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Abstract

Einstein in 1905, in his explanation of the photoelectric effect, postulated that light, the quintessential wave, had to
possess particle-like properties. In the course of 1923-24, de Broglie, analyzing electron scattering from metal surfaces,
postulated that electrons, the quintessential particles, must possess wave-like properties. In 1928, Bohr made the first
attempt to reconcile the two viewpoints and introduced the concept of complementarity (or, in a more restricted
sense, wave-particle duality), and thus the by now nearly 100 years history of complementarity has started.

We begin with a brief overview of the history of quantitative complementarity relations. A particle going through an
interferometer can exhibit wave-like or particle-like properties. The first quantitative duality relation was obtained by
Greenberger and Yasin [1], between the strictly single-partite properties: predictability P = |ρ11 − ρ22| and visibility
V = 2|ρ12| and has the form

P 2 + V 2 ≤ 1. (1)

In a seminal study of the two-path interferometer, Englert introduced detectors into the interferometer arms and
defined the path distinguishability, D, as the discrimination probability of the path detector states [2]. He derived a
relation between this type of path information and the visibility V = 2|ρ12| of the interference pattern, in the form

D2 + V 2 ≤ 1. (2)

In a follow-up [3], Englert and Bergou showed that D is a joint property of the system and the meter to be clearly
distinguished from predictability, which is a strictly single partite property. They showed that (2) corresponds to
the so-called which-way sorting (post-selection) of the measurement data. They also introduced the quantum erasure
sorting, which led to the duality relation P 2 + C2 ≤ 1, where the coherence C is a joint property of the system and
detectors. Most importantly, they conjectured that D should be related to an entanglement measure. Taking up
this conjecture, the complete bipartite (particle-meter) complementarity relation, connecting complementarity, i.e.,
visibility of the interference pattern, V , and path predictability, P , to entanglement, was found in [4], in the form of
a triality relation,

P 2 + C2 + V 2 ≤ 1. (3)

Here C is the concurrence, emerging naturally as part of the completeness relation for a bipartite system. In [5], this
triality relation was further generalized to multi-path (n-path) interferometers. These works completed the research
on quantitative complementarity and brought the Bohr-Einstein debate to a very satisfying closure. In particular, Eq.
(3), which is a triality relation, displays explicitly that entanglement is the genuinely quantum contribution with no
classical counterpart, whereas visibility, quantifying wave-like behavior, and predictability, quantifying particle-like
behavior, can be regarded as classical contribution.

In all of the works discussed above, the l2 measure of coherence was employed. Recently, however, a resource theory
of quantum coherence was developed and two new coherence measures were introduced [6]. The l1 measure is the
trace distance, the entropic measure is the entropic distance of a given state to the nearest incoherent state. In the
second part of the talk we present our recent results for multi-path interferometers, employing the new measures.
Using these measures, we derived entropic and l1 based duality relations for multi-path interferometers [7, 8]. The l1
based duality relation for n-path interferometers is(
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where C is the l1 measure of coherence, generalizing the visibility V . To close, we will present recent results gener-
alizing duality relations to finite groups [9], recent entropic duality relations [10], and discuss recent developments,
showing that relations like Eq. (1) can be derived from intrinsic properties of quantum states, without referring to
measurements [11, 12].
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