Workshop on Modern Trends in Quantum Theory

Contribution ID: 22

Type: Poster

Small angle asymptotics for Robin Laplacians on infinite circular cones

Wednesday, 25 May 2022 16:10 (20 minutes)

For $\varepsilon > 0$ and $n \in \mathbb{N}$ consider the infinite cone $\Omega_{\varepsilon} := \{(x_1, x') \in (0, \infty) \times \mathbb{R}^n : |x'| < \varepsilon x_1\}$ and the operator Q_{ε}^{α} acting as the Laplacian $u \mapsto -\Delta u$ on Ω_{ε} with the Robin boundary condition $\partial_{\nu} u = \alpha u$ at $\partial \Omega_{\varepsilon}$, where ∂_{ν} is the outward normal derivative and $\alpha > 0$. It is known from numerous earlier works that the essential spectrum of Q_{ε}^{α} is $[-\alpha^2, +\infty)$ and that the discrete spectrum is finite for n = 1 and infinite for $n \ge 2$, but the behavior of individual eigenvalues with respect to the geometric parameter ε was only addressed for n = 1 so far. In the present work we consider arbitrary $n \ge 2$ and look at the spectral asymptotics as ε becomes small, i.e. as the cone becomes "sharp" and collapses to its central axis. Our main result is as follows: if $n \ge 2$, $\alpha > 0$ and $j \in \mathbb{N}$ are fixed, then the *j*th eigenvalue $E_j(Q_{\varepsilon}^{\alpha})$ of Q_{ε}^{α} behaves as $E_j(Q_{\varepsilon}^{\alpha}) = -\frac{n^2 \alpha^2}{(2j+n-2)^2 \varepsilon^2} + O\left(\frac{1}{\varepsilon}\right)$ as $\varepsilon \to 0^+$.

Primary authors: Prof. PANKRASHKIN, Konstantin (Carl von Ossietzky Universität); VOGEL, Marco (Carl von Ossietzky Universität)

Session Classification: Poster