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Motivation Pruning

Motivation

Figure 1: Example of pruning. Taken from: https://blog.tensorflow.org/2019/05/
tf-model-optimization-toolkit-pruning-API.html.
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Problem Formulation

Problem Formulation

Sparse parameterization increases interpretability and reduces model
complexity while preserving overall information (pruning).
Probabilistic approach.
A new approach to optimization using natural parameter distributions
- a follow-up to Mohammad Khan’s paper Fast and Scalable Bayesian
Deep Learning by Weight-Perturbation in Adam.
The goal: build methods that learn an arbitrarily complex model and
find a sparse parameterization.
Julia 1.6.xx, Flux.jl ML library.
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Methods and Tools to Solve the Problem Bayesian Approach

Why is it Good to be Bayesian?

Bayes’ theorem

p(θ|D) = p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫
p(D,θ)dθ

(1)

p(D|θ) - likelihood
p(θ|D) - posterior
p(θ) - prior
p(D) - evidence
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Methods and Tools to Solve the Problem Neural Networks

Artificial NN vs. Bayesian NN

h(0) = X, h(l) = a
(

W(l)h(l−1) + b(l)
)
, l = 1, . . . , L

y = a(out)
(

W(L+1)h(L)
) (2)

ANN
D = (y,X), θ = {W(l),b(l)}L+1

l=1

Likelihood, (L1 regularization)
Goal: y = f(X,θ)︸ ︷︷ ︸

deterministic function

BNN
D = (y,X), θ = {W(l),b(l)}L+1

l=1

Likelihood & prior
Goal: y = f(X,θ)︸ ︷︷ ︸

random function

, p(θ|D)
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Methods and Tools to Solve the Problem Shrinkage Priors

Shrinkage Priors

Model parameters (weights, biases) (mostly) in combination with
model hyper-parameters α → hierarchical parameterization.
Gaussian Scale Mixtures as marginal model parameters prior:

p(θ) =

∫
N
(
0,α2σ2

)
p(α)dα (3)

Variance prior p
(
α2
j

)
Marginal prior p(θj)

Exponential Laplace
Inverse-Gamma Student-t

Bernoulli Spike and Slab
Table 1: Variance priors and their corresponding marginal priors.
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Methods and Tools to Solve the Problem Shrinkage Priors

Figure 2: Gaussian likelihood with no prior vs. with Laplace (L1),
Student-t (ARD) and Spike and Slab prior. Taken from: [1].
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Methods and Tools to Solve the Problem Variational Inference

Variational Inference

Problem: (mostly) intractable integrals
∫
p(D, z)dz in Bayes’ rule.

Solution: find surrogate distribution q(z) ≈ p(z|D).

Evidence Lower Bound (ELBO) & KL Divergence

log p(D) = L
(
q(z)

)
+ KL

(
q(z)||p(z|D)

)
(4)

Maximizing the ELBO

qopt(z) = argmax
q(z)∈Q

L
(
q(z)

)
(5)
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Methods and Tools to Solve the Problem Optimization

Standard vs. Variational Optimization

Standard way
Laplace prior as the L1 regularization:

argmaxθ log p(D|θ) + λ
J∑

j=1

|θj | (6)

Variational way
Factorize the posterior q(z) ≈ q(θ)q(ψ).
Analytical solution of the ELBO for the factor q(ψ|γ, δ).
Factor q(θ) meets the VADAM conditions.
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Methods and Tools to Solve the Problem VADAM with the ARD Prior

Variational ADAM with the ARD Prior

We propose

fobj = −
1

N

N∑
n=1

log p(Dn|θ)−
J∑

j=1

1

2
θ2jψj (7)

1. Initialize prior parameters, learning rates in ADAM.
2. Calculate posterior parameters of Gamma factor γj,(t), δj,(t).
3. ψj,(t) ←

γj,(t)
δj,(t)

.
4. Update fobj with VADAM.
5. Update γj,(t), δj,(t)
6. (t+ 1)← (t).
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Practical Application Sparse Logistic Regression

Sparse Logistic Regression

Dataset: IRIS1, D = (y,X), where
y ∈ {setosa, versicolor, virginica}150, X ∈ R150×4.
Model architecture: input layer of dimension 4, one hidden layer
containing 8 neurons and ReLU activation, output layer of dimension
3 with softmax output activation → 67 trainable parameters.
Goal: prune the network and obtain a sparse parameterization with
minimal error increase on test data.
Methods: L1 regularization & Variational ADAM with the ARD prior.

1https://archive.ics.uci.edu/ml/datasets/iris
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Practical Application Sparse Logistic Regression
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Figure 3: The evaluation of the methods used on the logistic regression problem.
Taken from: [2].
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Practical Application Sparse Multi-Instance Learning

Sparse Multi-Instance Learning

Dataset: Musk2 with 92 bags containing 476 instances each of
dimension 166 and y ∈ {0, 1}92.
Model architecture: input layer of dimension 166, first hidden layer
containing 10 neurons and tanh activation, pooling layer with
MeanMax aggregation, second hidden layer containing 10 neurons
and tanh activation, output layer of dimension 2 with sigmoid output
activation → 1922 trainable parameters.
Goal: prune the network and obtain a sparse parameterization with
minimal error increase on test data.
Methods: L1 regularization & Variational ADAM with the ARD prior.

2https://archive.ics.uci.edu/ml/datasets/Musk+(Version+2)
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Practical Application Sparse Multi-Instance Learning
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Figure 4: The evaluation of the methods used on the MIL problem.
Taken from: [2].
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Conclusion

A new method was proposed to find a sparse parameterization of
neural networks.
Method was applied to a logistic regression model and a
multi-instance learning model.
Subsequently, it was tested and compared with the classical method
of regularization in neural networks.
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Thank you for your attention.
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