

Application of Neural Networks for Acoustic Emission Method

Milan CHLADA, Martin Kovanda, Zdeněk Převorovský

Laboratory of Non-Destructive Testing Institute of Thermomechanics of the CAS, v. v. i. tel.: +420 266 053 144, e-mail: chlada@it.cas.cz

AI for AE

- Acoustic emission (AE)
- BP (feed-forward) networks for location of AE sources
- Identification of helicopter gear box modes
- Detection of plastic deformation in materials
- Detection of AE bursts (material cracking) in noisy continuous signals
- Challenges for the future

ACOUSTIC EMISSION (AE) METHOD

Passive monitoring of ultrasonic elastic waves initiated by various processes in materials.

- Burst AE: plastic deformation of metals, crack growth, friction, material failure...
- **Continuous AE:** leakage of liquids under pressure, machining, welding, monitoring of technological processes and devices...

MACHINE LEARNING APPLICATIONS

Multilayer Back-propagation networks

Localization of material defects (especially for cases of complex structures)

Convolutional neural networks (CNN)

Condition monitoring of rotating mechanisms *(bearings, gearboxes, etc.)*

Backpropagation (feed-forward) networks

C2

unexpected fatal crack

Long-term fatigue tests of riveted aircraft wing flange

REMOTE AE MONITORING

Demonstration scheme of AE signal measurement (2D model)

- configuration of AE sensors S₁-S₄ placed on planar body

tested area

Definition of arrival time profile (ATP)

- signal arrival time treatment is inspired by the analysis of signal detection chronology

Independence of ATP on wave velocity and scale changes

Only the AE signal arrival times t_i are available. Assuming t_s as the time of AE source initiation, it is easy to revise the original formula, while $T_i = t_i - t_s$

Training of neural network

- network architecture (approximate numbers of neurons in each layer): **N-35-25-2**
- initial weights were adjusted by *statistical optimization* of starting neuron potentials
- weights and biases were adjusted by fast *resilient back-propagation* algorithm with *momentum* and *regularization* (training data set of virtual AE sources)

APPROXIMATION FEATURES OF ANN

Spreading of virtual training sources and their projection by learned neural network

used sensors: 1 3 6 7 9

LOCATION OF REAL AE SOURCES

Results for two different configuration of sensors

Convolutional networks

Renewed helicopter gear box running-up

High-frequency-density spectrogram

Signals from emission channels - "idling" mode

Signals from emission channels - "engine starting" mode

Signals from emission channels - "L nominal, R 80%" mode

Tensile tests

Training and validation data selection for Exp. A and B

Experimental setup

23.6. - 27.6.2022

G

-G

®

Application of *Inception Time* architecture

AUDIO demo of AE signal

AUDIO demo of AE signal

Initiation of Crack - an overview (source: ScienceDirect)

100 µm

-Surface

(b)

AE SIGNAL DEMO BLOCK

DEMONSTRATION OF TYPICAL AE EVENT LIST ESTIMATION BY ANN

Estimation of **drill bit sharpness**

Experimental setup

Specimen and AE sensors

Drill bit dulling

(audio demos...)

NEW drill bit "sound"

NEW drill bit "sound"

Drill bit "sound" after 5th dulling

AI model?

Thank you for your attention...