100 years of complementarity

János A. Bergou^{1,2} ¹Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065, USA ²Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Abstract

Einstein in 1905, in his explanation of the photoelectric effect, postulated that light, the quintessential wave, had to possess particle-like properties. In the course of 1923-24, de Broglie, analyzing electron scattering from metal surfaces, postulated that electrons, the quintessential particles, must possess wave-like properties. In 1928, Bohr made the first attempt to reconcile the two viewpoints and introduced the concept of complementarity (or, in a more restricted sense, wave-particle duality), and thus the by now nearly 100 years history of complementarity has started.

We begin with a brief overview of the history of quantitative complementarity relations. A particle going through an interferometer can exhibit wave-like or particle-like properties. The first quantitative duality relation was obtained by Greenberger and Yasin [1], between the strictly single-partite properties: predictability $P = |\rho_{11} - \rho_{22}|$ and visibility $V = 2|\rho_{12}|$ and has the form

$$P^2 + V^2 \le 1. \tag{1}$$

In a seminal study of the two-path interferometer, Englert introduced detectors into the interferometer arms and defined the path distinguishability, D, as the discrimination probability of the path detector states [2]. He derived a relation between this type of path information and the visibility $V = 2|\rho_{12}|$ of the interference pattern, in the form

$$D^2 + V^2 \le 1. \tag{2}$$

In a follow-up [3], Englert and Bergou showed that D is a joint property of the system and the meter to be clearly distinguished from predictability, which is a strictly single partite property. They showed that (2) corresponds to the so-called which-way sorting (post-selection) of the measurement data. They also introduced the quantum erasure sorting, which led to the duality relation $P^2 + C^2 \leq 1$, where the coherence C is a joint property of the system and detectors. Most importantly, they conjectured that D should be related to an entanglement measure. Taking up this conjecture, the complete bipartite (particle-meter) complementarity relation, connecting complementarity, i.e., visibility of the interference pattern, V, and path predictability, P, to entanglement, was found in [4], in the form of a *triality relation*,

$$P^2 + C^2 + V^2 \le 1. \tag{3}$$

Here C is the concurrence, emerging naturally as part of the completeness relation for a bipartite system. In [5], this *triality relation* was further generalized to multi-path (*n*-path) interferometers. These works completed the research on quantitative complementarity and brought the Bohr-Einstein debate to a very satisfying closure. In particular, Eq. (3), which is a triality relation, displays explicitly that entanglement is the genuinely quantum contribution with no classical counterpart, whereas visibility, quantifying wave-like behavior, and predictability, quantifying particle-like behavior, can be regarded as classical contribution.

In all of the works discussed above, the l_2 measure of coherence was employed. Recently, however, a resource theory of quantum coherence was developed and two new coherence measures were introduced [6]. The l_1 measure is the trace distance, the entropic measure is the entropic distance of a given state to the nearest incoherent state. In the second part of the talk we present our recent results for multi-path interferometers, employing the new measures. Using these measures, we derived entropic and l_1 based duality relations for multi-path interferometers [7, 8]. The l_1 based duality relation for *n*-path interferometers is

$$\left(\frac{C+D-\frac{n-2}{n-1}}{\frac{\sqrt{n}}{n-1}}\right)^2 + \left(\frac{C-D}{\sqrt{\frac{n}{n-1}}}\right)^2 \le 1, \quad C, D > 0,$$
(4)

where C is the l_1 measure of coherence, generalizing the visibility V. To close, we will present recent results generalizing duality relations to finite groups [9], recent entropic duality relations [10], and discuss recent developments, showing that relations like Eq. (1) can be derived from intrinsic properties of quantum states, without referring to measurements [11, 12].

- D. M. Greenberger and A. Yasin, "Simultaneous wave and particle knowledge in a neutron interferometer," Phys. Lett. A 128, 391 (1988).
- [2] B.-G. Englert, "Fringe Visibility and Which-Way Information: An Inequality," Phys. Rev. Lett. 77, 2154 (1996).
- [3] B.-G. Englert and J. A. Bergou, "Quantitative quantum erasure," Opt. Commun. 179, 337 (2000).
- [4] M. Jakob and J. A. Bergou, "Quantitative complementarity relations in bipartite systems: Entanglement as a physical reality," Opt. Commun. 283, 827 (2010) [also as arxiv:0302075].
- [5] M. Jakob and J. A. Bergou, "Complementarity and entanglement in bipartite qudit systems," Phys. Rev. A 76, 052107 (2007).
- [6] T. Baumgratz, M. Cramer, Tand M. B. Plenio, "Quantifying Coherence," Phys. Rev. Lett. 113, 140401 (2014).
- [7] E. Bagan, J. A. Bergou, S. S. Cottrell, and M. Hillery, "Relations between Coherence and Path Information," Phys. Rev. Lett. 116, 160406 (2016).
- [8] E. Bagan, J. Calsamiglia, J. A. Bergou, and M. Hillery, "Duality Games and Operational Duality Relations," Phys. Rev. Lett. 120, 050402 (2016).
- [9] E. Bagan, J. Calsamiglia, J. A. Bergou, and M. Hillery, "A generalized wave-particle duality relation for finite groups," Journal of Physics A: Math. Theor. 51, 414015 (2018).
- [10] E. Bagan, J. A. Bergou, and M. Hillery, "Wave-particle duality relations based on entropic bounds for which-way information," Phys. Rev. A 102, 022224 (2020).
- [11] X. Lü, "Quantitative wave-particle duality as quantum state discrimination", Phys. Rev. A 102, 02201 (2020).
- [12] X. Lü, "Duality of path distinguishability and quantum coherence", Phys. Lett. A 397, 127259 (2021).