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a b s t r a c t 

Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite 

number of points from a fractal set using correlation sum and regression in a log-log plot. However, this 

traditional approach requires a large amount of data and often leads to a biased estimate. The novel ap- 

proach proposed here can be used for the estimation of the correlation dimension in a frequency domain 

using the power spectrum of the investigated fractal set. This work presents a new spectral character- 

istic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The 

theoretical results can be directly applied to uniformly distributed samples from a given point set. The 

efficiency of the proposed method was tested on sets with a known correlation dimension using Monte 

Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for 

many types of fractal sets. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Correlation dimension D 2 is a popular tool for fractal dimension

estimation and belongs to a family of entropy-based fractal dimen-

sions such as capacity dimension D 0 , information dimension D 1 

and their generalisation, Renyi dimension D α , for α ≥ 0. The prop-

erties of the different dimension types are summarised in [1] and

[2] . The main idea of using correlation dimension is the distance

between its points in space. In the original concept, only the num-

ber of points that are not farther apart as a fixed value can carry

the information about the density of points contained in the in-

vestigated set. The geometrical meaning of correlation dimension

is explained well in [3] . 

This traditional approach of correlation dimension estimation is

based on Grassberger and Procaccia’s algorithm [4,5] and is widely

used in biomedicine for electroencephalography signal analysis

[6,7] or in cardiology [8] . Recently, new approaches of correlation

dimension estimation were presented using a weighting function

[9] or methods suitable for high-dimensional signals [10] . The lin-

ear regression model, on which the majority of methods are based,

provides an often biased estimate of fractal dimension; for this rea-

son, Hongying and Duanfeng [11] made some effort s to improve

this procedure. 
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In this work, we present a novel approach of correlation dimen-

ion estimation that is based on the rotation of the power spec-

rum of a point set. The proposed method is stable even for a small

umber of points, and the resulting characteristic has a smooth de-

elopment. 

. Correlation dimension 

Correlation dimension, introduced by Grassberger and Procac-

ia, involves measuring the distance between all pairs of points in

he investigated set. For the Lebesgue measurable set F ⊂ R 

n , the

orrelation sum [4] is defined for r > 0 as the limit case 

(r) = lim 

N→∞ 

2 

N(N − 1) 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

I(‖ x i − x j ‖ ≤ r) , (1)

here ‖·‖ denotes a Euclidean norm that is rotation invariant, I is

he indicator function and x 1 , . . . , x N are vectors from F . Because

he correlation dimension expresses the relative amount of points

hose distance is less than r , the correlation sum can be rewritten

s 

(r) = E 

x , y ∼U(F ) 
I( ‖ 

x − y ‖ 

≤ r) = prob 

x , y ∼U(F ) 

( ‖ 

x − y ‖ 

≤ r ) , (2)

or x , y that are uniformly distributed on F . Therefore, C( r ) is a cu-

ulative distribution function of random variable r = ‖ x − y ‖ . The

http://dx.doi.org/10.1016/j.chaos.2017.04.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.04.026&domain=pdf
mailto:martindlask@centrum.cz
http://dx.doi.org/10.1016/j.chaos.2017.04.026


M. Dlask, J. Kukal / Chaos, Solitons and Fractals 99 (2017) 256–262 257 

c  

a

D

i

3

 

fi

F  

f  

T  

w  

p

P

w  

T  

[  

d  

X

4

 

f  

i  

b  

D  

t  

l

R  

w  

a  

t  

s

S  

w

T

S  

H  

P  

t

S

T  

o  

t

S

w

H  

F  

π

H  

I  

f

H  

T  

t

J  

a

I

w  

s

I  

F  

p

H  

A  

c

 

i  

t

i  

h  

i

T  

G

n
 

P  

w  

q

H  

a

H  

F

n

orrelation dimension D 2 of set F is based on the correlation sum

nd is defined as 

 2 = lim 

r→ 0 + 

ln C(r) 

ln r 
, (3) 

f the limit exists. 

. Continuous spectrum of a point set 

The Fourier transform of an n -dimensional set F ⊂ R 

n is de-

ned using the operator of the expected value [12] as 

( ω ) = E 

x ∼U(F ) 
exp (−i ω · x ) (4)

or angular frequency ω ∈ R 

n and for x uniformly distributed on F .

he power spectrum of set F equals P( ω ) = | F( ω ) | 2 = F( ω ) · F ∗( ω ) ,

here F ∗ is a complex conjugate of F. Moreover, it can be ex-

ressed as 

( ω ) = E 

x ∼U(F ) 
E 

y ∼U(F ) 
exp (−i ω · x ) exp (i ω · y ) 

= E 

x , y ∼U(F ) 
exp (−i ω · ( x − y )) , (5) 

here x and y are independent and identically distributed from F .

he power spectrum is frequently used for fractal set investigation

13–15] . When the research is physically motivated, it is usual to

enote the angular frequency as ω = 2 π/λ for wavelength λ of an

-ray or light beam. 

. Rotational spectrum 

The goal of the novel method is to obtain a one-dimensional

unction as a derivative of the power spectrum, which is useful

n fractal analysis. The procedure was inspired by Debye [16] and

y his X-ray diffraction method, which is often referred to as the

ebye-Scherrer method. We denote SO( n ) as the group of all rota-

ions in R 

n around the origin. Because any rotation R ∈ SO( n ) is a

inear transform, the following equation holds 

( x ) − R( y ) = R( x − y ) = ‖ 

x − y ‖ 

· ξ, (6)

here ξ is a direction vector satisfying 
∥∥ξ

∥∥ = 1 and ξ ∈ S n −1 for

n n -dimensional sphere S n −1 = { x ∈ R 

n : ‖ x ‖ = 1 } . Using the fac-

orisation of angular frequency ω = � · ψ for � ∈ R 

+ 
0 

and normali-

ation vector ψ ∈ S n −1 , we can define rotational spectrum as 

(�) = E 

R ∈ SO (n ) 

E 

ψ ∈S n −1 

E 

x , y ∼U(F ) 
exp (−i�ψ R( x − y )) , (7)

hich can be expressed explicitly in the following theorem. 

heorem 1. Rotational spectrum can be expressed as 

(�) = E 

x , y ∼U(F ) 
H n (�‖ 

x − y ‖ 

) , (8)

where 

 n (q ) = 

2 

n −2 
2 · �

(
n 
2 

)
q 

n −2 
2 

J n −2 
2 

(q ) . (9)

roof. Because every rotation is a linear transform, we can rewrite

he rotational spectrum as 

(�) = E 

x , y ∼U(F ) 
E 

ψ , ξ∈S n −1 

exp (−i�‖ 

x − y ‖ 

ψ · ξ) . (10) 

he angle ν between vectors ψ and ξ satisfies cos ν = ψ · ξ. With-

ut loss of generality, we can set ξ = (1 , 0 , 0 , . . . , 0) and rewrite

he rotational spectrum as 

(�) = E 

x , y ∈F 
H n ( �‖ x − y ‖ ) , (11) 
here the function H n : R �→ C is defined as 

 n (q ) = E 

ψ ∈S n −1 

ψ 1 = cos ν

exp (−i q cos ν) . (12)

or n = 1 , we obtain a degenerated rotation together with ν ∈ {0,

}; therefore, the kernel function H 1 equals 

 1 (q ) = 

exp (−i q ) + exp (i q ) 

2 

= cos q. (13)

n case n ≥ 2, we can express the kernel function using an integral

ormula: 

 n (q ) = 

I 1 (q ) 

I 2 (q ) 
= 

∫ π
0 exp (−i q cos ν) sin 

n −2 ν d ν∫ π
0 sin 

n −2 ν d ν
. (14)

he Poisson integral [17] formula for the Bessel function J p ( q ) of

he first kind in the form 

 p (q ) = 

(
q 
2 

)p 

�
(

p + 

1 
2 

)√ 

π

∫ π

0 

exp (−i q cos ν) sin 

2 p ν d ν (15)

llows the integral in the nominator to be rewritten as 

 1 (q ) = 

J p (q )�
(

p + 

1 
2 

)√ 

π(
q 
2 

)p , (16) 

hereas the integral in the denominator is a limit case of the Pois-

on formula 

 2 (q ) = lim 

q → 0 

J p (q )�
(

p + 

1 
2 

)√ 

π(
q 
2 

)p = 

�
(

p + 

1 
2 

)√ 

π

�( p + 1 ) 
. (17)

or p = 

n −2 
2 , we obtain the final form of the kernel function ex-

ressed by the Bessel function J p ( q ) as 

 n (q ) = 

2 

n −2 
2 · �

(
n 
2 

)
q 

n −2 
2 

J n −2 
2 

(q ) . (18)

pplying H n ( q ) for n = 1 , we obtain H 1 (q ) = cos q as a particular

ase, which extends the range of formula (18) to n ∈ R . �

The rotation can be performed in any space whose dimension n

s not less than the dimension m of the original space of F . When

he dimension of the rotation is greater than m , any vector x ∈ F
s completed, with the zeros for the remaining n − m coordinates

aving a sufficient length. The most valuable result can be obtained

n the case of rotation in an infinite-dimensional space. 

heorem 2. The scaled limit case of the kernel function H n is the

aussian function, i.e., 

lim 

 →∞ 

H n (t 
√ 

n ) = exp 

(
− t 2 

2 

)
. (19)

roof. For the investigation of the behaviour of the kernel function

hen n → ∞ , we use the Taylor expansion of H n ( q ) centred at

 0 = 0 

 n (q ) = 

∞ ∑ 

k =0 

�( n 
2 
) 

�( n 
2 

+ k ) k ! 

(
−q 2 

4 

)k 

, (20)

nd by using the substitution q = t 
√ 

n , we can transform it into 

 n (t 
√ 

n ) = 

∞ ∑ 

k =0 

1 

k ! 

(
− t 2 

2 

)k 
�( n 

2 
) n 

k 

�( n 
2 

+ k )2 

k 
. (21)

or every k ∈ N , it holds that 

lim 

 →∞ 

�( n 
2 
) n 

k 

�( n 
2 

+ k )2 

k 
= 1 , (22) 
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Fig. 1. Kernel functions of a rotational spectrum. 
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and, therefore, the limit case of the kernel function equals 

lim 

n →∞ 

H n (t 
√ 

n ) = exp 

(
− t 2 

2 

)
. (23)

�

For simplicity, we will use the following notation in the subse-

quent sections: 

H ∞ 

(q ) = exp 

(
−q 2 

2 

)
. (24)

This type of Gaussian kernel has been widely applied in the

Parzen density estimates [18–20] of a probability density function

and its properties, but with another meaning and motivation. The

behaviour of the H n ( q ) kernels is visualised in Fig. 1 for various

dimensions. 

5. Relationship to correlation dimension 

In this section, we discuss the relationship between the rota-

tional spectrum for the limit kernel H ∞ 

and the correlation dimen-

sion. The correlation sum is a cumulative distribution function of

the distances between the points in a fractal set; therefore, the ro-

tational spectrum can be written as a Stieltjes integral: 

S(�) = 

∫ ∞ 

0 

H ∞ 

(�r )dC(r ) = 

∫ ∞ 

0 

exp 

(
−�2 r 2 

2 

)
dC(r) . (25)

After the application of the integration by parts, we can obtain 

S(�) = 

∫ ∞ 

0 

�2 r exp 

(
−�2 r 2 

2 

)
C(r)�d r, (26)

and by substituting ξ = �r, we get the integral formula for the ro-

tational spectrum: 

S(�) = 

∫ ∞ 

0 

ξ · C 

(
ξ

�

)
exp 

(
−ξ 2 

2 

)
d ξ . (27)

Theorem 3. Let F ⊂ R 

n be a Lebesgue measurable set with the rota-

tional spectrum 

S(�) = E 
x , y ∼U(F ) 

H ∞ 

(�‖ 

x − y ‖ 

) , (28)

and let us assume that correlation dimension D 2 (3) exists. Then, it

holds that 

lim 

�→∞ 

ln S(�) 

ln �
= −D 2 . (29)
roof. To prove this, let us suppose that δ < 1 and that, at first,

 < δ. Owing to the existence of correlation dimension, we have

 ε > 0 ∃ δ > 0 

 < r < δ ⇒ 

∣∣∣∣ ln C(r) 

ln r 
− D 2 

∣∣∣∣ < ε, 

nd, therefore, 

 

D 2 + ε < C(r) < r D 2 −ε . (30)

owever, for r ≥ δ, we have 

D 2 + ε < C(r) ≤ 1 . (31)

ow, we can estimate the lower and the upper boundary for the

pectrum 

(�) = E 

x , y ∼U(F ) 
exp 

(
−�2 ‖ x − y ‖ 

2 

2 

)

= 

∫ ∞ 

0 

C(r )�2 r exp 

(
−�2 r 

2 

2 

)
d r (32)

s 

 L (�) < S(�) < I U (�) . (33)

e can rewrite I U as 

 U (�) = 

∫ δ

0 

r D 2 −ε�2 r exp 

(
−�2 r 2 

2 

)
d r 

+ 

∫ ∞ 

δ
�2 r exp 

(
−�2 r 2 

2 

)
d r, (34)

nd after the substitution t = �2 r 2 / 2 , we get 

 U (�) = �ε−D 2 · 2 

D 2 −ε
2 ·

∫ �2 δ2 / 2 

0 

t 
D 2 −ε

2 exp (−t)d t + exp 

(
−�2 δ2 

2 

)
. 

(35)

herefore, the upper bound I U can be expressed as 

 U (�) = 

(√ 

2 

�

)D 2 −ε

· D 2 − ε

2 

· �inc 

(
�2 δ2 

2 

, 
D 2 − ε

2 

)
, (36)

here �inc is an incomplete Gamma function. It is possible to do

n estimation from above as 

 U < 

(√ 

2 

�

)D 2 −ε

· D 2 − ε

2 

· �
(

D 2 − ε

2 

)
. (37)
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he lower bound I L is rewritten as 

 L (�) = 

∫ δ

0 

r D 2 + ε�2 r exp 

(
−�2 r 2 

2 

)
d r 

+ 

∫ ∞ 

δ
r D 2 −ε�2 r exp 

(
−�2 r 2 

2 

)
d r (38) 

nd can be estimated as 

 L (�) > 

(√ 

2 

�

)D 2 + ε
· �inc 

(
�2 δ2 

2 

, 
D 2 + ε

2 

+ 1 

)
. (39) 

ltogether, we receive the upper and the lower boundary for the

ogarithm of the rotational spectrum 

(D 2 − ε) 
(

1 

2 

ln 2 − ln �
)

+ L 1 (�) > ln S(�) 

> (D 2 + ε) 
(

1 

2 

ln 2 − ln �
)

+ L 2 (�) (40) 

nd after the rearrangement 

ε + 

L 2 (�) + 

D 2 + ε
2 

ln 2 

ln �
< 

S(�) 

ln �
+ D 2 < ε + 

L 1 (�) + 

D 2 −ε
2 

ln 2 

ln �
(41) 

or the functions 

 1 (�) = ln �
(

D 2 − ε

2 

)
+ ln 

D 2 − ε

2 

(42) 

nd 

 2 (�) = ln �inc 

(
�2 δ2 

2 

, 
D 2 + ε

2 

+ 1 

)
. (43) 

t holds that both L 1 and L 2 are constrained functions of �. There-

ore, �0 exists, which guarantees that, for any � > �0 > 1, it is

alid that 

ln S(�) 

ln �
+ D 2 

∣∣∣∣ < 2 ε = ε∗, (44) 

hich completes the proof. �

The Lebesgue measurability of the investigated set is an im-

ortant prerequisite because it ensures the capability to perform a

niform sampling. As a general remark, we could consider another

ernel function instead of H ∞ 

. For any non-increasing function  :

 

+ 
0 

�→ [ 0 ; 1 ] satisfying (0) = 1 and (∞ ) = 0 , and whose first

erivative ′ ( ξ ) exists for any ξ > 0, we consider the rotational

pectrum in a more general form as 

(�) = E 

x , y ∼U(F ) 
( �‖ x − y ‖ ) . (45) 

he � function is defined as 

(α) = −
∫ ∞ 

0 

ξα′ (ξ ))d ξ , (46) 

nd the existence of limit (29) is guaranteed only if both �(D 2 +
) and �(D 2 − ε) are finite for arbitrary ε ∈ (0; ε0 ) s . Another ex-

mple of a kernel function could be the generalised exponential

ernel 

1 (ξ ) = exp 

(
−ξβ

β

)
(47) 

or β > 0 or the inverse polynomial kernel 

2 (ξ ) = 

1 

P(ξ ) 
, (48) 

here P( ξ ) represents a polynomial of order M > D + 1 . 
2 
. Method of estimation 

The simulation of the rotational spectrum is based on gener-

ting point pairs using a Monte Carlo approach. The points are in-

ependently and uniformly sampled from the analysed set F . With

 ∈ N fixed and x i , y i ∼ U(F ) , the rotational spectrum is estimated

s 

 

 (�) = 

1 

M 

M ∑ 

j=1 

H ∞ 

(�‖ x j − y j ‖ ) (49)

ncluding the variance estimate 

̂ ar S (�) = 

1 

M − 1 

M ∑ 

j=1 

(H ∞ 

(
�‖ x j − y j ‖ 

)
−̂ S (�)) 2 (50) 

To take advantage of the linear dependence between the loga-

ithm of the rotational spectrum and the logarithm of the distance,

e can reasonably consider the model 

n S(�) = A − D 2 · ln � + ε. (51)

he estimation of parameter D 2 is based on the maximum likeli-

ood method using L p regression with a minimisation criterion 

RIT = 

N ∑ 

k =1 

| y k − f(x k , a ) | p (52) 

or p > 1 and a general model formulated as y = f(x k , a ) . In our

ase, the minimisation criterion satisfies 

RIT ∗ = 

N ∑ 

k =1 

∣∣ln 

̂ S (�k ) − A + D 2 ln �k 

∣∣p 
. (53) 

The algorithm is based on the capability to generate point pairs

niformly from a fractal set and can be formulated as follows: 

• The parameter M is chosen arbitrarily, but is large enough (e.g.,

M = 10 5 ). This parameter represents the number of Monte Carlo

simulations, which is equal to the number of point pairs from

the fractal set used for the estimation. 

• The values of �, in which the calculation is performed, are de-

termined. For the simulation, it is recommended to choose reg-

ular sampling from the interval, where the rotational spectrum

is expected to have a linear characteristic. 

• The calculation of the rotational spectrum is performed at

points �1 , �2 . . . , �N , according to Eq. (49) . 

• With the values of �i and the respective ̂ S (�i ) estimates, it is

possible to perform minimisation using Eq. (53) with a maxi-

mum likelihood method. 

• The resulting parameter D 2 represents the estimate of the cor-

relation dimension. 

. Application to simulated data 

The main feature of the proposed methodology is its smoother

ependence of the spectrum on �. We tested this property on

oint sets with well-known Hausdorff dimension, which are sum-

arised in Table 1 . On the left side of Fig. 2 , there is a traditional

og-log plot, where the logarithm of the correlation sum is plot-

ed against the logarithm of the distances. The lines represent the

pper and the lower theoretical bounds for C( r ). The right side of

he figure shows the dependence of the logarithm of the infinite-

imensional rotational spectrum on the logarithm of the frequency

 �). The experiment was performed on a two-dimensional Cantor

ust with the contraction coefficient a = 1 / 3 and M = 10 5 pairs of

oints. 
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Fig. 2. Sample from the two-dimensional Cantor dust: correlation sum (left), rotational spectrum (right). 

Table 1 

List of point sets. 

Structure n Parameter Value D 2 

Cantor dust [21] 1–3 a 1/20–1/2 −n ln 2 / ln a 

Levy flight trajectory [22] 2–4 α 0.2–1.0 min ( α, n ) 

fBm trajectory [22] 3–4 H 0.25–0.75 min 
(

1 
H 

, n 
)

fBm graph [23] 1 H 0.1–0.9 2 − H

Takagi function graph [24] 1 a 0.55–0.95 2 + log 2 a 

Table 2 

Cantor dust analysis using linear least squares fitting. 

M Correlation sum Rotational spectrum 

̂ D 2 sd p -value ̂ D 2 sd p -value 

10 3 1.2254 0.0648 0.2868 1.2501 0.0323 0.3579 

10 4 1.2392 0.0202 0.1310 1.2689 0.0183 0.3502 

10 5 1.2513 0.0039 0.0034 1.2592 0.0030 0.1915 

10 6 1.2599 0.0 0 05 4 . 44 · 10 −5 1.2601 0.0 0 03 1 . 54 · 10 −7 

Table 3 

Cantor dust analysis using L 4 . 

M Correlation sum Rotational spectrum 

̂ D 2 sd p -value ̂ D 2 sd p -value 

10 3 1.2941 0.1178 0.3922 1.2378 0.1010 0.4059 

10 4 1.2937 0.0803 0.3459 1.3019 0.0470 0.1971 

10 5 1.2341 0.0574 0.3143 1.2618 0.0100 0.4976 

10 6 1.2654 0.0474 0.4702 1.2609 0.0076 0.4498 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Sierpinski carpet analysis for the different kernel functions. 

Kernel function D 2 ̂ D 2 sd p -value f min f max 

H 2 1.8928 1.9851 0.2625 0.4106 1.0 3.0 

H 4 1.8928 1.8673 0.1128 0.3624 1.0 3.0 

H 7 1.8928 1.9148 0.0863 0.3993 1.0 3.0 

H 10 1.8928 1.9019 0.0636 0.4431 1.0 3.0 

H ∞ 1.8928 1.8958 0.0559 0.4784 1.0 3.0 
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The reason for the smooth development of the rotational spec-

trum characteristic is the infinite-dimensional rotation. It is possi-

ble to compare the correlation dimension estimate from the rota-

tional spectrum approach and the traditional correlation sum. At

first, the linear regression with least squares minimisation crite-

rion was used to fit the model. However, the results were biased

for a larger number of data points, as can be seen from Table 2 .

To avoid the bias, we decided to use L p regression for the rota-

tional spectrum fitting using a maximum likelihood method. The

numerical experiments proved that any order p ≥ 4 is appropri-

ate to fit the model. Therefore, we considered L 4 regression for the

estimation of the correlation dimension. Table 3 shows the results
or different numbers of point pairs M . The estimates of ̂ D 2 based

n L 4 regression were unbiased for both the correlation sum and

he rotational spectrum. However, the variance of spectrum-based

stimates rapidly decreased with M . 

It is also possible to estimate the rotational spectrum for finite

otation using the kernel functions H n for n ∈ N . The comparison of

he kernel functions that can be used for the rotation of the power

pectrum is shown in Fig. 3 for H 2 , H 3 , H 4 and H ∞ 

. The traditional

ierpinski carpet was used for this simulation. 

The estimation of the correlation dimension using different ker-

el functions can vary. The estimation of the dimension for the

ierpinski carpet for different kernel functions is presented in

able 4 . The table shows the theoretical dimension D 2 based on

he parameters and its estimate ̂ D 2 together with the standard de-

iation sd . The recommended � range for L 4 regression is also in-

luded, where f min = log 10 �min and f max = log 10 �max . 

With the increasing dimension of the kernel function H n , the

tandard deviation decreased. The estimates were unbiased in all

ases; however, the most accurate estimation occurred for H ∞ 

. The

ecommended intervals for the regression were the same in all

ases, which means that they were independent of the kernel func-

ion; nevertheless, as will be seen later, they will be dependent on

he theoretical dimension of the fractal structure. 

All of the subsequent numerical experiments were performed

n MATLAB by means of Monte Carlo simulation for M = 10 5 point

airs. At first, we tested the methodology for correlation dimen-

ion estimation for an n -dimensional Cantor dust with contraction

oefficient a . This methodology provided an unbiased estimation

f the correlation dimension in the whole range of possible the-

retical dimensions for different contraction coefficients a . Almost

he same behaviour was exhibited in the estimation of the corre-
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Fig. 3. Rotational spectra of the Sierpinski carpet. 

Table 5 

Analysis of the fractal sets with known dimension. 

System Parameters D 2 ̂ D 2 sd f min f max 

Cantor set a = 1 / 5 , n = 1 0.4307 0.4298 0.0396 0.0 2.0 

Cantor set a = 1 / 3 , n = 3 1.8929 1.9065 0.0148 0.0 2.0 

Levy flight α = 1 , n = 2 1.0 0 0 0 0.9718 0.0627 −3.0 0.0 

Levy flight α = 0 . 7 , n = 3 0.70 0 0 0.6817 0.0323 −4.0 −2.0 

fBm trajectory H = 0 . 75 , n = 3 1.3333 1.3334 0.0302 1.5 2.0 

fBm trajectory H = 0 . 5 , n = 4 2.0 0 0 0 1.9958 0.0203 1.3 1.8 

fBm graph H = 0 . 3 , n = 1 1.70 0 0 1.7003 0.0136 0.7 1.5 

fBm graph H = 0 . 8 , n = 1 1.20 0 0 1.1677 0.0512 0.8 2.0 

Takagi function a = 0 . 75 , n = 1 1.5850 1.5889 0.0169 1.0 1.9 

Takagi function a = 0 . 90 , n = 1 1.8480 1.8475 0.0149 1.1 1.8 

Logistic map [25] 0.50 0 0 0.4 94 8 0.0360 0.8 1.4 

Rossler oscillator [26] 2.0100 1.9845 0.0788 0.2 0.9 

Lorenz system [27] 1.2409 1.2388 0.0342 1.2 1.9 

l  

w  

f  

i  

i  
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t  

g  

p  

w  
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w  
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D  
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v  

i  

s  

p  

r  

s  

i  

s  

a  

r

A

ation dimension of the trajectory of an n -dimensional Levy flight

ith the parameter α ∈ (0; 1). The lower and the upper boundary

or the linear segment were shifted to the left when the theoret-

cal dimension was lower. The graph of the fBm graph was also

nvestigated to determine the efficiency of the D 2 estimator and

ad a theoretical dimension of D 2 = 2 − H. As a representative of

he deterministic fractal functions, points from the Takagi function

raph were generated. The Takagi function was dependent on the

arameter a ∈ (1/2; 1), and the theoretical correlation dimension

as equal to D 2 = 2 + log 2 a. The results from the estimation are

hown in Table 5 . The representatives of classical dynamic systems

ere also examined, namely, a logistic map [25] for r = 3 . 56995

ith an estimated value of D 2 = 0 . 500 ± 0 . 005 ; a Rossler oscilla-

or [26] for a = 0 . 1 , b = 0 . 1 and c = 14 , with an estimated value of

 2 = 2 . 01 ± 0 . 01 ; and a Lorenz-like system attractor [27] for α =
1 / 64 , β = 396 / 256 and θ = 109 / 64 , with D 2 ∈ [1.2406, 1.2412]. 
 

U

. Conclusion 

The asymptotic behaviour of a rotational spectrum was in-

estigated under the assumption of D 2 existence. Rotation in an

nfinite-dimensional space is recommended for correlation dimen-

ion estimation that is based on Monte Carlo simulation. As stated

reviously, there is a significant difference between traditional cor-

elation integral behaviour and rotational spectrum, which can be

een on the basis of the log-log plot. The effect of spectrum stabil-

sation for n → ∞ is also useful for D 2 estimation from relatively

mall uniform samples. However, the proposed method has a dis-

dvantage in the experimental choice of the frequency range for

egression, as in the case of the traditional approach. 
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