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Motivation

In machine learning, one can encounter two standard techniques:
• discriminative modeling,
• generative modeling.

Hybrid combination of these two approaches can improve a
performance of a model. We focus on two hybrid variants:

1 HDGM [Abeel et. al 2020],
2 Semi-supervised VAE [Kingma et. al 2014],

which we apply to more complex cases, specifically, set data.
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Discriminative modeling

• Data D = {(xi, yi)}Ni=1, where the input variable is x ∈ RD and the
output variable y ∈ C.

• Classification problems - the goal is to classify a new sample x
into some category y from the finite set C, so we are looking for
distribution p(y|x).

• We train the model fθ (x) : RD → C, where θ denotes the
parameters of this model.

• In practice, one–hot encoding is often used, thus the model is in
the form of fθ (x) : RD → RC .
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Discriminative modeling

• Let the symbol fθ (x) [y] denotes yth element of fθ (x).
• For distribution modeling is typically used Softmax

qθ (y|x) =
exp (fθ (x) [y])∑
y∈C exp (fθ (x) [y])

, (1)

which is the basis for the definition of cross–entropy.
• Optimization of the model is performed by minimizing total

cross–entropy (corresponding to the MLE), therefore

min
θ

−Epdata(x,y) [log qθ (y|x)] . (2)
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Generative modeling - Contrastive learning

• Generative models capture the joint probability p (x, y), or just
p (x) if there are no labels.

• Contrastive learning [Abeel et. al 2020] is a ML method typically
utilized in the image classification.

• Here, we usually optimize

min
θ

−Epdata(x)

[
log

exp (mθ (x) ·mθ (x
′))∑M

i=1 exp (mθ (x) ·mθ(xi))

]
(3)

• We define a function mθ : RD → RH that maps each sample to
the representation space of dimension H.

• The sample x′ is called augmented view.
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Generative modeling - Contrastive learning

Modification to our case:
• there is no need for augmented views x′

• instead of mapping m we simply use fθ (x) [y] with labels y,
yielding generative term

qθ (x|y) ≈
exp (fθ (x) [y])∑M

j=1 exp (fθ (xj) [y])
, (4)

where M < N is a number of normalization samples.
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Hybrid Discriminative–Generative Modeling

• At this point, we have defined discriminative component qθ (y|x)
and generative component qθ (x|y).

• We can finally minimize the hybrid, convex combination of these
two components

min
θ

−Epdata(x,y) [α log qθ (y|x) + (1− α) log qθ (x|y)] . (5)

• Parameter α ∈ [0, 1] weighs generative and discriminative
counterparts.
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Variational Autoencoder

• A generative modeling method, the goal is to find p(x) using the
latent variable z, specifically, encoder qϕ (z|x) and decoder
pθ(x|z).

• It leads to the ELBO optimization

Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ (z|x) ∥pθ (z)) (6)

• No labels!
• However, there is no combination of discriminative and generative

models -> semi–supervised VAE [Kingma et al. 2014].
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VAE, semi–supervised version

It is necessary to consider two cases.
• First, consider observation x that has its class label y:

Eqϕ(z|x,y) [log pθ(x|z, y) + log pθ(y)]−DKL (qϕ (z|x, y) ∥pθ (z)) (7)

• Secondly, observation x is lacking it class label y:

Eqϕ(y,z|x) [log pθ(x|z, y) + log pθ(y)]−DKL (qϕ (y, z|x) ∥pθ (z)) (8)

• We need a modification for a fully supervised dataset. We obtain

J̃ν
HM (θ,ϕ) = J̃HM (θ,ϕ) + ν · Ep̃l(x,y) [− log qϕ (y|x)] , (9)

where parameter ν is a weight.
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Multiple Instance Learning, MIL

• In MIL, one sample is a set of vectors, these vectors are called
instances and the sets are called bags.

• If the space of all instances is X and the space of all bags is
B(X ), then in MIL the model is defined as fθ : B (X ) → C.

• However, to properly define such a model, we need an embedded
space and aggregation functions.

• We use the HMill framework and the Mill.jl package.

Obrázek: A general representation of set data. Credit [2].

Jakub Bureš (AMSM) Hybrid Discriminative–Generative Training for Set DataJune 23, 2022 11 / 17



Results - HDGM

Cross–Validation of HDGM:

(a) Musk1. (b) Musk2.

(c) Fox. (d) Tiger.

Jakub Bureš (AMSM) Hybrid Discriminative–Generative Training for Set DataJune 23, 2022 12 / 17



Results - HDGM

Average AUCs and st. deviations of individual data sets for both
approaches:

D HDGM α = 0.5

Musk1 81.40±12.11 % 83.89 ±11.13%

Musk2 79.77±8.96% 82.78 ±7.38%

Tiger 91.22 ±2.34% 90.25±2.80%

Fox 54.43 ±3.77% 56.22±6.18%
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Results - Hybrid VAE
• Dependence of the average AUC on the logarithm of the

parameter ν

(e) Musk1. (f) Musk2.

(g) Fox. (h) Tiger.
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Conclusion

• Slight reduction of prediction error for test data.
• Overall increase of AUC.
• High variance.
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Thank you for your attention.
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