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Anisotropic flow
• Initial-state spatial anisotropy (almond-shaped overlap region)
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Multiparticle cumulant method
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• Symmetry plane      cannot be measured precisely -> multi-particle correlations



• Heavy-ion collisions -> collective behaviour (particles are correlated to each other)


• Collectivity = “long-range multi-particle correlations”
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Signs of collectivity in large systems
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Negative four-particle cumulant Mass-ordering and baryon-meson 
splitting in identified flow



Non-flow suppression
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• Measurement of flow is affected by non-flow contamination (mostly short-range 
correlations) caused by jets, decays, etc. -> increase of the flow signal


• Non-flow can be suppressed by multi-particle correlations (2-particle correlation is 
more sensitive to non-flow than 4-particle correlation)


• Subevent method - splitting pseudorapidity acceptance into two or more regions 
separated by 𝜂-gap

two-particle - 2 subevents four-particle - 2 subevents four-particle - 3 subevents
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Negative four-particle 
cumulant

Mass-ordering and baryon-meson 
splitting in identified flow

pp - pPb

pp - pPb

Phys. Rev. C, 97(2):024904, 2018 

Phys. Lett. B, 765:193–220, 2017 

Hints of collectivity in small systems
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Negative four-particle 
cumulant

Mass-ordering and baryon-meson 
splitting in identified flow

pp - pPb

pp - pPb

Phys. Rev. C, 97(2):024904, 2018 

Phys. Lett. B, 765:193–220, 2017 

Hints of collectivity in small systemsSigns of collectivity in small collision systems are hidden 

behind huge non-flow background

Non-flow suppression methods (subevent method) are crucial 

for investigation of collectivity in these systems

We need to study in detail how non-flow affects 

flow measurements and how subevent method 


behaves in different configurations



Results - Two-particle cumulant
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ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5

• Bigger 𝜂-gap -> better non-flow suppresion
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Results - Four-particle cumulant
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ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5

• Cumulant compatible with zero, but not negative

• 3-subevent method suppresses even di-jets

• Increase of signal for larger 𝜂-gap due to specific

specific selection of particles (possibly due to 3-jets 

inclusion)
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Results - ALICE vs ATLAS
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• Smaller acceptance of ALICE -> larger non-flow

contamination -> higher cumulants and larger 

non-flow suppression 

ALICE acceptance 
0.3 < pT < 3 GeV


|𝜂| < 0.8

ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5

• ATLAS - Larger magnitude of non-flow suppression

• Cumulant compatible with zero, but not negative
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Results - 3-subevent method
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• Study of two 3-subevent method configurations: 
(1-1-1) -> all subevents of the same size (ATLAS)

(1-2-1) -> middle subevent twice as large as others (ALICE)

• (1-2-1) - globally lower cumulant -> important difference between these configurations 

• Negative values for ATLAS acceptance possibly due to long-range non-flow contamination
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•Method: modification of phi-distribution in order to introduce flow into PYTHIA 
                                                               -> numeric solution (Newton method)

•Motivation: to study which configuration of subevent method reconstructs 
introduced flow signal best

Injected elliptic flow

16 Phys.Rev.C 96 (2017) 3, 034906

Modified phi-distribution

(+fitting as an injection 


correctness check)

v2in = 0.04



Results - Injected flow ALICE
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• Two-particle cumulant: remaining non-flow contamination even for the biggest 𝜂-gap


• Four-particle cumulant: bins 30-60 compatible with injected flow signal, low multiplicity events contaminated 
by non-flow

ALICE acceptance 
0.3 < pT < 3 GeV


|𝜂| < 0.8
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Results - Injected flow ALICE
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• (1-2-1) configuration underestimates injected signal

• Both configurations show sudden decrease of signal in high multiplicity collisions -> large uncertainties

0 10 20 30 40 50 60 70 80 90 100
multiplicity

0.2−

0.15−

0.1−

0.05−

0

0.05

0.1
3−10×

{4
}

2c =0 (1-1-1)ηΔsub3 

=0 (1-2-1)ηΔsub3 

PYTHIA 8 Default
=13 TeVspp 

ALICE acceptance
 = 0.1

2
injected v

ALICE acceptance 
0.3 < pT < 3 GeV


|𝜂| < 0.8



Results - Injected flow ATLAS
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• Two-particle cumulant: similar non-flow contamination as in ALICE results

• Four-particle cumulant: injected signal reverted the trend for 3-subevent method in low multiplicity collisions 

-> to be investigated

ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5
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Results - Injected flow ATLAS
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• The size of 𝜂-gap is “compensating” signal decrease -> to be investigated


• Decreasing trend for 3-subevent method is even stronger for (1-2-1) configuration

ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5
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Conclusion
• Subevent method - larger non-flow suppression with larger 𝜂-gap


• Comparison of ATLAS and ALICE acceptances - smaller acceptance leads to higher 
cumulants due to larger non-flow contamination


• Different configurations of 3-subevent method have significant impact on cumulants


• Injected flow


• 2-subevent method cannot fully suppress non-flow signal in measurement of 
two-particle cumulant


• (1-2-1) configuration of 3-subevent method underestimates injected flow signal 


• Outlook - influence of jets on the method of multi-particle cumulants
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Backup



Hints of collectivity in small systems
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Near-side ridge  
in two-particle correlations

high-multiplicity pPb collisions

ALICE - ATLAS - CMS

pp collisions

low vs high multiplicity

Phys. Lett. B, 719:29–41, 2013 Phys. Rev. Lett., 110(18):182302, 2013 Phys. Lett. B, 718:795–814, 2013 

Phys. Lett. B, 765:193–220, 2017 



Backup results - Two-particle cumulant
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Backup results - Four-particle cumulant
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Generic Framework
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Workflow
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Generate pp collisions in PYTHIA (non-flow model)

-> 2 billion events for default configuration

Store the output in TTree

Compute correlations and save them (TProfiles)

Compute cumulants

Draw final results 



Multiplicity
ALICE acceptance 

0.3 < pT < 3 GeV

|𝜂| < 0.8

ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5
Multiplicity is consistently counted 


according to ALICE multiplicity

Data subsets and statistics
Collisions generated in subsets of 500 000 events

Correlations are computed for each subset separately

Each subset is divided into 10 more “statistical” subsets (4 000 x 10 subsets)

Subsets (4 000) are merged -> resulting dataset still contains 10 “statistical” subsets

Final cumulants are computed from merged dataset and errors as a standard deviation of values from 10 subsets
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Results - Shoving mechanism
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• Repulsive interaction between Lund strings resulting in momentum boost

• Magnitude ordering (c2 > c3 > c4)

• Multiplicity dependence of c2

• Higher cumulants for default due to large non-flow

• Non-flow suppression due to subevent method

-> effect of shoving can be seen

ATLAS acceptance 
0.3 < pT < 3 GeV


|𝜂| < 2.5



Results - Shoving mechanism
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• Significant multiplicity dependence for

low-multiplicity events

• Cumulant compatible with zero,

but not negative -> disagreement with 

naive expectation of adding collectivity 

with shoving mechanism

• Generally larger cumulant for shoving

-> non-flow contamination



Backup results - Shoving mechanism
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