

Multiscale Statistical Identification of Skin Nonlinear Characteristics in the Time Domain

Parnian Hemmati, Serge Dos Santos, Jean-Christophe Pittet

Presenter Parnian Hemmati INSA Centre Val de Loire, Blois, France Sharif University of Technology, Tehran, Iran

The study of skin

- Skin: anisotropic, nonlinear and viscoelastic [1]
- Memory effects and aging process^[2]
- Not many in vivo studies, porcine skin as a model for human skin^[3]

Previous Studies

	Authors	Year	Purpose	Outcome
1	Shull et al. [4]	2010	Nonlinearities of skin and its influence on user perception of rotational skin stretch	Human skin characteristics in case of rotational force and how the movements are distinguishable by the subject
2	Remache et al. [5]	2018	Defining mechanical properties of porcine skin	The hysteresis loop and the characteristics of the skin under cyclic stretching and stress loading
3	Bose et al.[6]	2022	Mechanics of collagen at different scales as one of the main components of skin	The mechanical properties of collagenous tissues and its variation range

Purposes

Study and extract the mechanical properties of skin

Validate the results using Finite Element Method and simulation software

Study the skin properties variation on a group of subjects after performing physical activities

Test Setup and Subject

- Compressor, air blower, camera, laser for tracking the skin surface
- 23 year old, Female, Caucasian, left forearm
- Five different pressure groups, each three times

Processing the device output

Frame extraction from video

Rgb2gray grayscale Imbinarize Binary Image

Processing the device output

> Two dimensional, compressive and tangential force

Viscoelastic Signature

Relaxation Rate

$$y = ae^{\frac{-(t-t_0)}{\tau}}$$

	1	2
а	15.56×10^{-4}	3.53×10^{-4}
t ₀	2.04	4.04
τ	0.014 ± 0.002	0.006 ± 0.002

> Hysteresis

PM Space [8] Hysteron as elastic particle

$$k = \begin{cases} 1, & \text{if } \exists t^* : u(t^*) > P_c \\ & \text{and } \forall \tau \in (t^*, t), u(\tau) \in (P_o, P_c), \\ -1, & \text{if } \exists t^* : u(t^*) < P_o \\ & \text{and } \forall \tau \in (t^*, t), u(\tau) \in (P_o, P_c). \end{cases} \qquad \hat{\gamma}_{P_c, P_o}(u(t)) = \begin{cases} -1, & u(t) \le P_o, \\ 1, & u(t) \ge P_c, \\ k, & u(t) \in (P_o, P_c), \end{cases}$$

$$y(t) = \int \int_{P_o \leq P_c} \mu(P_c, P_o) \,\hat{\gamma}_{P_c, P_o}(u(t)) \,\mathrm{d}P_c \,\mathrm{d}P_o,$$

23-27 June 2022, Rumburk, Czech Republic Parnian Hemmati

A Case Study

- 10 subjects before and after physical activity
- Change in the humidity percentage while an enhancement in blood circulation
- An Overall increase
 trend, the exceptional
 subjects did more sports
 and hence more adapted

Conclusion and Future Perspective

- The extraction of skin's mechanical properties including nonlinearity and relaxing time
- An *in vivo* case study showing the physical activity causes an overall increasing trend for deflection
- Validate the model using FEM simulation software
- Experimental studies on a more expanded sample of subjects concerning the hysteresis behavior and developing the final statistical model

Future Perspective

Aging, memory, nonlinearity and hysteresis networks

Plasticity and memory properties

Memristor networks : T. Chang, Y. Yang, W. Lu, IEEE Circuits and Systems Magazine 13, 56 (2013)

References

[1] H. Wei et al., "Visual indentation apparatus and finite element modelling as a method to characterize 3D mechanical properties of facial skin in vivo," *Mech. Mater.*, vol. 157, 2021, doi: 10.1016/j.mechmat.2021.103852. [2] O. Pabst et al., "Storing information electrically in human skin," J. Electr. *Bioimpedance*, vol. 12, no. 1, 2021, doi: 10.2478/joeb-2021-0010. [3] S. Schick, M. Leiderer, F. Lanzl, M. Graw, and S. Peldschus, "Maximum" tensile stress and strain of skin of the domestic pig—differences concerning pigs from organic and non-organic farming," Int. J. Legal Med., vol. 134, no. 4, 2020, doi: 10.1007/s00414-019-02207-w. [4] P. Shull, K. Bark, and M. Cutkosky, "Skin nonlinearities and their effect on user perception for rotational skin stretch," 2010 [5] D. Remache, M. Caliez, M. Gratton, and S. Dos Santos, "The effects of cyclic tensile and stress-relaxation tests on porcine skin," J. Mech. Behav. *Biomed. Mater.*, vol. 77, 2018, doi: 10.1016/j.jmbbm.2017.09.009. [6] Bose, Shirsha, Simin Li, Elisa Mele, and Vadim V. Silberschmidt. 2022. "Exploring the Mechanical Properties and Performance of Type-I Collagen at Various Length Scales: A Progress Report" Materials 15, no. 8: 2753.

References

 [7] S. Dos Santos et al, Viscoelastic and hysteretic properties of the skin : Acousto-mechanical evaluation using nonlinear time reversal imaging,
 IFSCC, Oct. 2014, Paris
 [8] S. Dos Santos et al. "Acousto-Mechanical Instrumentation of Multiscal

[8] S. Dos Santos et al., "Acousto-Mechanical Instrumentation of Multiscale Hysteretic Memristive Properties of the Skin with Nonlinear Time Reversal Imaging," 2017 Cosmetic Measurements And Testing (COSMETIC), 2017, pp. 1-4 (2017)