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Introduction

U finite population of size N.

The population is partitioned into D subsets U1, . . . ,UD of
sizes N1, . . . ,ND , called domains or areas.

Variable of interest Y .

Target: to estimate the means of Y in the D domains/areas.

Ydj value of Y in unit j from domain d .

Ȳd =
1

Nd

Nd∑
j=1

Ydj , d = 1, . . . ,D.

We want to use data from a sample S ⊂ U of size n drawn
from the whole population.

Sd = S ∩ Ud sub-sample from domain d of size nd .
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Introduction

Direct estimator: Estimator that uses only the sample data
from the corresponding domain (usually design-based),

ˆ̄Y DIR
d =

∑
j∈Sd

wdjYdj/
∑
j∈Sd

wdj , d = 1, . . . ,D.

wdj sampling weight of unit j within domain/area d .
Under SRS without replacement within each area,

wdj =
Nd

nd
, ∀j ∈ Sd ⇒ ˆ̄Y DIR

d =
1

nd

∑
j∈Sd

Ydj .

Problem: nd small for some d .

Small area/domain: subset of the population that is target
of inference and for which the direct estimator does not have
enough precision.

What does “enough precision” means? Some National
Statistical Offices (GB, Spain) allow a maximum CV of 20%.
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Introduction

Small area estimation: field of statistics dealing with the problem
of obtaining reliable estimates for domains for which only small
samples or no samples are available

Idea: to use statistical models that ”borrow strength”

by using variables from related or similar areas

through auxiliary data obtained from external sources (large
surveys, census, administrative records)

SAE methods can be divided into

”design-based” methods

”model-based” methods
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Description of the real data set

Data from 2013 Spanish Living Conditions Survey (SLCS) in the
Autonomous Community of Valencia

We are interested in estimating the domain mean income and
domain poverty proportions in 2013

We consider D = 26 domains, comarcas (counties) appearing in
the sample

Total sample size: n = 2492 (SLCS 2013)

Smallest area: 10 records

Largest area: 405 records

Population size: N = 4877 512

Auxiliary agregated data (totals of covariate patterns) are taken
from SLFS 2013
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Description of the real data set

SLCS provides information regarding the household income
received during the last year

Equivalent personal income
- is calculated in order to take into account scale
economies in households

- it is assigned to each member of the household
(denoted as ydj).

The poverty risk is the proportion of people with equivalent
personal income below the poverty threshold.

E.g. the 2013 Valencia poverty threshold is z = 6999.6 (in
EUR).
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Description of the real data set

Our parameter of interest is

δd =
1

Nd

Nd∑
j=1

h(ydj),

where h is a known measurable function.

For h(y) = y we obtain the area mean income

Y d =
1

Nd

Nd∑
j=1

ydj .

For h(y) = I (y < z) we obtain the area poverty proportions

pd =
1

Nd

Nd∑
j=1

I (ydj < z) .

8 / 31



Unit level gamma mixed model - Model 2

D - domains, Nd - population size, d = 1, . . . ,D

The distribution of the target variable ydj , conditioned to the
random effect vd is

ydj |vd ∼ Gamma
(
νdj ,

νdj
µdj

)
, νdj = adjφ, j = 1, . . . ,Nd .

For the inverse of the mean parameter, we assume

g(µdj) =
1

µdj
= x

T
djβ + ϕvd ,

where
- {vd : d = 1, . . . ,D} are i.i.d. N(0, 1)

- ydj ’s are independent conditioned to v .

The vector of unknown parameters θ = (β, ϕ, φ) is estimated
by maximizing the Laplace approximation of the log-likelihood.
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Empirical best predictor

Our parameter of interest is

δd =
1

Nd

Nd∑
j=1

h(ydj).

Let us denote by Sd and Rd the sets of sampled and
non-sampled individuals in domain d

Best predictor (BP) of δd is

δ̂d = δ̂d(θ) =
1

Nd

[ ∑
j∈Sd

h(ydj) +
∑
j∈Rd

Eθ[h(ydj)|y s ]
]
.

We would need a census file with all the x variables

Might be overcome if all the x variables are categorical
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Empirical best predictor

Suppose that the covariates are categorical such that

xdj ∈ {z1, . . . , zK}.

Then ∑
j∈Rd

Eθ[h(ydj)|y s ] =
K∑

k=1

wdkEθ[h(ydk)|y s ],

where ydk ∼ Gamma
(
νdk ,

νdk
µdk

)
,

µdk = µdk(θ) =
(
z
T
k β + ϕvd

)−1

and
wdk = #{j ∈ Rd : xdj = zk}

is the size of the covariate class zk at Rd (available from
external data sources).
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Empirical best predictor

Under this categorical setup the BP of δd is

δ̂BPd (θ) = Eθ[δd |y s ] =
1

Nd

[ ∑
j∈Sd

h(ydj)+
K∑

k=1

wdkEθ[h(ydk)|y s ]
]
,

where
Eθ[h(ydk)|y s ]

must be approximated numerically.

The EBP of δd is then obtained as

δ̂EBPd = δ̂BPd (θ̂) .
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PLUG-IN estimator

The plug-in estimator of δd is

δ̃d = δ̃d(θ̂) =
1

Nd

[ ∑
j∈Sd

h(ydj) +
K∑

k=1

wdkh(µ̃dk)
]
,

where

µ̃dk =
(
z
T
k β̂ + ϕ̂v̂d

)−1
.
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Marginal predictor

Let us consider the predicted marginal distribution of ydk , i.e. the
p.d.f. and d.f. of

Gamma

(
ν̂dk ,

ν̂dk
µ̃dk

)
, ν̂dk = adk φ̂.

The marginal predictor of δd is

δ̂MAR
d =

1

Nd

[ ∑
j∈Sd

h(ydj) +
K∑

k=1

wdkE [h(ydk)|ν̂dk , µ̃dk ]
]
.

For h(y) = y we get

E [h(ydk)|ν̂dk , µ̃dk ] =

∫ ∞

0
yf (y |ν̂dk , µ̃dk) dy = µ̃dk .

For the function h(y) = I (y < z)

E [h(ydk)|ν̂dk , µ̃dk ] =

∫ z

0
f (y |ν̂dk , µ̃dk) dy = Fν̂dk ,µ̃dk

(z).
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Bootstrap estimator of MSE

1) Fit the model to the sample and calculate θ̂.

2) Repeat B times (b = 1, . . . ,B):

a) Generate bootstrap population from the assumed model with
the estimated θ̂

b) Calculate the true quantity δ
∗(b)
d

c) Extract bootstrap sample, calculate θ̂
∗(b)

and the predictor

δ̂
∗(b)
d .

3) Output:

mse∗(µ̂d) =
1

B

B∑
b=1

(
δ̂
∗(b)
d − δ

∗(b)
d

)2
.
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Simulation experiment - bootstrap
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Estimated relative biases mse(p0)

Figure 1. Relative biases of MSE estimators of MAR predictors for
poverty proportions. Case D = 30, nd = 50.
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Simulation experiment - bootstrap
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Figure 2. Relative root-MSEs of MSE estimators of MAR
predictors for poverty proportions. Case D = 30, nd = 50.
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Application to real data

Model 2 for personal income (in 10 000 EUR):

We assume that

ydj |vd ∼ Gamma
(
νdj ,

νdj
µdj

)
, d = 1, . . . ,D, j = 1, . . . ,Nd .

where vd are i.i.d. N(0, 1), νdj = adjφ and

g(µdj) =
1

µdj
= β0 + β1Employeddj + β2Unemployeddj + ϕvd .

To fit the Model 2, we need the constants adj .
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Application to real data

Algorithmic procedure:

1 Fit Model 1 to data and calculate the plug-in µ̃dj .

2 Fit the Model 2 to the data, assuming that

adj = µ̃t
dj , for t ∈ (0.25, 3)

is known.

3 For each considered t, calculate the plug-in µ̂
(t)
dj and the sum

of the squared residuals

r2(t) =
D∑

d=1

nd∑
j=1

(ydj − µ̂
(t)
dj )

2.

4 Select t∗ minimizing r2(t).

5 Do the inferences with Model 2 and adj = µ̃t∗
dj known.
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Application to real data

For the considered data set, the optimal choice is t∗ = 0.60.
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Figure 3: Function r2(t) (left) and boxplot of adj (right).
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Application to real data

estimate standard error p-value

β̂0 0.775 0.0132 < 2E-16

β̂1 -0.141 0.0157 < 2E-16

β̂2 0.140 0.0300 3.09E-06

ϕ̂ 0.1113 0.0112 < 2E-16

φ̂ 2.4646 0.0675 < 2E-16

Table 2: Parameter estimates under Model 2.
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Application to real data

Log-linear normal mixed model (MODEL 3):

Let us consider the log transformation of data

zdj = log(ydj + c)

and the nested error regression model

zdj = x
T
djb+ ud + edj ,

where ud ∼ N(0, σ2
u) and edj ∼ N(0, σ2

e ).

estimate standard error p-value

b̂0 0.803 0.0201 < 2E-16

b̂1 0.137 0.0135 < 2E-16

b̂2 -0.112 0.0180 5.41E-10

Table 3: Parameter estimates under Model 3.
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Application to real data
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Figure 4: Q-Q plots of random effects for models 2 (left) and 3

(right).
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Application to real data
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Figure 5: Dispersion graphs of raw residuals for Model 2 (left)
and Model 3 (right).

The sum of squares of raw residuals for models 2 and 3 are

r22 = 1897.35, r23 = 1938.30.
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Application to real data - MODEL 2
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Figure 6: Predictions of average income in 104 euros .

25 / 31



Application to real data - MODEL 2
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Figure 7: Estimated MSEs of average income estimates.
(based on B = 500 bootstrap samples)
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Application to real data - MODEL 2
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Figure 8: Marginal and Direct poverty proportions estimates.
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Application to real data - MODEL 2
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Figure 9: Estimated MSEs of poverty proportions estimates.
(based on B = 500 bootstrap samples)
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Conclusions:

Model 2 has a high flexibility for fitting real data because adj ’s
may vary within and between domains.

The EBP and marginal predictor have a similarly good
behaviour. From computational reasons, the marginal
predictor can be recommended.

Marginal predictors can increase precision of the direct
estimators.

For the studied data sets, the Model 2 is a good alternative to
the log-normal nested error model considered by Molina and
Rao (2010).
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Thank you for your attention!!!
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