

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES **CENTRE VAL DE LOIRE**

Novel design of a device for measurement of human skin viscoelastic properties

Perrine BEGON & Flavie DELOUYE

INSA Centre Val de Loire, Blois, France – Institute of Thermomechanics, Prague, Czech Republic

OUTLINE

Introduction

Design specifications

- Previous design
- Novel design

Mechanical design

- Motor piece
- Movement transmission piece
- Strain gauges piece
- Ultrasonic transducer pieces

Future steps

- Electrical part
- Novel device assembly and verifications

INTRODUCTION

THE LAYERS OF HUMAN SKIN

- Anisotropic and non-linearly viscoelastic properties
- Cosmetic industry and aesthetic medicine

PREVIOUS DESIGN

Mechanical loading and ultrasonic testing device in 2013

PRUSA I3 MK3, 3D printer

NOVEL DESIGN

- 3D-printing
- Modelisation with Fusion software
- Dimensions not lower than 1 mm

Novel device in June 2022

NOVEL DESIGN

6

MOTOR PIECE

Printed piece

Assembly with the stepmotor and the rails Rails

Step-motor

Printed piece with cork and silicon layers

MOTOR PIECE

Back view of the motor piece

5-7 cm between the center of the two ultrasonic transducers

Back view

Elastic strip hook

Coaxial cable hook

MOTOR PIECE

Printed piece

Interface module for position measurement

MOVEMENT TRANSMISSION PART

General view

Step-motor

MOVEMENT TRANSMISSION PART

Movement transmission part assembly with the motor

White plastic nut Motor screw

Step motor

Assembly of the new device

MOVEMENT TRANSMISSION PART

Printed part with 3 equidistant holes

Bottom views

STRAIN GAUGES PIECE

General view

STRAIN GAUGES PIECE

Strain gauges piece

I mm thickness
rectangle to put the strain gauges on

Printed strain gauges piece

STRAIN GAUGES PIECE

Strain gauges piece

Hole connecting the sensors

Printed strain gauges piece SPMS conference, Rumburk, Czech Republic, 23 - 27 June 2022

TRANSDUCER MOUNTING PIECE

Hollow cylinder

Empty part for the motor part or the strain gauges part

> Hole for negative pressure

Bottom view

Loading part

ULTRASONIC TRANSDUCER CUP

Ultrasonic transducer cup

Hole for the coaxial cable

Ultrasonic transducer in the cup

ULTRASONIC TRANSDUCER CUP

Printed ultrasonic transducer cup with the spring

Printed loading part

Transducer mounting piece and its cap

Ultrasonic transducer cup and its cap

NOVEL DESIGN BLOCK DIAGRAMM

DESIGN OF 2 PRINTED CIRCUIT BOARDS WITH EAGLE SOFTWARE

Schematic of the internal PCB

DESIGN OF 2 PRINTED CIRCUIT BOARDS WITH EAGLE SOFTWARE

Schematic of the external PCB

External PCB

NOVEL DESIGN ASSEMBLY AND VERIFICATIONS

Assembly of the new device

CONCLUSION

Interest in scientific area

■ 3D-printing → many advantages

SUPERVISORS

- Ing. Daniel Tokar, prototype design concept lead and internship project supervisor
- Dr. Zdeněk Převorovský, internship project supervisor

ACKNOWLEDGEMENT

- Dr. Josef Krofta, technical support
- Dr. Milan Chlada, technical support

THANK YOU FOR YOUR ATTENTION!