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A B S T R A C T

We propose a novel distribution derived from the generalized gamma distribution by sym-
metrization and regularization around the mean. Besides location and scale parameters, the
distribution has three shape parameters with many sub-models as special cases. Its parameters
can be estimated by non-linear regression with parameter significance verification and sub-
model testing. The applicability of this family of novel distributions is verified on returns of
three cryptocurrencies and its suitability is tested by 𝜒2 goodness of fit testing. The obtained
results show that this novel distribution and its sub-models can be viable candidates for
modeling the returns of cryptocurrencies.

. Introduction

Cryptocurrencies have become an unignorable phenomenon as they are a subject of enormous investment interest with immense
arket capitalization, see Akyildirim et al. (2021). Their trading has also been accompanied by excessive fluctuations whose cause
as documented and explained in Bouri et al. (2019), Long et al. (2020) and Vidal-Tomás et al. (2019) and a great amount of

esearch has been devoted to their price dynamics and their impact on financial management, see Akhtaruzzaman et al. (2020),
ensoy (2019), Aslan and Sensoy (2020) and Corbet et al. (2019). Like with returns of all financial assets, a proper model of their
eturns is of great importance for financial engineering, see Silahli et al. (2019). So far, standard heavy-tail distributions (like the
eneralized normal distribution in Nadarajah, 2005, the generalized t-distribution family in Theodossiou (1998), the generalized
yperbolic distribution family in Prause (1999) and others, for example in Nolan (1997) and Kukal and Tran (2019)) are unable
o accomplish this task and the demand for a proper distribution able to capture this property is very high. With the excessive
olatility, the heavy tail property of cryptocurrencies’ returns appears to be much more severe than the one of traditional assets.
owever, there has not been a great deal of attempts to deal with this problem in the literature. We have noticed the use of
aplace distribution, extreme value distribution, generalized error distribution in Osterrieder and Lorenz (2017) and Szczygielski
t al. (2020) or a mixture of Laplace distributions in Punzo and Bagnato (2021). Drozdz et al. (2018) have documented several
on-random patterns of returns of Bitcoin. However, in these studies there is a lack of proper testing whether data actually comes
rom these distributions.
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To fill the gap in the literature, the objective of this paper is to propose a distribution able to model heavy tail returns of
ryptocurrencies. We derive it from the generalized gamma distribution (GGD) first proposed by Stacy (1962). Unfortunately, the
GD is defined only for real positive values, which makes it inapplicable for modeling assets’ returns. The novelty of our work is the

ntroduction of modifications that make it usable for this purpose. The first modification is the symmetrization of GGD resulting in a
istribution for the whole real domain. The second modification is to smooth it in area around its peak. It is done by regularization,
.i., replacing a part of the original curve by a polynomial smoothing the symmetrized PDF while preserving its other properties.

We use this distribution to model logarithmic returns of three most often encountered cryptocurrencies: Bitcoin, Ethereum, and
ipple. First, with their publicly available data, the parameters of this distribution and its important special cases are estimated by
more effective non-linear regression estimation technique. Then the validity of special cases is tested by using likelihood ratio test

nd Schwartz information criterion. Finally, the suitability of our novel distribution for modeling returns of three cryptocurrencies
s tested using 𝜒 squared goodness of fit test. We also compare the applicability of out novel distribution with those often used
ecently as Laplace distribution, generalized extreme value distribution (GEV) and generalized error distribution (GED). The results
f our research show that our model and some of its limiting cases are stronger and more viable candidates for modeling returns
f cryptocurrencies.

. A general approach to distribution of logarithmic returns

The logarithmic return of a given currency pair is defined as random variable 𝑋 = log(𝑅𝑡∕𝑅𝑡−1) where 𝑅𝑡, 𝑅𝑡−1 > 0 are the
exchange rates at time 𝑡 and 𝑡 − 1, respectively. We impose these requirements on a distribution of returns:

• its expected value 𝜇 = E𝑋 exists,
• is must be symmetric around 𝜇,
• its moments E(𝑋 − 𝜇)𝑘 of any order 𝑘 ∈ N exist,
• its must be smooth for all its parameters,
• it should be able to capture the heavy tail property.

Let g(𝑦, 𝜇, 𝜎, 𝐪) be a probability density function (PDF) of a non-negative random variable 𝑌 . For a convex open set  and
𝜇 ∈ R, 𝜎 > 0,𝐪 ∈  as the mean, the scaling values, and a vector of shape parameters 𝐪, the PDF of 𝑋 can be expressed for
𝑥 ∈ R as

f (𝑥;𝐪, 𝜇, 𝜎) =
g
(

|𝑥−𝜇|
𝜎 ,𝐪

)

2𝜎
. (1)

The corresponding cumulative distribution function (CDF) of 𝑋 is

F(𝑥;𝐪, 𝜇, 𝜎) =
1 + sign(𝑥 − 𝜇) ⋅ G

(

|𝑥−𝜇|
𝜎 ,𝐪

)

2
, (2)

where G(𝑦,𝐪) is the CDF of 𝑌 .
The required properties of f (𝑥,𝐪, 𝜇, 𝜎) imply the necessary conditions for g(𝑦,𝐪) for 𝑦 > 0,𝐪 ∈ (𝐷):

• E𝑌 𝑘 = ∫ ∞
0 𝑦𝑘g(𝑦,𝐪)d𝑦 < +∞ of any order 𝑘 ∈ N exist,

• g(𝑦,𝐪) is smooth with respect to 𝑦,𝐪,
• lim𝑦→0+ g(𝑦,𝐪) < +∞ exists,
• lim𝑦→0+

𝜕g(𝑦,𝐪)
𝜕𝑦 = 0,

• 𝐪 is able to model the heavy tail property.

ur novel distribution of 𝑋 is derived from GGD for 𝑌 which satisfies several conditions described above. A more detailed
haracterization of GGD distribution is given in Appendix A.

. A regularized distribution of logarithmic returns

To achieve our goal, we split domain 𝑌 into two intervals [0, 𝑠] and [𝑠,∞), where 𝑠 > 0 is the regularization parameter and
< 3 + 𝑏𝑠𝑏. The density of the novel distribution is proportional to the density of the original GGD defined in (A.1) for 𝑦 ∈ [𝑠,∞).
owever, for 𝑦 ∈ [0, 𝑠] we replace the original density by a parabola 𝑃 + 𝑄𝑦2, where 𝑃 ,𝑄 are parameters such that the new PDF
t point 𝑠 is smooth. The replacement is positive only when 𝑎 < 3 + 𝑏𝑠𝑏. The novel distribution has a vector of shape parameters
= (𝑎, 𝑏, 𝑠) and it satisfies all our requirements and its PDF is

g(𝑦, 𝑎, 𝑏, 𝑠) =
{

(𝑃 +𝑄𝑦2)∕𝑅 for 0 ≤ 𝑦 ≤ 𝑠,
𝑦𝑎−1 exp(−𝑦𝑏)∕𝑅 for 𝑦 > 𝑠,

(3)

here
𝑃 = (3 − 𝑎 + 𝑏𝑠𝑏)𝑠𝑎−1 exp(−𝑠𝑏)∕2,
𝑄 = (𝑎 − 1 − 𝑏𝑠𝑏)𝑠𝑎−3 exp(−𝑠𝑏)∕2,

3 𝑏
(4)
2

𝑅 = 𝑃𝑠 +𝑄𝑠 ∕3 + 𝛤 (𝑎∕𝑏, 𝑠 )∕𝑏,
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Table 1
The family of TRGG distribution and its sub-models.
Model Distribution Fixed values

TRGG Two-sided Regularized Generalized Gamma
TGG Two-sided Generalized Gamma 𝑠 → 0+
TRD Two-sided Regularized Degraded 𝑏 = 2
RGN Regularized Generalized Normal 𝑎 = 1
TRG Two-sided Regularized Gamma 𝑏 = 1
TRW Two-sided Regularized Weibull 𝑎 = 𝑏

Fig. 1. The regularized PDF and unregularized PDF of a standard TRGG distribution.

where 𝑅 is the normalization constant. The CDF is

G(𝑦, 𝑎, 𝑏, 𝑠) =
{

(𝑃𝑦 +𝑄𝑦3∕3)∕𝑅 for 0 ≤ 𝑦 ≤ 𝑠,
1 − 𝛤 (𝑎∕𝑏, 𝑦𝑏)∕(𝑏𝑅) for 𝑦 > 𝑠.

(5)

The moments of random variable 𝑌 are

E𝑌 𝑘 =
𝑃𝑠𝑘+1

(𝑘+1) + 𝑄𝑠𝑘+3

(𝑘+3) + 𝛤 ((𝑎 + 𝑘)∕𝑏, 𝑠𝑏)∕𝑏

𝑃 𝑠 +𝑄𝑠3∕3 + 𝛤 (𝑎∕𝑏, 𝑠𝑏)∕𝑏
< +∞ (6)

for any 𝑘 > 0, heavy tail occurs for 0 < 𝑏 < 1 again, and the mode 𝑌 = 0 not only for 0 < 𝑎 ≤ 1 but also for 𝑎 > 1 ∧ 𝑠 ≥
(

𝑎−1
𝑏

)1∕𝑏
.

Finally, lim𝑦→0+ g(𝑦, 𝑎, 𝑏, 𝑠) = g(0, 𝑎, 𝑏, 𝑠) = 𝑃 ∈ [0,+∞) and lim𝑦→0+
𝜕g(𝑦,𝑎,𝑏,𝑠)

𝜕𝑦 = 0.
This distribution can be called as Regularized Generalized Gamma distribution (RGG). It can be directly used for the construction

of two-sided distribution of random variable 𝑋 by substituting (3) and (5) into (1) and (2), respectively. The PDF and CDF of this
distribution for a standardized random variable 𝑥 = 𝑥−𝜇

𝜎 are

f (𝑥, 𝑎, 𝑏, 𝑠) = 1
2

{

(𝑃 +𝑄|𝑥|2)∕𝑅 for |𝑥| ≤ 𝑠,
|𝑥|𝑎−1 exp(−|𝑥|𝑏)∕𝑅 for |𝑥| > 𝑠

(7)

F(𝑥, 𝑎, 𝑏, 𝑠) = 1
2
+

sign(𝑥)
2

{

(𝑃 |𝑥| +𝑄|𝑥|3∕3)∕𝑅 for |𝑥| ≤ 𝑠,
1 − 𝛤 (𝑎∕𝑏, |𝑥|𝑏)∕(𝑏𝑅) for |𝑥| > 𝑠,

(8)

where 𝜇, 𝜎 are mean and standard deviation of 𝑥, respectively and 𝑃 ,𝑄,𝑅 are defined in (4). This novel distribution is called Two-
sided Regularized Generalized Gamma distribution (TRGG). The first moment and median of TRGG distribution are 𝜇. Other odd
central moments are zero while the absolute moments of TRGG distribution are

E|𝑋 − 𝜇|𝑘 = 𝜎𝑘E𝑌 𝑘 < +∞ (9)

for any 𝑘 > 0 and even. The PDF of TRGG is uni-modal with �̂� = 𝜇 when 0 < 𝑎 ≤ 1 or 𝑎 > 1 ∧ 𝑠 ≥
(

𝑎−1
𝑏

)1∕𝑏
and bi-modal with

̂ = 𝜇 ±
(

𝑎−1
𝑏

)1∕𝑏
. Finally, the PDF is smooth in its parameters. The distinction between a regularized and unregularized version of

his distribution is visualized and displayed in Fig. 1. In the figure, the left panel shows the case of two-sided generalized gamma
istribution (both regularized and unregularized) with 𝑎 < 1, the middle panel displays the case 𝑎 = 1 and the right panel is when
> 1. In all three cases, the black lines represent the result of regularization for different values of 𝑠.

The TRGG distribution like the GGD has many limiting cases when the shape parameters attain certain values. The most important
ases of the TRGG family are summarized in Table 1.
3
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4. Parameter identification and model validation

The TRGG model has five parameters 𝑎, 𝑏, 𝑠, 𝜇, 𝜎. These parameters or parameters of any TRGG sub-model form a vector of
parameters 𝐰 ∈ R𝑑 , where 𝑑 ≤ 5 is the number of free parameters. A sub-model is obtained when some of parameters of the TRGG
model are assigned to a fixed value. The PDF and CDF of TRGG distribution or any sub-model can be formally written as f (𝑥,𝐰) and
F(𝑥,𝐰), respectively. Instead of the common MLE technique, we estimate them from the CDF with non-linear regression technique.
Its advantage is that it does not require the second derivative in the numerical procedure and the derivative of the CDF is the PDF.
The objective function is

𝑆(𝐰) =
𝑛
∑

𝑖=1
𝑟2𝑖 , (10)

where 𝑟𝑖 = 𝑦𝑖−F(𝑥𝑖,𝐰), 𝑛 is the number of observations, 𝑦𝑖 is the empirical CDF of 𝑖 observations. The point estimates can be obtained
numerically with Levenberg–Marquardt algorithm, see Wooldridge (2010) as

𝐰∗ = argmin
𝐰∈𝐖

𝑆(𝐰), (11)

where 𝐖 is the set of all admissible 𝐰. The accuracy of the estimates is derived from the so called Jacobian 𝐉 = 𝜕𝑟
𝜕𝐰 . The estimates

f the covariance matrix is:

�̂� = �̂�2(𝐉′ ∗ 𝐉)−1, (12)

where �̂�2 is the estimated variance of 𝑟. Subsequently, a vector of asymptotic standard deviations, a vector of 𝑧-score and a vector
f p-values can be computed.

A model of size 𝑑 is said to be valid at 𝛼 = 0.05 when the 𝑧-score satisfies condition |𝑧𝑘| ≥ 1.96 for all estimated parameters. To
alidify a restriction of a sub-model of size 𝑑sub, we use the Likelihood Ratio test (LR test), see Rossi (2018). A valid model of size
is said to be stable when

• all its sub-models of size 𝑑 − 1 are significantly worse according to the LR test at level 0.05,
• all models of size 𝑑 + 1 which consists it as sub-model is not significantly better by the LR test at level 0.05.

herefore, the significant difference between the log-likelihoods must be greater than 1.9207 for one parameter restriction.
We also employ the Schwartz Information Criterion (BIC) to verify the justifiability of the addition of extra parameters in the

ase when models are not nested. The value of the criterion is computed as follows

𝐵𝐼𝐶 = 2𝐿𝐿 − 𝑘 log(𝑁), (13)

here 𝐿𝐿 is the log-likelihood, 𝑘 is the number of parameters in the model, and 𝑁 is the number of observations. The addition of
n extra parameter is justifiable if the subsequent increase of 𝐿𝐿 is greater than log(𝑁)∕2.

. The usability of the proposed distribution for cryptocurrencies

The verification of the suitability of TRGG and its special cases for modeling logarithmic returns of cryptocurrencies is performed
ith publicly available data from CoinMarketCap website. Three most liquid cryptocurrencies are chosen for this objective. They
re Bitcoin, Ethereum and Ripple (XRP). Daily price time series for Bitcoin is available from 26th of April 2013 to 29th of April
019, for Ethereum and Ripple they are from 7th of August 2015 to 29th of April 2019 and from August 4th of 2013 to 29th of
pril 2019, respectively. The original price time series are transformed into series of logarithmic returns.

First, all the return series of three cryptocurrencies are used to estimate parameters of the TRGG distribution and its special
ases shown in Table 1. As the scaling parameter 𝜎 and the regularization parameter 𝑠 are required to be positive to secure the
heir non-degeneration, instead of their direct estimation, their corresponding log10 𝜎 and log10 𝑠 are introduced. The advantage
f this approach is that no additional restriction needs to be imposed. The estimation is performed in MATLAB with programs
xclusively written for this purpose. Numerical estimation procedure works reliably and provides highly stable results. According
o our criterion, all models of our consideration are valid as their estimated parameters always are statistically significant. Due to
imited space of this paper, we show the values of loglikelihood function of each sub-model in Table 2 and three control distributions:
aplace, GEV and GED (high values of log-likelihood are in bold). These values are used for testing the validity of sub-models of
RGG by LR test and BIC criterion. The values of BIC criterion are displayed in Table 3.

The values of log-likelihood in Table 2 show that control distributions GEV and Laplace1 attain too low log-likelihoods and they
eem to be unfit for modeling returns of cryptocurrencies and will not be subject of any further comparison. The results of LR test
usable in nested series TRGG, RGN, GED) clearly show that GED is a stable sub-models for Bitcoin. For Ripple, TSGG is best model
y testing TRGG vs. any four-parameter distribution and TRGG vs. GED by LR test. It means that symmetrization and regularization
ring a statistically significant increase in log-likelihood. For Ethereum, TGG is a stable model therefore the symmetrization of GGD
oes help. For all three currencies, TRD and TRG are unstable sub-models of TRGG. The BIC criterion allows to directly compare

1 Laplace distribution is also a special case of the TRGG.
4
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Table 2
The maximum log-likelihood of TRGG family and some alternatives.
Distribution Bitcoin XRP Ethereum

TRGG 4262.38 3221.44 1931.34
TGG 4261.38 3218.59 1930.34
TRD 4245.02 3154.08 1886.02
RGN 4261.75 3219.46 1928.69
TRG 4254.65 3212.22 1924.41
TRW 4260.91 3218.93 1927.48

Laplace 4203.81 3092.53 1904.34
GEV 3826.12 2817.98 1673.72
GED (GN) 4261.71 3207.50 1926.51

Table 3
The values of BIC criterion of TRGG family and some alternatives.
Distribution Bitcoin XRP Ethereum

TRGG 8486.30 6406.81 3824.45
TGG 8491.99 6406.60 3831.82
TRD 8459.28 6277.58 3743.18
RGN 8492.74 6408.34 3828.52
TRG 8478.54 6393.86 3819.96
TRW 8491.05 6407.28 3826.10

Laplace 8392.24 6170.63 3793.39
GEV 7629.17 5614.32 3324.50
GED (GN) 8500.35 6393.36 3830.08

Table 4
Estimated values of parameters of TRGG.
Currency Parameter Value Std. error 𝑧-score

Bitcoin

𝑎 1.2111 0.0211 10.01
𝑏 0.5329 0.0094 −49.50
log10 𝑠 −0.5166 0.0810 –
𝜇 0.0021 3.85*10−6 557.99
log10 𝜎 −2.3588 0.0420 –

XRP

𝑎 2.0341 0.0597 17.33
𝑏 0.3153 0.0086 −79.63
log10 𝑠 1.5805 0.1843 –
𝜇 −0.0022 6.76*10−6 −318.07
log10 𝜎 −4.1491 0.1494 –

Ethereum

𝑎 1.4382 0.1010 4.33
𝑏 0.5204 0.0324 −14.78
log10 𝑠 0.0879 0.0214 –
𝜇 6.63*10−5 1.96*10−5 3.38
log10 𝜎 −2.3018 0.1669 −

all models without being nested condition. As GEV and Laplace distribution are excluded, it will be used to compare GED with
distributions with four parameters. The numbers in Table 3 show that GED model dominates other models for Bitcoin and TGG
for Ethereum (this is in line with the result of LR test for the nested sequence: TRGG, TGG). For Ripple, the best model is RGN
indicating that the regularization helps. The second best sub-model is TRW by BIC criterion.

Next, we display the estimation results in Tables 4–6 only for three models that pass the goodness if fit test best. In the tables, the
alues for 𝑧-score shown in these tables are for the null hypothesis H0: 𝑎 = 1, H0: 𝑏 = 1 and H0: 𝜇 = 0. The estimation results reported
n Tables 4–6 show that the estimated value of parameter 𝑎 always is significantly higher than one indicating the existence of a
i-modal distribution. As the TRGG distribution has three shape parameters, when 𝑎 is fixed to 1, the two remaining parameters can
djust which makes the RGN a good sub-model for Bitcoin. This inference is in line with the results of LR test. However, it does not
old in the case of Ripple and Ethereum, when estimated values of parameter 𝑎 are too far away from 1. It may work in the similar
ashion for 𝑠. Though the regularization we have introduced always increases the values of the log-likelihood function. However, it is
tatistically significant only in the case of XRP when 𝑠 is large. Otherwise, the two shape parameters 𝑎, 𝑏 can help to carry the effect
f regularization. The estimation results are consistent with the fact that GED is a good model for Bitcoin as the estimated value of
for Bitcoin is relatively small and the regularization may not be significant. The estimated values of parameter 𝑏 in all displayed

ases are lower than one. As shown in Appendix B, this means that all series of returns exhibit heavy-tail property.
To investigate the applicability of distributions from TRGG family for modeling returns of cryptocurrencies, we perform the 𝜒

quared goodness of fit test. In this test, the theoretical frequencies are compared to the observed ones (for more details on this test,
5

ee Huber-Carol et al., 2012). We proceed the test as follows. Taking into consideration the available quantity of data, we decide
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Table 5
Estimated values of parameters of TGG.
Currency Parameter Value Std. error 𝑧-score

Bitcoin

𝑎 1.1504 0.0068 22.15
𝑏 0.5628 0.0046 −95.14
𝜇 0.0021 3.75*10−6 572.31
log10 𝜎 −2.2357 0.0162 –

XRP

𝑎 1.5454 0.0129 42.18
𝑏 0.4052 0.0038 −156.91
𝜇 −0.0022 6.55*10−6 −331.07
log10 𝜎 −3.0009 0.0334 –

Ethereum

𝑎 1.2294 0.0158 14.47
𝑏 0.6026 0.0104 −39.28
𝜇 6.47*10−5 1.93*10−5 3.35
log10 𝜎 −1.9560 0.0325 −

Table 6
Estimated values of parameters of RGN.
Currency Parameter Value Std. error 𝑧-score

Bitcoin

𝑏 0.6229 0.0025 −148.58
log10 𝑠 −0.3667 0.0140 –
𝜇 0.0021 3.79*10−6 565.52
log10 𝜎 −2.0111 0.051 –

XRP

𝑏 0.5383 0.0028 −165.00
log10 𝑠 0.1342 0.0136 –
𝜇 −0.0021 7.07*10−6 −303.38
log10 𝜎 −2.0802 0.0089 –

Ethereum

𝑏 0.6994 0.0070 −42.74
log10 𝑠 0.1324 0.0258 –
𝜇 6.60*10−5 1.97*10−5 3.35
log10 𝜎 −1.6615 0.0112 −

Table 7
𝜒2 test results of TRGG family for 𝑁 = 100.
Distribution Bitcoin XRP Ethereum

TRGG Test statistic 103.32 93.26 111.21
𝑝-value 0.2398 0.5020 0.1085

TGG TS 103.32 92.21 111.21
p-v 0.2626 0.5618 0.1223

TRD TS 126.34 160.50 129.48
p-v 0.0174 < 10−16 0.0108

RGN TS 105.15 108.18 108.86
p-v 0.2236 0.1676 0.2053

TRG TS 124.15 98.90 102.08
p-v 0.0240 0.3714 0.2911

TRW TS 120.31 100.91 119.46
p-v 0.0407 0.3196 0.0456

Laplace TS 4.89 ∗ 103 4.53 ∗ 104 8.10 ∗ 103

p-v < 10−16 < 10−16 < 10−16

GEV TS 1.44 ∗ 104 4.39 ∗ 103 2.15 ∗ 104

p-v < 10−16 < 10−16 < 10−16

GED TS 105.12 128.36 122.26
p-v 0.2463 0.0153 0.0365

to divide the whole domain into 100 and 200 equidistant bins for each distribution which secure the same number of theoretical
frequencies computed according to Eq. (8). Also, the two different numbers of bins are chosen to give a sense of generality. The
test is applied to the whole TRGG family as well as on those control distributions and the results containing both test statistics and
the corresponding p-values are presented in Tables 7 and 8.

The results of the testing displayed in these two tables show that Laplace and GEV distributions are not good for modeling
eturns of cryptocurrencies. The result is consistent with their low log-likelihood values. Regarding the remaining models, there
ay exist more distributions which can pass the goodness of fit test for some of three cryptocurrencies. However, there are only

hree distributions that can reliably be used to model returns of all three cryptocurrencies with the two selected numbers of bins.
hey are TRGG, TGG and RGN distributions. This inference is consistent with the computed values of log-likelihood displayed in
able 2. Though GED works well for Bitcoin, it is a special case and it does not do well for the other two cryptocurrencies. Hence,
6
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Table 8
𝜒2 test results of TRGG family for 𝑁 = 200.
Distribution Bitcoin XRP Ethereum

TRGG Test Statistic 218.21 200.43 202.82
𝑝-value 0.1121 0.3605 0.3174

TGG TS 218.21 189.53 202.82
p-v 0.1219 0.5970 0.3355

TRD TS 229.73 251.13 218.43
p-v 0.0448 0.0041 0.1199

RGN TS 186.05 200.82 203.70
p-v 0.6649 0.3724 0.3302

TRG TS 233.93 175.37 201.35
p-v 0.0296 0.8401 0.3625

TRW TS 218.76 170.02 226.68
p-v 0.1168 0.9013 0.0596

Laplace TS 2.31 ∗ 103 1.78 ∗ 103 2.20 ∗ 103

p-v < 10−16 < 10−16 < 10−16

GEV TS 2.15 ∗ 103 5.61 ∗ 103 4.17 ∗ 103

p-v < 10−16 < 10−16 < 10−16

GED TS 185.92 243.83 231.75
p-v 0.6859 0.0114 0.0410

our model and its special cases as such can be a superior alternative to previously known distributions for modeling returns of three
chosen cryptocurrencies. Our distributions exhibit heavy tail nature but have finite variance as shown in Section 4, hence, they can
be a beneficial boost for risk management and other applications in financial engineering.

6. Conclusions

With respect to the current position of cryptocurrencies in the financial market, a proper model for returns of cryptocurrencies
s important. We propose the novel two-sided regularized TRGG and its sub-models as alternatives to solve this problem. The
eneralized gamma distribution has been symmetrized and regularized to obtain a fully differentiable PDF with respect to both
arameters and the independent variable. Then, the basic statistical properties have been explicitly derived from its density. This
ovel model and a family of its sub-models are applied to model returns of three most liquid cryptocurrencies. The parameters of
he full model and sub-models have been estimated from data with an inventive nonlinear least squares technique with consequent
arameter and model significance testing.

Despite the fact that GED can be used to model the returns of bitcoins, our results show that TRGG and its two sub-models
an reliably model returns of three cryptocurrencies. As these sub-models can be as good as their parent, the TRGG model, hence,
hey should be prioritized due to their lower number of free parameters. However, the main contribution of the TRGG model is
ts generalization ability and it can be useful for modeling the returns of other financial assets as well as for applications in other
ields. We believe that our work will help to improve the results in the works like in Silahli et al. (2019).
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ppendix A. A summary of standardized GG distribution

Let 𝑌 be a positive random variable and 𝑎, 𝑏 > 0 be parameters of the GGD also known as Amoroso (1925) distribution with
𝑎 = 𝛼𝛽, 𝑏 = 𝛽. The Amoroso distribution was originally developed for survival analysis and later it was used in many social and
technical applications as shown in Kleiber and Kotz (2003) and Pham and Almhana (1995). Its standardized PDF is

g(𝑦, 𝑎, 𝑏) =
𝑏𝑦𝑎−1 exp(−𝑦𝑏)

𝛤 (𝑎∕𝑏)
(A.1)

for 𝑦 > 0. The corresponding CDF is

G(𝑦, 𝑎, 𝑏) = 1 −
𝛤 (𝑎∕𝑏, 𝑦𝑏)
𝛤 (𝑎∕𝑏)

, (A.2)

where

𝛤 (𝑝, 𝜉) =
∞
𝑡𝑝−1 exp(−𝑡)d𝑡, 𝛤 (𝑝) = 𝛤 (𝑝, 0). (A.3)
7
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A GGD has many limiting cases, but it also is a special case of other distributions, see Crooks (2010). The moments of the GGD are
finite

E𝑌 𝑘 =
𝛤 ((𝑎 + 𝑘)∕𝑏)

𝛤 (𝑎∕𝑏)
< +∞ (A.4)

for any 𝑘 > 0. The second useful feature of this distribution is its heavy tail property for 0 < 𝑏 < 1 (see the Appendix) which means
for 𝜆 > 0

lim
𝑦→+∞

exp(𝜆𝑦)(1 − G(𝑦, 𝑎, 𝑏)) = +∞. (A.5)

The mode 𝑌 = 0 only for 0 < 𝑎 ≤ 1, but otherwise 𝑌 =
(

𝑎−1
𝑏

)1∕𝑏
> 0. But the GGD also has undesirable properties:

• lim𝑦→0+ g(𝑦, 𝑎, 𝑏) < +∞ only for 𝑎 ≥ 1,
• lim𝑦→0+

𝜕g(𝑦,𝑎,𝑏)
𝜕𝑦 = 0 only for either 𝑎 > 2 or 𝑎 = 1 ∧ 𝑏 > 1.

he novel distribution of 𝑌 will be designed as a locally modified GGD which eliminates the above mentioned deficiencies.

ppendix B. Heavy-tail property of TRGG

We will show the heavy tail property of RGG and TRGG automatically retains this property from RGG. According to Bryson
1974) we have to prove

𝛹 = exp(𝜆𝑥)(1 − G(𝑥, 𝑎, 𝑏, 𝑠)) → +∞ (B.1)

for 𝜆 > 0 and where G(𝑥, 𝑎, 𝑏, 𝑠) is the CDF of the RGG distribution. In order to do so, we use the asymptotic formula for Gamma
unction for 0 < 𝑏 < 1 as

𝛤 (𝑝, 𝜉) = 𝜉𝑝−1 exp(−𝜉) ⋅ (1 + O(𝜉−1)) (B.2)

for 𝜉 → +∞. When 𝑥 → +∞, then 𝑥 > 𝑠, inserting (5) into (B.1), we get

𝛹 = exp(𝜆𝑥)𝛤 (𝑎∕𝑏, 𝑥𝑏)∕𝑏𝑅. (B.3)

Substituting (B.2) into (B.3) and taking logarithm of it, we obtain

ln𝛹 = 𝜆𝑥 − 𝑥𝑏 + (𝑎 − 𝑏) ln 𝑥 + ln(1 + O(𝑥−𝑏)) − ln(𝑏𝑅). (B.4)

Term 𝜆𝑥 is dominant for large 𝑥 as 0 < 𝑏 < 1 which implies

lim
𝑥→+∞

ln𝛹 = +∞ (B.5)

for all 𝜆 > 0. Q.E.D.
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