Heavy Tail Distribution Derived with Maximum Renyi Entropy Principle for Returns of Financial Assets

Quang Van Tran

KSI, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

The 13th International Conference on Stochastic and Physical Monitoring Systems Rumburk, Czech Republic, June 23 - 27, 2022 Figure 1: The density of returns of stock price of Apple Inc.

Quang Van Tran New heavy tail distribution

э

Motivation and Research Objective

- Returns of financial assets exhibit leptokurtic property and normal distribution is not a good candidate for modeling returns of financial assets
- The light tails or normal distribution leads to underestimation of risk exposure of investments which induces unfulfillment of capital adequacy requirement of firms
- Several alternative distributions have been proposed to to deal with this problems: t-distribution, generalized normal distribution, Normal Inverse Gaussian distribution (NIG), Alpha stable distribution
- We want to contribute to this debate and propose a new distribution which is derived from maximum Renyi entropy principle
- We verify its usability and compare its applicability with existing alternatives

- 4 回 ト - 4 回 ト - 4 回 ト

Entropy maximization approach

- Entropy maximization is a common approach to derive the probability distribution of a random variable with insufficient information
- The probability distributionhe is derived as a solution to the problem of Renyi entropy maximization subject to a constraint on generalized moments
- Renyi entropy maximization problem for lpha > 0, lpha
 eq 1 is defined as

$$H_{\alpha}(X) = \frac{\ln \int_{-\infty}^{+\infty} f^{\alpha}(x) dx}{1 - \alpha} = \max$$
(1)
s.t.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\int_{-\infty}^{+\infty} \mathbf{f}(x) \mathrm{d}x = 1.$$

There are three basic properties of Renyi entropy:

- $\lim_{\alpha \to 1} \operatorname{H}_{\alpha}(X) = \operatorname{H}_{1}(X) = \operatorname{H}_{\operatorname{Shannon}}(X),$
- translation invariancy $\mathrm{H}_{lpha}(X+\xi)=\mathrm{H}_{lpha}(X)$ for any $\xi\in\mathbb{R},$
- scaling formula $H_{\alpha}(X/s) = H_{\alpha}(X) \ln s$ for any s > 0.

It is clear that Renyi entropy is the generalization of Shannon entropy.

伺下 イヨト イヨト

Deriving a new distribution

Supposing $\mathrm{E}X^4<\infty,\ \mu,\sigma$ are location and scale parameters

$$Y = (X - \mu)/\sigma, \tag{2}$$

hence, $EY = 0, EY^2 = 1, Y \sim g$ having a continuous density g and finite kurtosis EY^4 . The density is transformed

$$f(x) = g((x - \mu)/\sigma), \qquad (3)$$

$$H_{\alpha}(Y) = H_{\alpha}(X) - \ln \sigma.$$
(4)

so this distribution has only two parameters $\alpha > 0, \beta \in (0,4]$ that are the shape parameters of the new distribution

$$H_{\alpha}(Y) = \max \tag{5}$$

with respect to

$$\mathbf{E}|Y|^{\beta} = Q, \tag{6}$$

Q > 0 only guarantees the final standardization requirement $EY^2 = 1$. The condition EY = 0 is also satisfied as the result of (5), (6).

Case $\alpha = 1$

We maximize Shannon entropy

$$H_{\text{Shannon}}(Y) = -\int_{-\infty}^{+\infty} g(y) \ln g(y) dy, \qquad (7)$$

with respect to the constrains

$$\int_{-\infty}^{+\infty} g(y) dy = 1, \qquad (8)$$

$$\int_{-\infty}^{+\infty} |y|^{\beta} g(y) dy = Q.$$
(9)

Using Lagrange multipliers $\lambda_1,\lambda_2\in\mathbb{R},$ we design the functional

$$\mathscr{L} = \int_{-\infty}^{+\infty} \left(-g(y) \ln g(y) + \lambda_1 g(y) + \lambda_2 |y|^{\beta} g(y) \right) dy, \qquad (10)$$

which has to be maximized via g and minimized via $\lambda_1,\lambda_2.$ The saddle point conditions are

$$\frac{\partial \mathscr{L}}{\partial g} = \frac{\partial \mathscr{L}}{\partial \lambda_1} = \frac{\partial \mathscr{L}}{\partial \lambda_2} = 0, \qquad (11)$$

Case $\alpha = 1$

which implies

$$-\ln g(y) - 1 + \lambda_1 + \lambda_2 |y|^{\beta} = 0$$
 (12)

together with the constrains (8), (9). The optimal density is

$$g(y) = \exp(\lambda_1 - 1 + \lambda_2 |y|^{\beta}). \tag{13}$$

The left hand side integral in (8) is finite only when $\lambda_2 < 0$. Resulting density formula is

$$g(y) = \frac{C}{2} \exp\left(-\left(\frac{|y|}{s}\right)^{\beta}\right), \qquad (14)$$

where C, s > 0 are a normalizing factor and the scale. Let Z = |Y|, we can easily express its density as

$$h(z,1,\beta) = C \exp\left(-\left(\frac{z}{s}\right)^{\beta}\right)$$
(15)

for $z \ge 0$.

Case $\alpha = 1$

The normalizing factor C, the CDF $H(z,1,\beta)$, and the central absolute moment M_{γ}^* of Y can be evaluated using the integral

$$P(z,a,b,s) = \int_0^z x^a \exp\left(-\left(\frac{x}{s}\right)^b\right) dx.$$
 (16)

We obtain explicit formulas

$$C = \frac{1}{P(+\infty, 0, \beta, s)} = \frac{\beta}{s\Gamma(1/\beta)},$$
(17)

$$H(z,1,\beta) = C \cdot P(z,0,\beta,s) = \Gamma\left(\left(\frac{z}{s}\right)^{\beta},\frac{1}{\beta}\right), \quad (18)$$

$$M_{\gamma}^{*} = C \cdot P(+\infty, \gamma, \beta, s) = \frac{\Gamma((\gamma+1)/\beta)s^{\gamma}}{\Gamma(1/\beta)}.$$
 (19)

Using $M_2^* = 1$, we obtain the scaling factor

$$s = \left(\frac{\Gamma(1/\beta)}{\Gamma(3/\beta)}\right)^{1/2}.$$
 (20)

Case $\alpha > 1$ with Finite Support

When $\alpha > 1$, the Renyi entropy maximization is equivalent to

$$-\int_{-\infty}^{+\infty} g^{\alpha}(y) dy = \max$$
 (21)

wrt constrains (8),(9).

Using Lagrange multipliers $\lambda_1,\lambda_2\in\mathbb{R},$ we design another functional

$$\mathscr{L} = \int_{-\infty}^{+\infty} \left(-g^{\alpha}(y) + \lambda_1 g(y) + \lambda_2 |y|^{\beta} g(y) \right) dy, \qquad (22)$$

which has to be maximized via g and minimized via λ_1, λ_2 . The saddle point conditions (11) produce

$$-\alpha g^{\alpha-1}(y) + \lambda_1 + \lambda_2 |y|^{\beta} = 0.$$
(23)

With the constraints (8), (9). Let $(\xi)_+ = \max(\xi, 0)$, the optimal density is

$$g(y) = \left(\frac{\lambda_1}{\alpha} + \frac{\lambda_2}{\alpha}|y|^{\beta}\right)_+^{\frac{1}{\alpha-1}}.$$
 (24)

The value $\lambda_1 \ge 0$ guarantees $g(0) \ge 0$. The left hand side integral in (8) is finite only when $\lambda_2 < 0$. Moreover, g(y) exists only for $\lambda_1 > 0$. The resulting density formula is

$$g(y) = \frac{C}{2} \left(1 - \left(\frac{|y|}{s}\right)^{\beta} \right)_{+}^{\frac{1}{\alpha - 1}}, \qquad (25)$$

where C, s > 0 are a normalizing factor and the scale. The random variable Z = |Y| has the density

$$h(z,\alpha,\beta) = C\left(1 - \left(\frac{z}{s}\right)^{\beta}\right)^{\frac{1}{\alpha-1}}$$
(26)

回り くほり くほとう

for $z \in [0, s]$.

The normalizing factor C, the cumulative distribution function $H(z, \alpha, \beta)$, and the central absolute moment M_{γ}^* of Y can be evaluated using the integral

$$Q(z,a,b,c,s) = \int_0^z x^a \left(1 - \left(\frac{x}{s}\right)^b\right)^c dx, \qquad (27)$$

We obtain explicit formulas

$$C = \frac{1}{Q(+\infty,0,\beta,1/(\alpha-1),s)}$$

= $\frac{\beta}{sB(1/\beta,\alpha/(\alpha-1))}$
= $\frac{\beta\Gamma(1/\beta+\alpha/(\alpha-1))}{s\Gamma(1/\beta)\Gamma(\alpha/(\alpha-1))},$ (28)

Case $\alpha > 1$ with Finite Support

$$H(z, \alpha, \beta) = C \cdot Q(z, 0, \beta, 1/(\alpha - 1), s)$$

$$= B\left(\left(\frac{z}{s}\right)^{\beta}, \frac{1}{\beta}, \frac{\alpha}{\alpha - 1}\right),$$

$$M_{\gamma} = C \cdot Q(+\infty, \gamma, \beta, 1/(\alpha - 1), s)$$

$$= \frac{B((\gamma + 1)/\beta, \alpha/(\alpha - 1))s^{\gamma}}{B(1/\beta, \alpha/(\alpha - 1))}$$

$$= \frac{\Gamma((\gamma + 1)/\beta)\Gamma(\alpha/(\alpha - 1) + 1/\beta)s^{\gamma}}{\Gamma(1/\beta)\Gamma(\alpha/(\alpha - 1) + (\gamma + 1)/\beta)}.$$
(29)
$$(30)$$

Using standardization condition $M_2^* = 1$, we obtain the scaling factor

$$s = \left(\frac{\Gamma(1/\beta)\Gamma(\alpha/(\alpha-1)+3/\beta)}{\Gamma(3/\beta)\Gamma(\alpha/(\alpha-1)+1/\beta)}\right)^{1/2} > 0.$$
(31)

The formula (29) states that $T = (Z/s)^{\beta}$ has Beta distribution with parameters $p = 1/\beta$, $q = \alpha/(\alpha - 1)$.

Case $\alpha \in (0,1)$ Generates Heavy Tails

It is the most interesting case as

$$+\int_{-\infty}^{+\infty} g^{\alpha}(y) dy = \max$$
 (32)

wrt (8),(9). Using Lagrange multipliers $\lambda_1, \lambda_2 \in \mathbb{R}$, we design

$$\mathscr{L} = \int_{-\infty}^{+\infty} \left(g^{\alpha}(y) + \lambda_1 g(y) + \lambda_2 |y|^{\beta} g(y) \right) dy, \qquad (33)$$

which must be maximized via g and minimized via λ_1, λ_2 . The FOCs produce

$$\alpha g^{\alpha-1}(y) + \lambda_1 + \lambda_2 |y|^{\beta} = 0.$$
(34)

together with the constrains (8), (9). The optimal density is

$$g(y) = \left(-\frac{\lambda_1}{\alpha} - \frac{\lambda_2}{\alpha}|y|^{\beta}\right)^{\frac{1}{\alpha-1}}.$$
 (35)

The left hand side integral in (8) is finite only when $\lambda_1 < 0, \lambda_2 < 0, 1 - \beta < \alpha < 1.$

Case $\alpha \in (0,1)$ Generates Heavy Tails

The resulting density formula is

$$g(y) = \frac{C}{2} \left(1 + \left(\frac{|y|}{s}\right)^{\beta} \right)^{-\frac{1}{1-\alpha}},$$
(36)

where C, s > 0 are a normalizing factor and the scale. The random variable Z = |Y| has the density

$$h(z,\alpha,\beta) = C\left(1 + \left(\frac{z}{s}\right)^{\beta}\right)^{-\frac{1}{1-\alpha}}$$
(37)

for $z \ge 0$. The normalizing factor C, the CDF H(z), and M_{γ}^* of Y can be evaluated via

$$\mathbf{R}(z,a,b,c,s) = \int_0^z x^a \left(1 + \left(\frac{x}{s}\right)^b\right)^{-c} \mathrm{d}x, \qquad (38)$$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

Finally, we obtain explicit formulas

$$C = \frac{1}{R(+\infty,0,\beta,1/(1-\alpha),s)} = \frac{\beta}{sB(1/\beta,1/(1-\alpha)-1/\beta)}$$
(39)
$$= \frac{\beta\Gamma(1/(1-\alpha))}{s\Gamma(1/\beta)\Gamma(1/(1-\alpha)-1/\beta)},$$
$$H(z,\alpha,\beta) = C \cdot R(z,0,\beta,1/(1-\alpha),s) = B\left(\frac{(z/s)^{\beta}}{1+(z/s)^{\beta}},\frac{1}{\beta},\frac{1}{1-\alpha}-\frac{1}{\beta}\right),$$
(40)

・ 回 ト ・ ヨ ト ・ ヨ ト

Case $\alpha \in (0,1)$ Generates Heavy Tails

$$\begin{split} \mathcal{M}_{\gamma}^{*} &= C \cdot \mathrm{R}(+\infty, \gamma, \beta, 1/(\alpha - 1), s) \\ &= \frac{\mathrm{B}((\gamma + 1)/\beta, 1/(1 - \alpha) - (\gamma + 1)/\beta)s^{\gamma}}{\mathrm{B}(1/\beta, 1/(1 - \alpha) - 1/\beta)} \\ &= \frac{\Gamma((\gamma + 1)/\beta)\Gamma(1/(1 - \alpha) - (\gamma + 1)/\beta)s^{\gamma}}{\Gamma(1/\beta)\Gamma(1/(1 - \alpha) - 1/\beta)}. \end{split}$$
(41)

Using standardization condition $M_2^* = 1$, we obtain the scaling factor

$$s = \left(\frac{\Gamma(1/\beta)\Gamma(1/(1-\alpha) - 1/\beta)}{\Gamma(3/\beta)\Gamma(1/(1-\alpha) - 3/\beta)}\right)^{1/2} > 0.$$
(42)

The formula (40) states that $T = \frac{(Z/s)^{\beta}}{1 + (Z/s)^{\beta}}$ has Beta distribution with parameters $p = 1/\beta$, $q = 1/(1-\alpha) - 1/\beta$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The General Model

Replacing Z by original X we obtain general form of the novel distribution. The final PDF is

$$f(x,\alpha,\beta,\mu,\sigma) = \frac{1}{2\sigma}h(|x-\mu|/\sigma,\alpha,\beta).$$
(43)

Corresponding CDF is

$$\mathbf{F}(x,\alpha,\beta,\mu,\sigma) = \frac{1}{2} + \frac{\operatorname{sign}(x-\mu)}{2}\mathbf{H}(|x-\mu|/\sigma,\alpha,\beta).$$
(44)

The central absolute moment of X of the order $\gamma > 0$ is

$$\mathbf{E}|X-\mu|^{\gamma} = M_{\gamma}^* \sigma^{\gamma}. \tag{45}$$

The model parameters $\alpha, \beta, \mu, \sigma$ can be estimated using:

- maximum likelihood method, which is valid when the density $f(x, \alpha, \beta, \mu, \sigma)$ is smooth function,
- χ^2 method, which suppose the existence of F(x, $\alpha, \beta, \mu, \sigma$),
- moment method, which suppose the existence of moments up to order γ .

Under the general supposition of non-degeneracy i.e. $\sigma > 0$ we can perform:

- maximum likelihood method only for eta > 1, lpha > 1 eta,
- χ^2 method only for lpha>1-eta,eta>0,
- moment method only for $lpha>1-eta/(\gamma\!+\!1),eta,\gamma\!>\!0.$

The novel distribution:

- is generalized normal distribution for $\alpha = 1$,
- has finite support for lpha>1,eta>0,
- has heavy tails for $lpha\in(1-eta,1),eta>0.$

All evaluations of f, F, and the moments are numerically unstable for $0 < |\alpha - 1| < \varepsilon = 0.02$. In this case we apply linear interpolation instead of direct evaluation for $\alpha \in (1 - \varepsilon, 1)$ or for $\alpha \in (1, 1 + \varepsilon)$, respectively.

イロト イヨト イヨト イヨト

The role of parameter α in the new distribution

The role of parameter β in the new distribution

The role of parametera α and β on its moments

Quang Van Tran

We select five different types of financial assets to perform our analysis. They are American stock price index S&P 500, gold price, stock price of three companies: Apple Inc., Boeing, and McDonald, exchange rate EUR/USD, and Bitcoin price in USD. All series are daily close of a period of five years from 22nd of March 2017 to 4th of February of 2022.

Characteristic	SP500	Gold	Apple	EURUSD	BTCUSD	BOEING	McDONALD
Mean	5.016e-4	3.224e-4	1.256e-3	-1.747e-05	1.552e-3	2.50e-4	3.63e-4
Median	8.982e-4	5.281e-4	1.140e-3	2.302e-05	1.294e-3	9.48e-4	4.916e-4
1st quartile	-3.355e-3	-3.798e-3	-7.534e-3	-2.500e-3	-0.0147	-0.0112	-0.0052
3rd quartile	6.106e-3	4.820e-3	0.0113	2.562e-3	0.0188	0.0115	0.0069
Maximum	0.0897	0.0578	0.1131	0.0160	0.1718	0.2161	0.1666
Minimum	-0.1277	-0.0511	-0.1377	-0.0281	-0.4647	-0.2404	-0.1729
St. deviation	0.0125	9.143e-3	0.0195	4.140e-3	0.0392	0.0291	0.0150
Skewness	-1.0573	-0.1113	-0.30156	-0.28698	-1.2577	-0.7489	-0.2904
Kurtosis	22.69	9.1335	9.339	5.6112	20.565	18.325	34.671
Num of obs	1259	1259	1259	1259	1259	1259	1259

伺 ト イヨト イヨト

Estimation of parameters of the new distribution

Parameters of the new distribution are estimated jointly using maximum likelihood estimation method (MLE). The MLE procedure is performed as follows:

$$\hat{\theta} = -\arg\min_{\theta \in \Theta} \sum_{i=1}^{n} \ln f(X_i; \theta) = -\arg\min_{\theta \in \Theta} \ln L(\theta), \quad (46)$$

where Θ is the set of all admissible parameters and $f(X_i; \theta)$ is the density function of the corresponding distribution. The sign "-" is added so that the minimalization procedure can be applied. The MLE estimator has the following property

$$\sqrt{n}(\hat{\theta} - heta_{true}) \sim N(0, \mathscr{I}^{-1}),$$

where $\mathscr{I} = -\mathbb{E}\left[\frac{\partial^2 \ln L}{\partial \theta \partial \theta'}\right]$ is the so called Fisher information matrix.

▲冊▶ ▲屋▶ ▲屋▶

Table 1: The log-likelih	ood values of all distributions
--------------------------	---------------------------------

Distribution	SP500	Gold	Apple	EURUSD	BTCUSD	BA	MCD
t	4056.10	4265.40	3302.40	5157.10	2467.70	2964.0	3818.4
GED	4051.60	4255.20	3295.30	5147.30	2481.60	2951.3	3780.9
NIG	4059.60	4258.50	3303.30	5065.10	2476.10	2965.4	3808.6
ALPHA STABLE	4049.40	4257.70	3294.50	5151.30	2452.10	2957.2	3817.1
OUR NEW	4061.70	4265.70	3303.60	5157.10	2482.70	2966.0	3819.7

▲ロト ▲御ト ▲理ト ▲理ト

æ

Table 2: The estimated values of parameters of new distribution for seven assets

Parameter	SP500	Gold	Apple	EURUSD	BTCUSD	BA	MCD
α	0.7080	0.6084	0.6821	0.7740	0.9198	0.6112	0.2545
asymp. S.E.	0.0717	0.0168	0.729	0.0.0519	0.0634	0.0488	0.0790
β	1.2708	1.7642	1.6210	1.9692	0.9786	1.5169	2.4953
asymp. S.E.	0.1134	0.0595	0.1310	0.1194	0.1203	0.0964	0.1886
σ	0.0127	0.0095	0.0198	0.0041	0.0386	0.0309	0.0180
asymp. S.E.	6.91e-4	3.98e-4	9.94e-4	1.09e-4	0.0015	0.0021	0.0034
μ	0.0010	0.0005	0.0014	2.39e-6	0.0013	0.0009	0.0006
asymp. S.E.	1.68e-4	1.80e-4	3.93e-4	9.65e-5	1.20e-5	8.97e-4	0.0054

<ロ> <同> <同> <同> < 同> < 同> < □> <

æ

Density comparison 1a

Figure 2: The density of returns of stock price index SP500

Density comparison 1b

Figure 3: The density of returns of stock price index SP500

A¶ ▶

< ∃⇒

Density comparison 2a

Figure 4: The density of returns of gold price

Quang Van Tran New heavy tail distribution

Density comparison 2b

Figure 5: The density of returns of gold price

Density comparison 3a

Figure 6: The density of returns of stock price of Apple Inc.

P

-≣->

Density comparison 3b

Figure 7: The density of returns of stock price of Apple Inc.

Density comparison 4a

Figure 8: The density of returns of EURUSD exchange rate

< 17 b

Density comparison 4b

Figure 9: The density of returns of EURUSD exchange rate

Density comparison 5a

Figure 10: The density of returns of Bitcoin

Density comparison 5b

Figure 11: The density of returns of Bitcoin

- We derive a new distribution using Renyi entropy maximization principle with moments constraints
- In fact, it is a family of distributions depending on the values of their shape parameters
- We apply the newly obtainded distribution to model the distribution of five different types of financial instruments
- WE estimate parameters of this distribution, compare its goodness of fit with the one of existing heavy tail distribution alternatives
- The results show that it is dominant alternative to the existing variants of heavy tail distributions

A (10) × (10) × (10) ×

Thank you for your attention!

伺下 イヨト イヨト