

CZECH TECHNICAL UNIVERSITY IN PRAGUE

1

Ensemble Model for Detector Simulations

Stochastic and Physical Monitoring Systems Rumburk 2022

Kristina Jaruskova (CERN, Czech Technical University)

Detector Simulations

- Detector simulations Monte Carlo-based tools (GEANT4)
 - Representation of the theory
 - Algorithm tuning
 - Standard tool Monte-Carlo based algorithms
 - Currently: Geant4 simulation package

- WLCG (Worldwide LHC Computing Grid)
 - Global infrastructure of computing resources (data storage, analysis, ...)
 - 100 centers in more than 40 countries
- MC tools are computationally intensive
 - 50 % of the WLCG resources used for simulations¹

1. Zaborowska A. Geant4 fast and full simulation for Future Circular Collider studies. 2017

Detector Simulations

- High-Luminosity LHC (2027) upgrade
 - Approx. **150x** more data¹ \rightarrow MC simulations will be intractable
- Calorimeter simulations
 - Energy depositions of entering particles
 - Most time demanding step in simulation process
 - ATLAS **70** % simulation time spent on calorimeters²
 - Crucial to find faster alternatives → generative deep learning
 - Generative adversarial networks (GANs)
 - Variational autoencoders
 - Preliminary results up to 10⁶x speedup¹
 - Not accurate enough yet
 - CERN openlab models for CLIC ECAL simulations
 - Compact Linear Collider (CLIC)
 - Image size: 25x25x25 cells \rightarrow interpreted as a 3D grayscale image

Albrecht J. et al. A Roadmap for HEP Software and Computing R&D for the 2020s. 2019
Zaborowska A. Geant4 fast and full simulation for Future Circular Collider studies. 2017

3

Generative Adversarial Network

GAN ensemble

- Ensemble techniques in ML/DL
 - Combining predictions from multiple models reduce variance and generalization error
 - Improvement in different tasks classification, regression
- AdaGAN³
 - Ensemble of multiple GANs (generator-discriminator pairs) trained sequentially
 - MC training data reweighted before training the next GAN
 - Addressing the issue of missing modes next GAN focuses on week spots of the previous ones
 - Poorly reproduced training samples high weight
 - Well reproduced training samples low weight

Toy example: • mixture of Gauss clusters

(red) training data (blue) generated samples

Weights assigned to training data

CERN

openlab

ij.

Two GANs

-10

-5

0

10

15

5

Ensemble training details

- MC = Monte Carlo training data
- GAN 0: trained on MC training data
- MIXDISC: trained on MC data and data from GAN 0 (1 : 1 ratio)
- GAN 1: trained on weighted MC data (weights from MIXDISC 1)
- MIXDISC 2: trained on MC data (no weights) and data from GAN 0 + GAN 1 (MC : generated = 1 : 1)
- GAN 2: trained on weighted MC data (weights from MIXDISC 2)

generated data

Data weights

• Main idea: minimize Jensen-Shannon divergence between data distribution P_d and the ensemble distribution P_g with the next GAN distribution Q

$$\min_{Q\in\mathbb{P}} D_{JS}((1-eta)P_g+eta Q\parallel P_d)$$

- In practice: any improvement on the J-S div. is enough
- Formula:

$$w_i = rac{p_i}{eta} igg(\lambda^* - (1-eta) rac{1-D(X_i)}{D(X_i)} igg)_+$$

 $p_i = 1/N$... empirical distribution of the training data λ^* ... normalization factor

- If $D(X_i) \sim 1 \rightarrow \text{MIXDISC}$ is certain it is training sample \rightarrow high weight
- If $D(X_i) \sim 0.5 \rightarrow \text{MIXDISC}$ is confused \rightarrow well represented in generated dataset \rightarrow low weight

Conv2D GAN as an ensemble

- <u>Conv2D GAN</u>⁴ as a baseline model
 - Uses 2D convolutions only
 - Trained on 200 000 MC samples
- T = 10 GANs were trained with equal component weights β_i creating a mixture of distributions

$$P_g = \sum_{j=0}^{T-1} rac{1}{T} P_j$$

Conv2D generator architecture:

ERN

Sampling fraction

• Visible improvement in sampling fraction – ratio of the total deposited energy to the primary energy of a particle

Sampling fraction comparison

Data split up into energy bins of 10 GeV

Ratio of the true samp. fraction to the samp. fraction of the generated data

Shower shapes

• Improvement in average shower shapes around the edges

Thank you.

CaloChallenge 2022:

- Publicly open challenge from the Geant4 group
- <u>https://calochallenge.github.io/homepage/</u>

Backup slides.

Detector Simulations

• Currently in Geant4:

CERN

openlab

Full simulation

- Step-by-step
- Many variables (velocity, momentum, direction, angle etc.)
- Time consuming

Fast simulation

- Only the overall response
- Parametrizing, pre-simulated showers
- Approx. 10x 1000x speedup

Generating samples from the ensemble

- Component weights: $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, ..., \beta_T)$
- Generator distributions: P₀, P₁, P₂, ..., P_T
- Final distribution P_g: linear mixture of GAN distributions

