pi\lambda_n}} \left(\frac{\sqrt{\lambda_n + m}}{\sqrt{\lambda_n - m}} \right) \exp\left(i\sqrt{\lambda_n^2 - m^2}x + i\operatorname{Re} A(x) \right)$$

and bounded positive function $\xi(x)$

$$\xi(x) := \exp(-\operatorname{Im} A(x)),$$

as:

$$\psi_n(x) = \xi(x)e_n(x),$$

$$\phi_n(x) = \xi^{-1}(x)e_n(x).$$

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclusion
My research			

Theorem

Basis properties

The eigenfunctions of D_a form a Riesz basis.

• If $\text{Im}\langle a \rangle = 0 \implies \lambda_n = \overline{\lambda_n}$, we can write eigenvectors using ON basis

$$e_n(x) := \frac{1}{\sqrt{4\pi\lambda_n}} \begin{pmatrix} \sqrt{\lambda_n + m} \\ \sqrt{\lambda_n - m} \end{pmatrix} \exp\left(i\sqrt{\lambda_n^2 - m^2}x + i\operatorname{Re} A(x)\right)$$

and bounded positive function $\xi(x)$

$$\xi(x) := \exp(-\operatorname{Im} A(x)),$$

as:

$$\psi_n(x) = \xi(x)e_n(x),$$

$$\phi_n(x) = \xi^{-1}(x)e_n(x).$$

Magnetic	field	Quantum	Mechanics	Ir

Imaginary magnetic field?

Magnetic Dirac operator on circle

Conclusion ●○

Content

Magnetic field in Quantum Mechanics

2 Imaginary magnetic field? • Quasi-Hermitian Quantum Mechanics • Black holes

Magnetic Dirac operator on circleMy research

4 Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Magnetic field	in Quantum	Mechanics	Imaginary magnetic field?	Magr
				0000

Conclusion

- Relevance of complex magnetic field in physics.
- My results for Dirac operator with complex magnetic potential on circle:
 - The purely *real spectrum* of D_a under the condition $\text{Im}\langle a \rangle = 0$, which represents more general condition than self-adjointness (ie. Im a = 0)
 - However drastic change in basis properties.

Magnetic field in Quantum Mechanics	Imaginary magnetic field? 00000000	Magnetic Dirac operator on circle	Conclus ⊙●

on

Conclusion

- Relevance of complex magnetic field in physics.
- My results for Dirac operator with complex magnetic potential on circle:
 - The purely *real spectrum* of D_a under the condition $\text{Im}\langle a \rangle = 0$, which represents more general condition than self-adjointness (ie. Im a = 0)
 - However drastic change in basis properties.