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a b s t r a c t 

A fractal dimension is a non-integer characteristic that measures the space filling of an arbitrary set. 

The conventional methods usually provide a biased estimation of the fractal dimension, and therefore 

it is necessary to develop more complex methods for its estimation. A new characteristic based on the 

Parzen estimate formula is presented, and for the analysis of correlation dimension, a novel approach 

that employs the log-linear dependence of a modified Renyi entropy is used. The new formula for the 

Renyi entropy has been investigated both theoretically and experimentally on selected fractal sets. 
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1. Introduction 

A fractal dimension is a non-integer characteristic that allows

to measure the space-filling property of any set in Euclidean space.

There are several definitions of dimension. The most general defi-

nition is the Hausdorff dimension [1] based on the Hausdorff mea-

sure and covering of the set with smaller sets with different radii.

The similarity dimension [2] is based on the scaling property of

fractal sets and is used only for the analysis of simple self-similar

sets. The parameterized type of a fractal dimension is the Renyi

dimension [1,3] that is the main object of interest in this paper. 

The calculation of the Renyi dimension is based on the Renyi

entropy [4] H α , which is a generalisation of the Shannon ( H 1 ),

Hartley ( H 0 ) and collision ( H 2 ) entropies. The α-entropy is defined

for α ≥ 0 as follows 

H α( � p ) = 

1 

1 − α
ln 

k ∑ 

i =1 

p αi (1)

for α � = 1 and 

H 1 = lim 

α→ 1 
H α = −

k ∑ 

i =1 

p i ln p i (2)

where k is the number of events and p i are their probabilities sat-

isfying 
∑ k 

i =1 p i = 1 . The formulas (2) and (1) are frequently used in

most sources, but they describe only a finite set of events with a
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ossible extension to a countable case. A more general form which

ncludes also an uncountable case is defined as 

 α( � p ) = 

1 

1 − α
ln E 

(
p α−1 

)
(3)

nd 

 1 = E (− ln p) . (4)

ased on the definition of α-entropy, the Renyi dimension is de-

ned as 

 α = lim 

ε→ 0 + 

H α

− ln ε
(5)

here D 0 , D 1 and D 2 are called the capacity, information and cor-

elation dimension, respectively. In this case, ε is a scaling param-

ter that influences the probabilities p i . 

The methods that are used to estimate the Renyi dimension are

sually different for different parameters α. The capacity dimen-

ion for α = 0 is usually estimated via the box-counting method

5] or the Minkowski covering method [1] . The particular type of

imension for α = 2 is called the correlation dimension and was

ntroduced first in [6] . There are several methods to estimate the

orrelation dimension including the traditional approach in [7] or

he spectral approach in [8] . 

The determination of the Renyi dimension is based on Renyi en-

ropy estimates, which is biased in general. The second and more

eneral problem is how to sample the point set. Our approach is

ocused only on the Lebesgue measure sets where uniform sam-

ling is defined. When these conditions are not guaranteed, such

s when the geometric structure of the set is inhomogeneous, we
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Fig. 1. Density of Parzen estimate and corresponding S M . 
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an only test the hypothesis of unbiasedness for the given theoret-

cal value D α i.e., H 0 : 
̂ D α = D α . In such cases, it was shown that

he correlation sum represents an unbiased estimator of D 2 with

espect to approach in [9,10] . 

Recently, there were efforts to improve the estimation of the

apacity dimension of binary images [11,12] and to estimate this

imension of the set of possible singular points in the space-time

f suitable weak solutions to the Navier–Stokes equations [13,14] .

he correlation dimension is widely used in biomedicine for elec-

roencephalography signal analysis [15,16] or in cardiology [17] .

conomical data are also often the subject of the correlation di-

ension analysis, for example financial markets [18] , and espe-

ially capital markets [19] . 

. Parzen estimate with ball kernel 

This section utilizes the Parzen estimate for the derivation

f the density function of elements of the Lebesgue measurable

et F ⊂ R 

n . Supposing the existence of n -dimensional distribution

unction φ of points � x ∈ F i.e., � x ∼ φ, it is possible to define a sam-

le of points 

= { � x 1 , � x 2 , . . . , � x M 

} ⊂ F (6) 

hat are uniformly generated from F , i.e., � x k ∼ U(F ) ≡ φ. For any

oint � x ∈ R 

n , we define its ε-neighbourhood, i.e., a ball with radius

as 

( � x , ε) = { � y ∈ R 

n : ‖ 

�
 y − �

 x ‖ 2 ≤ ε} (7) 

or any ε > 0. The volume V 

∗ of the ball can be expressed as 

 ∗ = V n · εn (8) 

here V n is the volume of an n -dimensional unit ball. The density

stimate will be based on the elementary distribution 

f 0 ( � x , ε) = 

I(‖ 

�
 x ‖ 2 ≤ ε) 

V ∗
(9)

sing the indicator function I( . . . ) . We can use Parzen’s [20] for-

ula 

f ( � x , �, ε) = 

1 

M 

M ∑ 

k =1 

f 0 ( � x − �
 x k , ε) (10)

o obtain a consistent estimate of φ. However, we will apply (10) to

 discontinuous distribution on F to obtain new formulas for the

enyi dimension estimation. 

The probability density estimate (10) is visualised on Fig. 1 in

rayscale. The white area represents the regions where this func-

ion equals zero and the darker areas depict the intersection of

everal balls centred at points from the set sample �. The balls
an be also used for the traditional definition of the Minkowski

ausage [2] as 

 = 

⋃ 

�
 x ∈F 

B( � x , ε) . (11)

he sample set � is useful for its finite approximation 

 ≈ S M 

= 

M ⋃ 

k =1 

B( � x k , ε) . (12)

. Renyi entropy estimate 

Our novel estimate of the Renyi entropy is based on the differ-

ntial entropy 

 α = 

1 

1 − α
ln 

∫ 
�
 x ∈ R n 

f α( � x )d 

�
 x (13)

or α ∈ R 

+ 
0 
\ {1} and the Parzen estimate f ( � x ) that is scaled by ε > 0.

o avoid negative entropy values, we define the modified Renyi en-

ropy as 

 

∗
α(�, ε) = 

ln J(�, α, ε) − ln J 0 (α, ε) 

1 − α
. (14) 

or α ≥ 0 and α � = 1 where 

(�, α, ε) = 

∫ 
�
 x ∈ R n 

f α( � x , �, ε)d 

�
 x (15)

nd 

 0 (α, ε) = 

∫ 
�
 x ∈ R n 

f α0 ( � x , ε)d 

�
 x = V 

1 −α
∗ . (16)

sing the expected value of v ( � x ) for � x ∼ g as 

E 

  ∼g 
v ( � x ) = 

∫ 
�
 x ∈ R n 

v ( � x ) g( � x )d 

�
 x , (17)

he first term can be simplified as 

 = J(�, α, ε) = 

∫ 
�
 x ∈ R n 

f α−1 ( � x , �, ε) · f ( � x , �, ε)d 

�
 x 

= E 

�
 x ∼ f �

f α−1 ( � x , �, ε) (18) 

e define the degeneracy of � x ∈ R 

n as 

 ( � x , �, ε) = 

M ∑ 

k =1 

I(‖ 

�
 x − �

 x k ‖ 2 ≤ ε) (19)

olding that G ( � x , �, ε) ∈ { 0 , . . . , M} . Recall that the probability

ensity function f ( � x ) is 

f ( � x , �, ε) = 

1 

M · V ∗

M ∑ 

k =1 

I(‖ 

�
 x − �

 x k ‖ 2 ≤ ε) = 

G ( � x , �, ε) 

M · V ∗
. (20)

herefore 

 = E 

�
 x ∼ f �

(
G ( � x , �, ε) 

M · V ∗

)α−1 

= M 

1 −αV 

1 −α
∗ E 

�
 x ∼ f �

G 

α−1 ( � x , �, ε) (21)

nd subsequently also the modified Renyi entropy is 

 

∗
α(�, ε) = 

ln J − ln J 0 
1 − α

(22) 

= 

(1 − α) ln M + (1 − α) ln V ∗ + ln E G 

α−1 ( � x , �, ε) − (1 − α) ln V

1 − α
(23) 

he resulting modified entropy equals 

 

∗
α(�, ε) = ln M + 

ln E G 

α−1 ( � x , �, ε) 

1 − α
(24)

or α > 0 and α � = 1. 



538 M. Dlask, J. Kukal / Chaos, Solitons and Fractals 114 (2018) 536–541 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

r  

c  

s

D  

w  

i

J  

a

 

a

 

 

T

J  

T

H

 

N

D

 

T  

e

6

D  

w

C  

i  

t

 

a  

s

J  

I

 

w

 

4. Basic properties and particular cases 

In this and the following sections, the degeneracy of � x ∈ R 

n 

will be denoted as G ( � x ) instead of G ( � x , �, ε) . When 

�
 x ∈ R n , the

degeneracy G ( � x ) ∈ { 0 , . . . , M} , but for � x ∈ S M 

, the degeneracy ful-

fils G ( � x ) ∈ { 1 , . . . , M} . The modified Renyi entropy follows 0 ≤ H 

∗
α ≤

ln M. This entropy is a translational and rotational invariant, as it

is easy to prove from (19) and (24) . For the particular cases of α,

one can derive the 

• Modified Hartley entropy for α = 0 as 

H 

∗
0 = ln M + ln E G 

−1 ( � x ) , (25)

• Modified Shannon entropy as a limit for α → 1 i.e. 

H 

∗
1 = lim 

α→ 1 
H 

∗
α = ln M − E ln G ( � x ) , (26)

• Modified collision entropy for α = 2 as 

H 

∗
2 = ln M − ln E G ( � x ) , (27)

• Modified minimum entropy as a limit for α → ∞ as 

H 

∗
∞ 

= lim 

α→ + ∞ 

H 

∗
α = ln M − ln max G ( � x ) . (28)

where the expected values are over � x ∼ f . If the derivative ∂H ∗
∂α

ex-

ists, it is always less or equal to zero, as it is easy to prove. 

Moreover, the modified Renyi entropy H 

∗
α can be used for an

alternative definition of the dimension as 

D 

∗
α = lim 

ε→ 0 + 

H 

∗
α(ε) 

− ln ε
(29)

for a given F as an analogy to formula (5) . 

5. Monte carlo approach 

Basic properties of the finite sample � have been collected in

the previous sections. Their direct application to the given data set

is useful for the estimation of H 

∗
α(ε) and consequently for the D 

∗
α

estimation. Using the operator U of uniform sampling, the approx-

imation of the Renyi entropy can be achieved via a Monte Carlo

technique in the following way: 

1. At first, the sample index is generated uniformly k ∼
U({ 1 , . . . , M} ) . 

2. The point � x is generated uniformly from the ε-ball centred at

�
 x k as � x ∼ U(B( � x k , ε)) . 

3. The subsequent degeneration is calculated using (19) . 

The entropy H 

∗
α is calculated as an average of the degenera-

tions using (24), (26) or (28) depending on α. The first two steps

generate � x ∼ f, of course. Assuming the entropy estimate H 

∗
α fulfils

H 

∗
α ∝ ε−D ∗α for small ε > 0, we can use it for the estimation of D 

∗
α

using the model 

H 

∗
α(ε) = A − D 

∗
α ln ε (30)

for small ε and satisfying linear dependency H 

∗
α on ln ε. The aim

of this study is to demonstrate that D 

∗
α is an unbiased estimate of

D α for large M . 

6. Relationship to capacity and correlation dimension 

The capacity ( D 0 ) and correlation ( D 2 ) dimensions are defined

for any Lebesgue measurable set F . The only possibility how to

compare D 

∗
α with D α is to come back from the sample � to the

original set F . The sample � is a finite set with D H = D 0 = D 2 = 0 ,

of course. We will study the particular cases of D 

∗
α for α = 0 and

α = 2 in the case of the measurable set F . 
.1. Relationship to D 0 

The Renyi dimension is the characteristic that has an important

elationship to the Minkowski-Bouligard capacity dimension. The

apacity dimension can be defined [1] based on the Minkowski

ausage as 

 0 = n − lim 

ε→ 0 + 

ln vol(S) 

ln ε
(31)

here S is defined in (11) and vol (S) = 

∫ 
�
 x ∈S is its volume. Suppos-

ng the existence of D 0 , we can directly calculate 

 0 = 

∫ 
R n 

f 0 0 ( � x )d 

�
 x = V ∗ = V n · εn , (32)

nd also the density 

f ( � x ) = E 

�
 y ∼U(F ) 

f 0 ( � x − �
 y ) (33)

nd 

f 0 ( � x ) = I 

(
E 

�
 y ∼U(F ) 

f 0 ( � x − �
 y ) > 0 

)
= I 

(
∨ 

�
 y ∈F 

‖ 

�
 x − �

 y ‖ 2 ≤ ε
)

= I( � x ∈ S) .

(34)

herefore, the function J can be expressed as 

 = 

∫ 
R n 

f 0 ( � x )d 

�
 x = vol (S) . (35)

he resulting modified Hartley entropy equals 

 

∗
0 (ε) = ln 

∫ 
R n 

f 0 ( � x )d 

�
 x ∫ 

R n 
f 0 
0 
( � x )d 

�
 x 
= ln vol (S) − ln V ∗

= ln vol (S) − ln V n − n ln ε. (36)

ow, it is clear that 

 

∗
0 = lim 

ε→ 0 + 

H 

∗
0 (ε) 

− ln ε
= lim 

ε→ 0 + 

ln vol (S) − ln V n − n ln ε

− ln ε

= n − lim 

ε→ 0 + 

ln vol (S) 

ln ε
= D 0 . (37)

herefore, D 

∗
0 

obtained from the modified Hartley entropy H 

∗
0 
(ε) is

quivalent to the capacity dimension D 0 of the measurable set F . 

.2. Relationship to D 2 

The correlation dimension of F is defined as 

 2 = lim 

ε→ 0 + 

ln C(ε) 

ln ε
(38)

here 

(ε) = E 

�
 y , � z ∼U(F ) 

I(‖ 

�
 y − �

 z ‖ 2 ≤ ε) (39)

s the correlation integral. Supposing the existence of D 2 , recall

hat 

f 0 ( � x ) = 

I(‖ 

�
 x ‖ 2 ≤ ε) 

V n εn 
(40)

nd by means of integrating the elementary distribution over the

pace we get 

 0 = 

∫ 
R n 

f 2 0 ( � x )d 

�
 x = 

1 

V 

2 
n ε2 n 

V n ε
n = V 

−1 
n ε−n . (41)

n the finite case, we have 

f ( � x ) = 

1 

m 

m ∑ 

k =1 

f 0 ( � x − �
 x k ) , (42)

hich can be generalized to 

f ( � x ) = E 

�
 y ∼U(F ) 

f 0 ( � x − �
 y ) . (43)
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herefore, 

f 2 ( � x ) = E 

�
 y , � z ∼U(F ) 

f 0 ( � x − �
 y ) · f 0 ( � x − �

 z ) (44)

nd 

 = 

∫ 
R n 

f 2 ( � x )d 

�
 x = E 

�
 y , � z ∼U(F ) 

Z( � y , � z ) (45)

here 

( � y , � z ) = 

∫ 
R n 

f 0 ( � x − �
 y ) · f 0 ( � x − �

 z )d 

�
 x . (46)

enoting the distance d = ‖ � y − �
 z ‖ 2 , we can evaluate 

( � y , � z ) = V 

−2 
n ε−2 n 

∫ 
R n 

I(‖ 

�
 x − �

 y ‖ 2 ≤ ε)I(‖ 

�
 x − �

 z ‖ 2 ≤ ε)d 

�
 x 

= V 

−2 
n ε−2 n W n (d, ε) (47) 

here W n ( d , ε) is the volume of two hyper-ball intersections in

he case of the mutual center distance d and radii ε. Using n-

imensional analytical geometry, we obtain 

 n ( d, ε) = 2 

∫ ε

d/ 2 

V n −1 

(
ε2 − r 2 

) n −1 
2 d r 

= 2 V n −1 ε
n 

∫ 1 

d/ 2 ε

(
1 − r 2 

) n −1 
2 d r (48) 

nd after substitution r = cos φ, we get 

 n (d, ε) = 2 V n −1 ε
n 

∫ arccos (d/ 2 ε) 

0 

sin 

n φ d φ. (49)

oreover, 

 n (0 , ε) = 2 V n −1 ε
n 

∫ π/ 2 

0 

sin 

n φ d φ = V n · εn (50)

hich is also the volume of the n -dimensional ball of radius ε.

herefore, we can express the Z function as 

( � y , � z ) = V 

−1 
n ε−n 

∫ arccos (d/ 2 ε) 
0 sin 

n φ d φ∫ π/ 2 

0 sin 

n φ d φ
(51)

nd the entropy is 

 

∗
2 (ε) = − ln E 

�
 x , � y ∼U(F ) 

S n (‖ 

�
 x − �

 y ‖ 2 , ε) (52)

here 

 n (d, ε) = 

∫ arccos (d/ 2 ε) 
0 sin 

n φ d φ∫ π/ 2 

0 sin 

n (φ)d φ
(53) 

or 0 ≤ d < 2 ε and S n (d, ε) = 0 for d ≥ 2 ε. Let 

 n = 

∫ π/ 3 

0 sin 

n φ d φ∫ π/ 2 

0 sin 

n φ d φ
∈ (0 , 1) (54)

e the value of S n ( ε, ε). When 0 ≤ d ≤ ε, we can estimate the ratio

s 

 n ≤ S n (d, ε) ≤ 1 . (55)

or ε < d ≤ 2 ε, we have 0 ≤ S n ( d , ε) < Q n . Therefore, we can under-

stimate 

 n (d, ε) ≥ I(d ≤ ε) · Q n (56)

nd an adequate upper estimate is 

 n (d, ε) ≤ I(d ≤ ε) + ( I(d ≤ 2 ε) − I(d ≤ ε) ) · Q n (57) 

(1 − Q n ) · I(d ≤ ε) + Q n · I(d ≤ 2 ε) ≤ (1 − Q n ) · I(d ≤ 2 ε) 

+ Q n · I(d ≤ 2 ε) = I(d ≤ 2 ε) . (58) 
e can continue in the estimation to obtain 

E 

�
 y , � z ∼U(F ) 

I(‖ 

�
 y − �

 z ‖ 2 ≤ ε) · Q n ≤ E 

�
 y , � z ∼U(F ) 

S n (‖ 

�
 y − �

 z ‖ 2 , ε) 

≤ E 

�
 y , � z ∼U(F ) 

I(‖ 

�
 y − �

 z ‖ 2 ≤ 2 ε) (59) 

nd therefore 

 (ε) ≤ E 

�
 y , � z ∼U(F ) 

S n (‖ 

�
 y − �

 z ‖ 2 , ε) ≤ U(ε) (60)

here the lower bound equals 

 (ε) = Q n · C(ε) (61)

nd the appropriate upper bound equals 

(ε) = C(2 ε) . (62)

or all 0 < ε < 1, the following inequalities hold 

ln U(ε) 

ln ε
≤ H 

∗
2 (ε) 

− ln ε
≤ ln L (ε) 

ln ε
. (63) 

e can calculate 

lim 

→ 0 + 

ln L (ε) 

ln ε
= lim 

ε→ 0 + 

(
ln Q n 

ln ε
+ 

ln C(ε) 

ln ε

)
= D 2 (64) 

nd also for the upper bound 

lim 

→ 0 + 

ln U(ε) 

ln ε
= lim 

ε→ 0 + 

ln C(2 ε) 

ln ε
= lim 

ε→ 0 + 

ln C(ε) 

ln 

ε
2 

 lim 

ε→ 0 + 

ln C(ε) 

ln ε
· lim 

ε→ 0 + 

ln ε

ln ε − ln 2 

= D 2 . (65) 

herefore, 

 

∗
2 = lim 

ε→ 0 + 

H 

∗
2 (ε) 

− ln ε
= D 2 . (66)

s a conclusion, when D 0 , D 2 exist for a given set F , the equalities

 

∗
0 

= D 0 , D 

∗
2 

= D 2 have been proven. 

. Experimental part 

Computer experiments can be realized only on the finite sample

with three aims: 

• verify hypothesis H 0 : ̂
 D 

∗
0 

= D 0 experimentally, 

• verify hypothesis H 0 : ̂
 D 

∗
2 = D 2 experimentally, 

• evaluate ̂ D 

∗
α in other cases where D α is known theoretically or

is referenced. 

The estimation of the Renyi dimension D 

∗
α will be performed

or α ∈ [0; 2]. Supposing the model (30) with additional Gaussian

oise e ∼ N (0 ;σ 2 ) in the form 

 

∗
α = A − D 

∗
α ln ε + e (67)

e can use the least squares method for the D 

∗
α estimation using

ifferent values ε i for i = 1 , . . . , N. We suggest to use a geometri-

ally increasing series of ε i generated by the formula 

i = 10 

f min +(i −1)	 f (68) 

ith N = � ( f max − f min ) / 	 f � + 1 . 

The novel algorithm was tested on sets with known capacity

imensions. Four traditional deterministic fractal sets were studied

sing recursive random point generation of depth 100: 

• Cantor set [1] with the contraction parameter 0 < a < 1/2 and

n = 1 with the Hausdorff dimension 

D = − ln 2 

(69) 

ln a 
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Table 1 

Capacity dimension estimation. 

System a D 0 ̂ D ∗
0 

sd p -value f min f max 

Cantor set 1/4 0.50 0 0 0.5059 0.0070 0.3993 −3.0 −1.0 

Cantor set 1/3 0.6309 0.6327 0.0034 0.5965 −3.0 −1.0 

Cantor dust 1/4 1.0 0 0 0 0.9834 0.0157 0.2937 −2.0 0.0 

Cantor dust 1/3 1.2619 1.2547 0.0133 0.5883 −2.0 0.0 

Even numbers set – 0.6990 0.7030 0.0148 0.7870 −4.0 −1.0 

Sierpinki carpet 1/3 1.8928 1.8894 0.0059 0.2843 −2.0 −1.0 

Sierpinki carpet 1/4 1.50 0 0 1.4901 0.0148 0.2514 −2.0 −1.0 

Table 2 

Correlation dimension estimation. 

System a D 2 ̂ D ∗
2 

sd p -value f min f max 

Cantor set 1/4 0.500 0.4974 0.0034 0.2236 −3.0 −1.0 

Cantor set 1/3 0.6309 0.6286 0.0047 0.3124 −3.0 −1.0 

Cantor dust 1/4 1.0 0 0 0 0.9863 0.0221 0.2676 −2.0 −1.0 

Cantor dust 1/3 1.2619 1.2630 0.0269 0.4840 −2.0 0.0 

Even numbers set – 0.6990 0.6991 0.0038 0.4896 −4.0 −1.0 

Sierpinki carpet 1/3 1.8928 1.8964 0.0083 0.3325 −2.0 −1.0 

Sierpinki carpet 1/4 1.50 0 0 1.5053 0.0064 0.2032 −2.0 −1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

De Wijs’s fractal dimensions. 

α a D α ̂ D ∗α sd p -value f min f max 

0 a = 1 / 3 1.0 0 0 0 0.9908 0.0058 0.1127 −6.0 −4.0 

0 a = 1 / 4 1.0 0 0 0 0.9890 0.0087 0.2062 −6.0 −4.0 

0 a = 1 / 6 1.0 0 0 0 0.9780 0.0143 0.1240 −6.0 −4.0 

1/2 a = 1 / 3 0.9581 0.9574 0.0062 0.4550 −5.5 −3.5 

1/2 a = 1 / 4 0.90 0 0 0.8921 0.0103 0.2215 −5.5 −3.5 

1/2 a = 1 / 6 0.8035 0.7895 0.0159 0.1893 −5.0 −3.0 

1 a = 1 / 3 0.9183 0.9158 0.0060 0.6769 −4.0 −2.0 

1 a = 1 / 4 0.8250 0.8259 0.0098 0.9269 −4.0 −2.0 

1 a = 1 / 6 0.6500 0.6387 0.0217 0.6026 −3.0 −1.0 

3/2 a = 1 / 3 0.8814 0.8749 0.0099 0.2557 −4.0 −2.0 

3/2 a = 1 / 4 0.7376 0.7255 0.0153 0.2145 −4.0 −2.0 

3/2 a = 1 / 6 0.5419 0.5234 0.0209 0.1880 −3.0 −1.0 

2 a = 1 / 3 0.8480 0.8359 0.0189 0.5220 −3.0 −1.0 

2 a = 1 / 4 0.6781 0.6687 0.0205 0.6466 −3.0 −1.0 

2 a = 1 / 6 0.4695 0.4552 0.0235 0.5429 −2.0 0.0 
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• Cantor dust [21] with the contraction parameter 0 < a < 1/2 and

n = 2 with the Hausdorff dimension 

D H = −2 

ln 2 

ln a 
(70)

• Even the digits set [1] that contains numbers from (0, 1) with

even digits and the Hausdorff dimension 

D H = − log 5 

log 10 

(71)

• Sierpinski carpet [1] with the contraction parameter 0 < a < 1/2

and n = 2 with the Hausdorff dimension 

D H = − ln 8 

ln a 
(72)

Since all the mentioned sets are self-similar and fulfil the open

set condition [22] , their Hausdorff dimension equals the Renyi di-

mension for any eligible parameter α, e.g. D H = D 0 = D 2 . The re-

sults of the capacity dimension estimation are provided in Table 1

and the estimates in the case of the correlation dimension are in

Table 2 for 	 f = 0 . 05 and M = 10 5 . The theoretical capacity (cor-

relation) dimension is denoted D 0 ( D 2 ), whereas its estimate iŝ D 

∗
0 

( ̂  D 

∗
2 
) together with its standard deviation sd . The range for the

choice of ln ε is recommended to be in the interval [ f min ; f max ]. 

A one-sample, two-sided t -test has been used to prove the un-

biasedness of the dimension estimates level 0.05. As seen in Tabs.

1 and 2 the hypotheses H 0 : ̂
 D 

∗
α = D α have been accepted in all

cases. 

The graph of De Wijs’s fractal [23] with the parameter a is a

kind of multifractal that has the Renyi dimension dependent on

the dimension parameter α. The corresponding Renyi dimension

equals 

D α = 

1 

1 − α
log 2 ( a 

α + (1 − a ) α) (73)

for 0 < a < 1/2 and α ∈ [0; 1) ∪ (1, ∞ ) with the particular case 

D 1 = lim 

α→ 1 
D α = −a log 2 a − (1 − a ) log 2 (1 − a ) . (74)

The D 

∗
α has been estimated for α ∈ {0, 1/2, 1, 3/2, 2} and the testing

results are included in Table 3 . 

The one-sample, two-sided t -test has been also used to prove

the unbiasedness of the De Wijs’s fractal, the hypotheses H 0 : ̂
 D 

∗
α =

D α have been again accepted in all cases. 

One of the traditional methods on how to estimate the capac-

ity dimension D 0 is called box-counting [24] . It is based on count-

ing points from the sample � using an n -dimensional rectangular
rid of size a > 0. Using the grid, there are always k non-empty

oxes consisting of M 1 , M 2 , . . . , M k ∈ N points satisfying 
∑ k 

j=1 M j =
. The basic form of box-counting calculates the Hartley entropy

stimate according to (1) as ̂ H 0 (α) = ln k which is the logarithm of

overing an element number. The box-counting estimate of D 0 is

btained from the model (67) . It is also possible to estimate the

eneral Renyi entropy D α using the approximation p j = M j /M and

ormulas (2) and (1) . 

Discrete dynamic systems with chaotic behaviour generate frac-

al trajectories and attractors with a nonlinear character. The in-

estigation of this kind of sets can be performed in two ways –

he first option is to investigate the dimension in the original state

pace, the second option is to use Whitney’s theorem [25] and esti-

ate it in a reconstructed space. Generally, the n -dimensional dis-

rete dynamical process has an internal state � x j ∈ R 

n and output

 j ∈ R for j ∈ N 0 . Using reconstruction length W ∈ N , we define

 sliding sample � ξ j = (y j , . . . , y j+ W −1 ) ∈ R 

W for j ∈ N 0 , first. Whit-

ey’s embedding theorem can be rewritten from continuous to dis-

rete time as follows: When W ≥ 2 N + 1 , then the reconstructed

eries { � ξ j } ∞ 

j=0 
has the same properties as { � x j } ∞ 

j=0 
. Therefore, any

enyi dimension D α of the reconstructed attractor is the same as

n the case of the state space. 

Table 4 shows the comparison of the dimension estimation

sing the box-counting (denoted as box-count) method and the

ew method of the modified Renyi entropy (denoted as m. Renyi).
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Table 4 

Discrete dynamical system analysis. 

system α D α data method ̂ D α sd p -value 

Henon 1 1.2583 OD m. Renyi 1.2608 0.0156 0.4363 

map box-count 1.2428 0.0113 0.0851 

RD m. Renyi 1.2590 0.0056 0.4503 

box-count 1.2489 0.0031 0.0012 

Henon 2 1.2201 OD m. Renyi 1.2243 0.0174 0.4046 

map box-count 1.2161 0.0109 0.3568 

RD m. Renyi 1.2230 0.0026 0.1323 

box-count 1.2172 0.0014 0.0192 

Lozi 1 1.4042 OD m. Renyi 1.4131 0.0197 0.3257 

map box-count 1.3915 0.0174 0.2327 

RD m. Renyi 1.4098 0.0044 0.1016 

box-count 1.3945 0.0032 0.0012 

Lozi 2 1.3845 OD m. Renyi 1.3937 0.0144 0.2614 

map box-count 1.3786 0.0161 0.3570 

RD m. Renyi 1.3885 0.0031 0.0985 

box-count 1.3749 0.0041 0.0096 
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[  
he comparison has been performed for original state data (OD)

nd reconstructed data (RD). For the experiment, the Henon map

26,27] with the parameters a = 0 . 4 , b = 0 . 3 and the starting

oints x 0 , 1 = 0 , x 0 , 2 = 0 . 9 and the Lozi map [28,29] with the pa-

ameters a = 1 . 7 , b = 0 . 5 and the starting points x 0 , 1 = −0 . 1 , x 0 , 2 =
 . 1 were used for the simulation for α ∈ {1, 2}, reconstruction

ength W = 5 , range for modified Renyi method as f min = −2 . 0 and

f max = −2 . 0 and for all experiments, the set � contained M = 10 6 

lements. The experiment was also conducted for bigger lengths of

he reconstruction window, but it didn’t have a significant impact

n the results and their precision. 

When the systems are investigated in the state space (OD) of

ow dimension ( n = 2 ), the box-counting offered more accurate es-

imates with smaller standard deviation than the novel method.

owever, the p -values indicate unbiasedness in both cases. Another

ehaviour of estimation methods has been observed in the case

f state reconstruction (RD) when the space dimension is large

 n = 5 ). Therefore, the box-counting estimates of event probabili-

ies are biased due to data sparsity. As seen in Table 4 , all the box-

ounting estimates after reconstruction are biased. The sparsity ef-

ect is not present in the case of new method, where the p -values

re higher with similar standard deviation. Therefore, the modi-

ed Renyi dimension is more suitable for reconstructed systems in

igher-dimensional space, where the unbiasedness is present and

he estimation accuracy is higher. 

. Conclusion 

The paper presents new term modified entropy that has been

efined using the Parzen formula with a ball kernel. The new en-

ropy measure can be calculated for all finite samples � using a

egeneracy function. The Monte Carlo approach enables the es-

imation of the proposed modified entropy which is later useful

or the dimension estimation. The relationship between D 0 , D 2 and

heir estimates from the modified entropy have been both theoret-

cally and numerically proven for an arbitrary measurable set F .

oreover, numerical simulations on selected fractal sets verified

he unbiasedness of the D 

∗
α estimates. 
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