

Incoherent photoproduction of J/ψ with ALICE

David Grund

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

June 14, 2022 Workshop (E)JČF 2022

Supervisor: Guillermo Contreras

• We look inside lead nuclei at large energies = low Bjorken-x!

Outline

- Ultra-peripheral collisions: why do we need them?
- Photoproduction of vector mesons
- ALICE as a tool to measure UPCs
- Details about the ongoing analysis

Nature Rev.Phys. 1 (2019) 11, 662-674

HERA: deep inelastic scattering

• Electron-proton collider in DESY (1992-2007)

- Structure of **proton** studied
- Measurements of structure functions $(F_2(x, Q^2))$ and PDFs of quarks and gluons
- Region of $10^{-4} < x < 0.02$ covered

Ultra-peripheral collisions – why?

• Because we currently have no EIC \otimes (only plans for it!)

Pb

Pb

J/ψ

M.

- Either p-A or A-A (at the LHC: Pb, at RHIC: Au)
- The impact parameter b > 2R
 - Hadronic interactions suppressed

ENNIN .

- Processes induced by **quasi-real photons** (EM fields of ultra-relativistic ions)
 - Photon flux $\propto Z^2$

Pb

Pb

Left:

Diffractive

photoproduction

of vector mesons

ALICE

Photoproduction of vector mesons

- Provides more detailed pictures than inclusive DIS:
 - Distribution of partons in the transverse plane
 - Event-by-event fluctuations of the transverse structure
- Colour dipole approach: γ fluctuates into a $q\overline{q}$ pair
 - Pomeron exchange, at the lowest order: 2 gluons, $\sigma \sim g^2(x, Q^2)$
 - Vector meson $(J^P = 1^-)$ is created
- Cross section: a product of the photon flux (QED) and the photonuclear cross section (QCD enters here):

$$\frac{\mathrm{d}\sigma_{\mathrm{PbPb}}(y)}{\mathrm{d}y} = N_{\gamma\mathrm{Pb}}(y, \{\boldsymbol{b}\})\sigma_{\gamma\mathrm{Pb}}(y) + N_{\gamma\mathrm{Pb}}(-y, \{\boldsymbol{b}\})\sigma_{\gamma\mathrm{Pb}}(-y)$$

Photoproduction kinematics

- Hard scale (pQCD applicable): $Q^2 \sim M_V^2/4$
- Experimental signatures:
 - Rapidity of the VM $\leftrightarrow x$:

$$x_{\pm} = \frac{M_V}{\sqrt{s_{\rm NN}}} e^{\pm y}$$

- "J/ ψ scattering angle traces the energy evolution"
- At the LHC: $10^{-5} \leq x \leq 10^{-2}$
- Transverse momentum of the VM $\leftrightarrow t$:

$$t|pprox -p_{\mathrm{T}}^2$$

• Why only an approximate relation?

$$\vec{p}_{\mathrm{T,J}/\psi} = \vec{p}_{\mathrm{T,\gamma}} + \vec{p}_{\mathrm{T,pom}}$$

Coherent vs. incoherent photoproduction

Nature Rev.Phys. 1 (2019) 11, 662-674

- Nuclear breakup very likely in the inc. case (but can also happen in coh.)
- The target nucleon in the inc. process can **dissociate** \Rightarrow even larger $p_{\rm T}$

Our tool: ALICE at Point 2

What we want to measure with ALICE?

- The |t|-dependence of the photonuclear cross section of incoherent J/ ψ production
 - At the energy of $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$
 - At midrapidity, |y| < 0.8
 - In dimuon decay channel, $J/\psi \rightarrow \mu\mu$

How we measure it?

- Data from Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (LHC18q, LHC18r) + anchored MC simulations with STARlight (LHC20g1)
- We cannot measure $N_{{\rm J}/\psi}^{\rm inc}$ directly...
- Instead, we measure yields from the fits of invariant mass distributions:

$$N_{\text{yield}} = N_{\text{J/\psi}}^{\text{inc}} + N_{\text{J/\psi}}^{\text{coh}} + N^{\text{FD}} = N_{\text{J/\psi}}^{\text{inc}} + f_C \cdot N_{\text{J/\psi}}^{\text{inc}} + f_D \cdot N_{\text{J/\psi}}^{\text{inc}} = N_{\text{J/\psi}}^{\text{inc}} (1 + f_C + f_D)$$

• Then we get:
$$N_{\mathrm{J/\psi}}^{\mathrm{inc}} = \frac{N_{\mathrm{yield}}}{1 + f_C + f_D}$$

 $\psi(2S)$: 3.686 GeV/ c^2

J/ ψ : 3.097 GeV/ c^2

- Coherent contamination
- Feed-down contamination: reactions $\psi(2S) \rightarrow J/\psi + X$ (undetected)
 - X is most likely a pair of charged $(\pi^+\pi^-)$ or neutral $(\pi^0\pi^0)$ pions
 - $\psi(2S)$ can be coherent or incoherent:

$$f_D = f_D^{\rm coh} + f_D^{\rm inc}$$

Selection of events

No.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

Central trigger: what events do we seek?

• We aim to leptonic decays of J/ ψ : two back-to-back electron/muon <u>central</u> tracks with the invariant mass around $m_{ll} \approx 3.097 \text{ GeV}/c^2$

CCUP31 = !0VBA !0VBC !0UBA !0UBC 0STG 0OMU

- Online vetoes:
 - !0VBA (!0VBC): no signal in V0A (V0C) during the B-B time window
 - !0UBA (!0UBC): no signal in ADA (ADC) during the B-B time window
- Topological triggers: events with back-to-back tracks
 - 0STG: SPD
 - 00MU: TOF
- Otherwise, we want an empty detector \Rightarrow very clean events!

Rejecting events with potential hadronic contamination

Integrated luminosity of the data sample

- Recorded lumi: reference trigger (V0, ZDC) + VdM scan
- Analyzed lumi: scaled by N_{ana}/N_{rec}
- Total: $\mathcal{L} = 231.9 \ \mu b^{-1}$

Choice of binning in p_{T} (and |t|)

- Out of \approx 730 events with 0.2 < $p_{\rm T}$ < 1.0 GeV/*c*:
 - 520 J/ ψ candidates (Double-sided CB function)
 - 210 background events (exponential)
- Tail parameters fixed to the values from fits to MC
- Five bins in $p_{\rm T}$ created so that the yield of J/ ψ is uniformly distributed

Bin	Boundaries in $p_{\rm T}$ (GeV/c)	Boundaries in $p_{\rm T}^2$ (GeV ² / c^2)	Nyield
1	(0.200, 0.265)	(0.040, 0.070)	106 ± 11
2	(0.265, 0.336)	(0.070, 0.112)	106 ± 11
3	(0.336, 0.453)	(0.112, 0.205)	104 ± 12
4	(0.453, 0.659)	(0.205, 0.434)	104 ± 12
5	(0.659, 1.000)	(0.434, 1.000)	102 ± 12

Acceptance and efficiency of the signal reconstruction

- The total value: $(Acc \times \varepsilon) = (Acc \times \varepsilon)_{MC} \times \varepsilon_{pile-up} \times \varepsilon_{EMD}$
- MC part: drop at large $p_{\rm T}$ expected
 - At $p_{\rm T} \approx 0$: muon tracks are back-to-back in azimuth, curvature of tracks not significant
 - At larger $p_{\rm T}$: the opening angle decreases

Pile-up and EMD corrections

- Pile-up:
 - Photoproduction can be accompanied by an independent hadronic or EM interaction in the same bunch crossing that can leave a signal in AD/V0
 - Results from the previous ALICE paper [1] cannot be applied (correction is p_{T} -dependent)
 - Work in progress
- Electromagnetic dissociation (EMD):
 - After photoproduction takes place, the nucleus can be left in an excited state and later dissociate which might result in a signal left in AD/V0
 - Results from [1]: $\varepsilon_{\text{EMD}} = (92.0 \pm 1.8)\%$

Fit of the transverse momentum distribution

- Data with $p_{\rm T} < 2 \text{ GeV}/c$ fitted with 5 templates:
 - coh J/ ψ
 - inc J/ψ Created from MC data
 - coh feed-down samples (STARlight)
 - inc feed-down
 - inc J/ ψ with nucleon dissociation H1 parametrization [2]:

$$\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} \sim p_{\mathrm{T}} \left(1 + \frac{b_{\mathrm{pd}}}{n_{\mathrm{pd}}} p_{\mathrm{T}}^2 \right)^{-n_{\mathrm{pd}}}$$

 $b_{\rm pd} = 1.79 \; ({\rm GeV}/c)^{-2}, \; n_{\rm pd} = 3.58$

- Background subtracted via invariant mass fits in p_T bins \Rightarrow no background template needed
- Free parameters: $N_{\rm coh}$, $N_{\rm inc}$, $N_{\rm diss}$
- Coherent and FD contamination:

$$f_C = \frac{N_{\rm coh}^{\rm bin}}{N_{\rm inc}^{\rm bin} + N_{\rm diss}^{\rm bin}}$$

$$\begin{split} f_D^{\rm coh} &= \frac{N_{\rm FD,coh}^{\rm bin}}{N_{\rm inc}^{\rm bin} + N_{\rm diss}^{\rm bin}} \\ f_D^{\rm inc} &= \frac{N_{\rm FD,inc}^{\rm bin}}{N_{\rm inc}^{\rm bin} + N_{\rm diss}^{\rm bin}} \end{split}$$

Fit using original MC data samples

- Data and the model not compatible around the "coherent peak"
 - Manifested by rather large value of χ^2/NDF

ALIC

Fit using original MC data samples

- Data and the model not compatible around the "coherent peak"
 - Manifested by rather large value of χ^2/NDF

Coherent peak in data shifted to lower $p_{\rm T}$ than STARlight predicts...

ALIC

What did we learn from the ALICE results on |t|-dependence of coherent photoproduction [1]?

- STARlight doesn't reproduce the data!
- Within SL:

$$\sigma(\gamma \text{ Pb} \rightarrow \text{VM Pb}) = \left. \frac{\mathrm{d}\sigma(\gamma \text{ Pb} \rightarrow \text{VM Pb})}{\mathrm{d}t} \right|_{t=0} \left| F(t) \right|^2$$

where the nuclear form factor

$$F(q = \sqrt{|t|}) = \frac{4\pi\rho_0}{Aq^3} \frac{\sin(qR_A) - qR_A\cos(qR_A)}{1 + a^2q^2}$$

- A = nuclear mass number a = range of Yukawa potential R_A = nuclear radius (default value for Pb: **6.624 fm**)
- Measurements can be reproduced if the value of R_A is increased...

Fits using the optimal value of $R_A = 7.35$ fm

Data

sum

- Values of $R_A \in (6.6, 7.8)$ fm tried out, we searched for a minimum in χ^2/NDF
- $p_{\rm T}$ shapes of reconstructed MC events reweighted

<u>×10³</u>

ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV

 $m_{\mu\mu} \in$ (3.0,3.2) GeV/ c^2

 $J/\psi \rightarrow \mu^+\mu^-$

|y| < 0.8

dp/Np

1.8

1.6

1.4

1.0

1.2 🖥

0.8 10 0.6 0.4 0.2 0.0 0.6 0.8 0.4 0 $p_{_{\rm T}}$ (GeV/c) Great improvement seen!

4.0 V₂X 3.5

3.0

STARlight value: $R_{A} = 6.624$ fm

Minimum at $R_{A} = 7.357$ fm

ALICE

Transition from p_T^2 to |t|

• STARlight predicts:

No additional correction related to this is needed...

Systematic uncertainties

Source	Uncertainty (4 bins) $[\%]$	Uncertainty (5 bins) $[\%]$	
Signal extraction	(1.0, 2.2)	(1.1, 2.1)	
f_C	(0.0, 0.4)	(0.0, 0.5)	
f_D	(0.4, 3.7)	(0.3, 3.8)	
Integrated luminosity	2.7		
EM dissociation	2.0		
ITS-TPC tracking	2.8		
SPD and TOF trigger efficiency	1.3		
Branching ratio	0.6		
Value of the photon flux at $y = 0$	2.0		
The conversion $p_{\rm T}^2 \rightarrow t $	negligible		

Tables of results

${\cal L} ~[\mu { m b}^{-1}]$	Δy [-]	BR(J/ $\psi \rightarrow \mu \mu$) [%]	$\varepsilon_{ m veto}$ [%]	$\varepsilon_{ m EMD}$ [%]	$n_{ m \gamma Pb}(y=0)$
232 ± 6	1.6	5.961 ± 0.033 [3]	94.0 ± 2.8 [1] (!)	$92.0 \pm 1.8 [1]$	84.9 ± 1.7 [1]

$p_{\rm T}^2$ interval [GeV ² /c ²]	$\Delta p_{ m T}^2~[{ m GeV}^2/c^2]$	$N_{ m yield}$	$(\mathrm{Acc} imes arepsilon)_{\mathrm{MC}} \ [\%]$	f_D [%]	$f_C \ [\%]$	$rac{\mathrm{d}^2\sigma_{\mathrm{J/\psi}}^{\mathrm{inc}}}{\mathrm{d}y\mathrm{d}p_{\mathrm{T}}^2}~[\mathrm{mb}~c^2/\mathrm{GeV^2}]$
(0.040, 0.070)	0.0302	106 ± 11	3.51 ± 0.03	98.5 ± 7.8	12.6 ± 1.1	$2.48 \pm 0.26 (\text{stat.}) \pm 0.17 (\text{syst.})$
(0.070, 0.113)	0.0427	106 ± 11	3.26 ± 0.03	58.1 ± 4.4	0.102 ± 0.008	$2.53 \pm 0.27 ({ m stat.}) \pm 0.16 ({ m syst.})$
(0.113, 0.205)	0.0923	104 ± 12	2.82 ± 0.02	19.4 ± 1.3	0	$1.75 \pm 0.20({ m stat.}) \pm 0.10({ m syst.})$
(0.205, 0.434)	0.2291	104 ± 12	2.22 ± 0.01	5.8 ± 0.6	0	$1.01 \pm 0.12 (\text{stat.}) \pm 0.06 (\text{syst.})$
(0.434, 1.000)	0.5657	102 ± 12	1.71 ± 0.02	2.8 ± 0.3	0	$0.54 \pm 0.06 (\text{stat.}) \pm 0.03 (\text{syst.})$

Interval $[C_{0}V^{2}/c^{2}]$	$/ \mathbf{t} \in \mathbf{C} \cdot \mathbf{V}^2$	$d\sigma_{\gamma Pb}$ [ub/CoV2]
Interval [Gev /c]	$\langle \iota \rangle [\text{Gev}]$	$\frac{ }{ d t } [\mu d/Gev]$
(0.040, 0.070)	0.055	$14.6 \pm 1.6 (\text{stat.}) \pm 1.0 (\text{syst.})$
(0.070, 0.113)	0.091	$14.9 \pm 1.6 (\text{stat.}) \pm 1.0 (\text{syst.})$
(0.113, 0.205)	0.156	$10.3 \pm 1.2 (\text{stat.}) \pm 0.6 (\text{syst.})$
(0.205, 0.434)	0.302	$5.9 \pm 0.7 ({ m stat.}) \pm 0.4 ({ m syst.})$
(0.434, 1.000)	0.617	$3.2\pm0.4(\mathrm{stat.})\pm0.2(\mathrm{syst.})$

|t|-dependence of the cross section

- STARlight [4]
- Mäntysaari et al. (MS) [5]
- Guzey et al. (GSZ) [6]
- Čepila et al. (CCK) [7]: energy-dependent hot-spot model
- Scenarios with/without subnucleonic degrees of freedom distinguished

Total (integrated) photonuclear cross section

$$\sigma_{\gamma \rm Pb} = (5.19 \pm 0.61 ({\rm stat.}) \pm 0.33 ({\rm syst.})) {\rm ~mb}$$

Gray shaded area = statistical uncr. Blue shaded area = systematic uncr. Blue horizontal bar = combined in quadrature

What is there that needs to be finished?

- Analysis Review Committee (ARC) formed, we now go through the process of answering all their questions ^(C)
- Efficiency of the pile-up veto needs to be calculated
 - Very limited amount of data available for the study
 - Should be finished soon

Summary

- Photoproduction of VMs in UPCs is an excellent tool to look inside hadrons and investigate their structure
- We measure the |t|-dependence of the cross section of incoherent J/ ψ photoproduction
 - Can tell us more about **fluctuations inside nucleons**
- Statistical uncertainty is dominant (≈ 11%, systematic ≈ 5-7%)
- Looks like the slope we measured favors the scenario where fluctuations are present!

References

[1] ALICE Collaboration: "First measurement of the |t|-dependence of coherent J/ ψ photonuclear production" (2021). <u>arxiv.org/abs/2101.04623</u>

[2] C. Alexa et al.: "Elastic and Proton-Dissociative Photoproduction of J/ ψ Mesons at HERA" (2013). <u>arxiv.org/abs/1304.5162</u>

[3] P. A. Zyla et al.: "Review of Particle Physics" (2020). doi.org/10.1093/ptep/ptaa104

[4] S.R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, J. Butterworth, Comp. Phys. Comm. 212 (2017) 258. <u>starlight.hepforge.org</u>

[5] H. Mäntysaari and B. Schenke: Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions (2017). <u>inspirehep.net/literature/1519841</u>

[6] V. Guzey, M. Strikman and M. Zhalov: Nucleon dissociation and incoherent J/ ψ photoproduction on nuclei in ion ultraperipheral collisions at the Large Hadron Collider (2019). <u>iinspirehep.net/literature/1684846</u>

[7] J. Cepila, J. G. Contreras and M. Krelina: Coherent and incoherent J/ ψ photonuclear production in an energy-dependent hot-spot model (2018). <u>inspirehep.net/literature/1634637</u>

Backup slides

Source of the spotted $p_{\rm T}$ dependence of $({\rm Acc} \times \varepsilon)_{\rm MC}$

Migration of events across bins

