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Figure 1: The density of returns of stock price of Apple Inc.
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Motivation and Research Objective

@ Returns of financial assets exhibit leptokurtic property and
normal distribution is not a good candidate for modeling
returns of financial assets

@ The light tails or normal distribution leads to underestimation
of risk exposure of investments which induces unfulfillment of
capital adequacy requirement of firms

@ Several alternative distributions have been proposed to to deal
with this problems: t-distribution, generalized normal
distribution, Normal Inverse Gaussian distribution (NIG), Alpha
stable distribution

@ We want to contribute to this debate and propose a new
distribution which is derived from maximum Renyi entropy
principle

@ We verify its usability and compare its applicability with
existing alternatives
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Entropy maximization approach

@ Entropy maximization is a common approach to derive the
probability distribution of a random variable with insufficient
information

@ The probability distributionhe is derived as a solution to the
problem of Renyi entropy maximization subject to a constraint
on generalized moments

@ Renyi entropy maximization problem for o > 0,0 # 1 is
defined as
In [T £%(x)dx

N -«

s.t.

Hq(X) = max (1)
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Properties of Renyi entropy

There are three basic properties of Renyi entropy:
e lim H(X(X) = Hl(X) = HShannon(X)a
a—1
e translation invariancy Hy (X 4+ &) = Hg(X) for any & € R,
e scaling formula Hy(X/s) =Hg(X) —Ins for any s > 0.

It is clear that Renyi entropy is the generalization of Shannon
entropy.
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Deriving a new distribution

Supposing EX* < o, 1,6 are location and scale parameters

Y = (X - )/, 2)
hence, EY =0,EY2 =1, Y ~ g having a continuous density g and
finite kurtosis EY*. The density is transformed

f(x) = g((x—wu)/0), (3)
Hy(Y) =Hg(X)—Ino. (4)
so this distribution has only two parameters a > 0, € (0,4] that
are the shape parameters of the new distribution
Hey(Y) = max (5)
with respect to
ElY[P=Q, (6)
Q® > 0 only guarantees the final standardization requirement
EY? = 1. The condition EY = 0 is also satisfied as the result of

(5), (6).



We maximize Shannon entropy

+oo
HShannon(Y) = [ g(y) |ng(y)dy7 (7)
with respect to the constrains
—+oo
/_ g(y)dy =1, (8)
B
A ©)
Using Lagrange multipliers 41,4, € R, we design the functional
J,»oc
Z= [ (~eb)ne)+ Mgl + 2alyPe(y)) dy,  (10)

which has to be maximized via g and minimized via A1,4,. The
saddle point conditions are

0L 3FL 0%
dg A 9

=0, (11)



which implies

—Ing(y) =1+ A+ 2aly[P=0 (12)
together with the constrains (8), (9). The optimal density is
8(y) = exp(A1 — 1+ Zaly /). (13)

The left hand side integral in (8) is finite only when A, < 0.
Resulting density formula is

gly) = %exp (— <|Z|>ﬁ> , (14)

where C,s > 0 are a normalizing factor and the scale. Let Z =Y/,
we can easily express its density as

h(z,1,B) = Cexp (— (z)ﬁ) (15)

for z> 0.
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The normalizing factor C, the CDF H(z,1,f), and the central
absolute moment M, of Y can be evaluated using the integral

P(z,3,b,5) = /Ozxaexp <— (z)b) dx. (16)

We obtain explicit formulas

ce_+ P (17)

P(1o,0,B,5)  sI(1/B)’
H(z,1,[3):C.P(z,o,p,s):r<(z)ﬁ 1), (18)

B
=t < DT
Using M; =1, we obtain the scaling factor
_ (T(/B)\"?
= (ram) 20
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Case o > 1 with Finite Support

When o > 1, the Renyi entropy maximization is equivalent to

~+oco
- g%(y)dy = max (21)

wrt constrains (8),(9).
Using Lagrange multipliers 41,4, € R, we design another functional

2= [T (e )+ )+l Pe)) v (22)

which has to be maximized via g and minimized via A1,A,. The
saddle point conditions (11) produce

—ag®H(y) + 1+ AlyP=0. (23)
With the constrains (8), (9). Let (&)+ = max(§,0), the optimal
density is :
)= g+ aw) (24)
+
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Case o > 1 with Finite Support

The value 4; > 0 guarantees g(0) > 0. The left hand side integral
in (8) is finite only when A, < 0. Moreover, g(y) exists only for
A1 > 0. The resulting density formula is

gly) = % (1— (’Z')ﬁ) - , (25)

+

where C,s > 0 are a normalizing factor and the scale. The random
variable Z =|Y/| has the density

h(z,a,B) = C <1 - (Z)ﬁ> - (26)

for z € [0, s].

Quang Van Tran New heavy tail distribution



Case o > 1 with Finite Support

The normalizing factor C, the cumulative distribution function
H(z,, ), and the central absolute moment M, of Y can be
evaluated using the integral

Q(z,a,b,c,s) = /Ozxa (1 _ (z)b>cdx, (27)

We obtain explicit formulas

1
Q(+°°,0,g,1/(a—1),s)

sB(1/B, —1
S e

sM(1/B)(er/(a—1))
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Case o > 1 with Finite Support

H(z, &, B) i (?;) ﬁ /( )) s) 9)

My = C-Q(+eo,7,B,1/(a—1), )
_ B((r+1)/B,a/(a—1))s"
B(1/B,a/(a —1)) (30)
_ M((r+1)/B) (o/ (2= 1)+1/B)s"
F(1/B)(er/(a=1)+(r+1)/B) -

Using standardization condition M; = 1, we obtain the scaling
factor

(T/B)(a/(a—1)+3/B)\

- (F(3/ﬁ)r(a/(a— 1)+1/ﬁ)> >0 @

The formula (29) states that T = (Z/s)? has Beta distribution
with parameters p=1/8,q=a/(a—1).
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Case o € (0,1) Generates Heavy Tails

It is the most interesting case as
+oo
+/ y)dy = max (32)
wrt (8),(9). Using Lagrange multipliers 1,4, € R, we design
+oc
Z= [ ()t me) +aalylPe))ay,  (33)

which must be maximized via g and minimized via A1,A,. The
FOCs produce

ag® (y)+ A+ AolylP=0. (34)
together with the constrains (8), (9). The optimal density is
1
A a1
)= (-5 -Zwr) (3)

The left hand side integral in (8) is finite only when
M<0,A<0,1-B<a<l.



Case o € (0,1) Generates Heavy Tails

The resulting density formula is

)= o <1+ (’y')ﬁ) (36)

where C,s > 0 are a normalizing factor and the scale. The random
variable Z =|Y/| has the density

h(z,a,ﬂ)—C(l—i—(i)B)_lla (37)

for z> 0. The normalizing factor C, the CDF H(z), and M, of Y
can be evaluated via

R(z,a,b,c,s) = /ozxa <1 v (’;)b> Cax (38)
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Case o € (0,1) Generates Heavy Tails

Finally, we obtain explicit formulas

1
R(+oo,o,/3,1/3/(1—a),s)
= B(1/B.1/(1_a)_1/B) (39)
Brit/(-w)
ST(1/B)N(1/(1— )~ 1/B)

H(z,a,8) = C-R(z,0,8,1/(1-a),s)
_ B( (z/s)f 1 1 1 (40)

Cc =

1+(z/sF B 1-a B)
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Case o € (0,1) Generates Heavy Tails

M; = C-R(+e0,7,8,1/(c—1),5)
_ B((r+1)/B,1/(1—a)—(y+1)/B)s”

B B(1/B8,1/(1—a)—1/B) (41)
M((y+ 1)/I3)F(1>(1 —a)—(y+ 1)/ﬁ)sy'

r/pr/(1—o)—1/B)

Using standardization condition M; =1, we obtain the scaling

e r(/B)r(t/(1—a)—1/B)\"?
—
- (F(3/B)F( /(1 a)- /B)) 20 )
The formula (40) states that T = 1—(1-(/ /)5)13 has Beta distribution

with parameters p=1/B,9q=1/(1—a)—1/p.
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The General Model

Replacing Z by original X we obtain general form of the novel
distribution. The final PDF is

[0 B,14,0) = 5 (| — ul /6,00, ). (#3)

Corresponding CDF is
1 sign(x—u)

F(X,O{,B,‘LL,O'):§+fH(|X—‘LL|/G,O£,B). (44)
The central absolute moment of X of the order y> 0 is
E|X —u|"= Myo?. (45)

The model parameters a, 3, 1t,0 can be estimated using:
@ maximum likelihood method, which is valid when the density
f(x,a,B,u,0) is smooth function,
o x° method, which suppose the existence of F(x, a, 8, u, o),
@ moment method, which suppose the existence of moments up
to order 7.
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The General Model

Under the general supposition of non-degeneracy i.e. 6 >0 we can
perform:

@ maximum likelihood method only for B > 1,0 > 1—f3,

o 2 method only for a >1—,8 >0,

e moment method only for « >1—8/(y+1),B,y>0.
The novel distribution:

@ is generalized normal distribution for o¢ =1,

@ has finite support for o« > 1, > 0,

@ has heavy tails for « € (1—,1), > 0.

All evaluations of f, F, and the moments are numerically unstable
for 0 < |a —1|< € =0.02. In this case we apply linear interpolation
instead of direct evaluation for @ € (1—¢€,1) or for o € (1,1+¢€),
respectively.
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The role of parameter & in the new distribution
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The role of parameter B in the new distribution
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The role of parametera a and 8 on its moments
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Data and Descriptive statistics

We select five different types of financial assets to perform our
analysis. They are American stock price index S&P 500, gold price,
stock price of three companies: Apple Inc., Boeing, and McDonald,
exchange rate EUR/USD, and Bitcoin price in USD. All series are
daily close of a period of five years from 22nd of March 2017 to 4th
of February of 2022.

Characteristic  SP500 Gold Apple EURUSD BTCUSD BOEING McDONALD
Mean 5.016e-4  3.224e-4  1.256e-3 -1.747e-05 1.552e-3  2.50e-4 3.63e-4
Median 8.982e-4  5.28le-4 1.140e-3  2.302e-05 1.294e-3  9.48e-4 4.916e-4
1st quartile -3.355e-3  -3.798e-3 -7.534e-3  -2.500e-3 -0.0147 -0.0112 -0.0052
3rd quartile 6.106e-3  4.820e-3  0.0113 2.562e-3 0.0188 0.0115 0.0069
Maximum 0.0897 0.0578 0.1131 0.0160 0.1718 0.2161 0.1666
Minimum -0.1277 -0.0511 -0.1377 -0.0281 -0.4647  -0.2404 -0.1729
St. deviation  0.0125 9.143e-3  0.0195 4.140e-3 0.0392 0.0291 0.0150
Skewness -1.0573 -0.1113  -0.30156  -0.28698 -1.2577  -0.7489 -0.2904
Kurtosis 22.69 9.1335 9.339 5.6112 20.565 18.325 34.671
Num of obs 1259 1259 1259 1259 1259 1259 1259
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Estimation of parameters of the new distribution

Parameters of the new distribution are estimated jointly using
maximum likelihood estimation method (MLE). The MLE
procedure is performed as follows:

n
é:—argminZInf(X;;G):—argminInL(e)a (46)
6cO =1 6O

where © is the set of all admissible parameters and f(X;;0) is the
density function of the corresponding distribution. The sign "-" is
added so that the minimalization procedure can be applied. The
MLE estimator has the following property

ﬁ(é - 9true) ~ N(Oaj_l)a

where . = —F [ /} is the so called Fisher information matrix.
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Estimation Results

Table 1: The log-likelihood values of all distributions

Distribution SP500 Gold Apple  EURUSD BTCUSD BA MCD
t 4056.10 4265.40 3302.40 5157.10  2467.70 2964.0 3818.4
GED 4051.60 425520 329530 5147.30 2481.60 2951.3 3780.9
NIG 4059.60 4258.50 3303.30 5065.10 2476.10 2965.4 3808.6
ALPHA STABLE 4049.40 4257.70 329450 5151.30  2452.10 2957.2 3817.1
OUR NEW 4061.70 4265.70 3303.60 5157.10 2482.70 2966.0 3819.7
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Estimation results

Table 2: The estimated values of parameters of new distribution for seven
assets

Parameter SP500 Gold Apple EURUSD BTCUSD BA MCD

o 0.7080 0.6084 0.6821 0.7740 0.9198 0.6112  0.2545
asymp. S.E.  0.0717 0.0168 0.729  0.0.0519 0.0634 0.0488 0.0790
B 1.2708 1.7642 1.6210 1.9692 0.9786 15169 2.4953
asymp. S.E.  0.1134 0.0595 0.1310 0.1194 0.1203 0.0964 0.1886
o 0.0127  0.0095 0.0198 0.0041 0.0386 0.0309 0.0180
asymp. S.E.  6.91e-4 3.98e-4 9.94e-4  1.09e-4 0.0015 0.0021 0.0034
u 0.0010 0.0005 0.0014  2.39e-6 0.0013 0.0009 0.0006

asymp. S.E.  1.68e-4 1.80e-4 3.93e-4  9.65e-5 1.20e-5 8.97e-4 0.0054
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Density comparison la

Figure 2: The density of returns of stock price index SP500
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Density comparison 1b

Figure 3: The density of returns of stock price index SP500
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Density comparison 2a

Figure 4: The density of returns of gold price
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Density comparison 2b

Figure 5: The density of returns of gold price
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Density comparison 3a

Figure 6: The density of returns of stock price of Apple Inc.
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Density comparison 3b

Figure 7: The density of returns of stock price of Apple Inc.
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Density comparison 4a

Figure 8: The density of returns of EURUSD exchange rate
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Density comparison 4b

Figure 9: The density of returns of EURUSD exchange rate
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Density comparison ba

Figure 10: The density of returns of Bitcoin
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Density comparison 5b

Figure 11: The density of returns of Bitcoin
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Conclusion

@ We derive a new distribution using Renyi entropy maximization
principle with moments constraints

@ In fact, it is a family of distributions depending on the values
of their shape parameters

@ We apply the newly obtainded distribution to model the
distribution of five different types of financial instruments

o WE estimate parameters of this distribution, compare its
goodness of fit with the one of existing heavy tail distribution
alternatives

@ The results show that it is dominant alternative to the existing
variants of heavy tail distributions
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Thank you for your attention!
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