
                          

Particle shape dependence in 2D granular media
To cite this article: CEGEO et al 2012 EPL 98 44008

 

View the article online for updates and enhancements.

You may also like
STELLAR MASS AND COLOR
DEPENDENCE OF THE THREE-POINT
CORRELATION FUNCTION OF
GALAXIES IN THE LOCAL UNIVERSE
Hong Guo, Cheng Li, Y. P. Jing et al.

-

Hard-body models of bulk liquid crystals
Luis Mederos, Enrique Velasco and Yuri
Martínez-Ratón

-

Jamming of packings of frictionless
particles with and without shear
Wen Zheng,  , Shiyun Zhang et al.

-

This content was downloaded from IP address 90.182.63.88 on 07/10/2022 at 21:33

https://doi.org/10.1209/0295-5075/98/44008
/article/10.1088/0004-637X/780/2/139
/article/10.1088/0004-637X/780/2/139
/article/10.1088/0004-637X/780/2/139
/article/10.1088/0004-637X/780/2/139
/article/10.1088/0953-8984/26/46/463101
/article/10.1088/1674-1056/27/6/066102
/article/10.1088/1674-1056/27/6/066102


May 2012

EPL, 98 (2012) 44008 www.epljournal.org

doi: 10.1209/0295-5075/98/44008

Particle shape dependence in 2D granular media
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PACS 45.70.-n – Granular systems
PACS 81.05.Rm – Porous materials; granular materials
PACS 61.43.Hv – Fractals; macroscopic aggregates (including diffusion-limited aggregates)

Abstract – Particle shape is a key to the space-filling and strength properties of granular
matter. We consider a shape parameter η describing the degree of distortion from a perfectly
spherical shape. Encompassing most specific shape characteristics such as elongation, angularity
and non-convexity, η is a low-order but generic parameter that we used in a numerical benchmark
test for a systematic investigation of shape dependence in sheared granular packings composed
of particles of different shapes. We find that the shear strength is an increasing function of η
with nearly the same trend for all shapes, the differences appearing thus to be of second order
compared to η. We also observe a non-trivial behavior of packing fraction which, for all our
simulated shapes, increases with η from the random close packing fraction for disks, reaches a
peak considerably higher than that for disks, and subsequently declines as η is further increased.
These findings suggest that a low-order description of particle shape accounts for the principal
trends of packing fraction and shear strength. Hence, the effect of second-order shape parameters
may be investigated by considering different shapes at the same level of η.

Copyright c© EPLA, 2012

The hard-sphere packing is at the heart of various
models for the rheology and (thermo)dynamical properties
of amorphous states of matter including liquids, glasses
and granular materials [1,2]. Such models reflect both the
purely geometrical properties of sphere packings, e.g. the
order-disorder transition with finite volume change [3],
and emergent properties arising from collective particle
interactions, e.g. force chains and arching in static piles [4].
As to non-spherical particle packings, rather recent results
suggest that such packings exhibit higher shear strength
than sphere packings [5–15], and may approach unusually
high packing fractions [2,16–18]. However, a systematic

(a)Collaborative group “Changement d’Echelle dans les GEO-
matériaux” (scale change in geomaterials).

and quantitative investigation of shape dependence is still
largely elusive since particle shape characteristics such as
elongation, angularity, slenderness and non-convexity are
described by distinct groups of parameters, and the effect
of each parameter is not easy to isolate experimentally.
In order to evaluate the shape dependence of general

granular properties such as packing fraction, shear
strength and internal structure for particles of different
shapes, we designed a numerical benchmark test that was
simulated and analyzed by the members of a collaborative
group (CEGEO). The idea of this test is that various
non-spherical or non-circular shapes can be characterized
by their degree of distortion from a perfectly spherical
or circular shape. Let us consider an arbitrary 2D shape
as sketched in fig. 1. The border of the particle is fully
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Fig. 1: An arbitrary particle shape represented by a concentric
pair of circumscribing and inscribed circles.

Fig. 2: Four different shapes belonging to the same η-set
with η= 0.4: trimer (A), rounded-cap rectangle (B), truncated
triangle (C), and elongated hexagon (D).

enclosed between two concentric circles: a circumscribing
circle of radius R and an inscribed circle of radius R−∆R.
We define the η-set as the set of all shapes with borders
enclosed between a pair of concentric circles (spheres in
3D), touching both circles and having the same ratio

η=
∆R

R
. (1)

Four different particle shapes belonging to the same η-
set are shown in fig. 2. A non-zero value of η corresponds
to non-convexity for A-shape, elongation for B-shape,
angularity for C-shape, and a combination of angularity
and elongation for D-shape.
The parameter η is obviously a rough low-order shape

parameter; see also [19]. But, encompassing most specific
shape parameters, it provides a general framework in
which shape dependence may be analyzed among parti-
cles of very different shapes. Within an η-set, each specific
shape may further be characterized by higher-order para-
meters. The issue that we address in this letter is to
what extent the packing fraction and shear strength are
controlled by η and in which respects the behavior depends
on higher-order shape parameters.
The benchmark test is based on the four shapes of fig. 2.

The A-shape (trimer) is composed of three overlapping
disks touching the circumscribing circle and with their
intersection points lying on the inscribed circle; the B-
shape (rounded-cap rectangle) is a rectangle touching
the inscribed circle and juxtaposed with two half-disks
touching the circumscribing circle; the C-shape (truncated
triangle) is a hexagon with three sides constrained to touch
the inscribed circle and all corners on the circumscribing
circle; and the D-shape (elongated hexagon) is an irregular
hexagon with two sides constrained to touch the inscribed
circle and two corners lie on the circumscribing circle.
The range of geometrically defined values of η for a given

shape (defined by a construction method) has in general a
lower bound η0. For A and B, the particle shape changes
continuously from a disk, so that η0 = 0 whereas we have
η0 = 1−

√
3/2� 0.13 for C and D.

Two different discrete element methods (DEM) were
used for the simulations: contact dynamics (CD) and mole-
cular dynamics (MD). In the CD method, the particles
are treated as perfectly rigid [20] whereas a linear spring-
dashpot model was used in MD simulations with stiff
particles (kn/p0 > 10

3, where kn is the normal stiffness
and p0 refers to the confining pressure) [21]. The trimers
were simulated by both methods for all values of η. We
refer below as A (for CD) and A′ (for MD) to these simu-
lations. The packing C was simulated by MD whereas the
packings B and D were simulated by CD. In CD simu-
lations, the coefficient of restitution was set to zero. In
MD simulations, the damping parameter was taken very
close to the critical damping coefficient so that the resti-
tution coefficient was also negligibly small [22]. Note that
in quasi-static flow, the relaxation time of the particles is
short enough (compared to the inverse shear rate) to allow
for efficient dissipation of kinetic energy in each time step.
For this reason, in contrast to granular gases, the exact
values of the damping parameters or restitution coeffi-
cients have practically no influence on the numerical data
analyzed below [23].
For each shape, several packings of 5000 particles were

prepared with η varying from 0 to 0.5. To avoid long-
range ordering, a size polydispersity was introduced by
taking R in the range [Rmin, Rmax] with Rmax = 3Rmin
and a uniform distribution of particle volumes. A dense
packing composed of disks (η= 0) was first constructed by
means of random deposition in a box [24]. For other values
of η, the same packing was used with each disk serving
as the circumscribing circle. The particle was inscribed
with the desired value of η and random orientation inside
the disk. This geometrical step was followed by isotropic
compaction of the packings inside a rectangular frame.
The gravity g and friction coefficients between particles
and with the walls were set to 0 during compaction in order
to avoid force gradients. Figure 3 displays snapshots of the
packings for η= 0.4 at the end of isotropic compaction1.
The isotropic samples were sheared by applying a

slow downward velocity on the top wall with a constant
confining stress acting on the lateral walls. During shear,
the friction coefficient µ between particles was set to 0.5
and to 0 with the walls. The shear strength is characterized
by the internal angle of friction ϕ defined by

sinϕ=
σ1−σ2
σ1+σ2

, (2)

where the subscripts 1 and 2 refer to the principal stresses.
sinϕ increases rapidly from zero to a peak value before
relaxing to a constant material-dependent value sinϕ∗,

1Animation videos of the simulations can be found at
www.cgp-gateway.org/ref012.
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Fig. 3: Snapshots of the simulated packings in the densest
isotropic state for η= 0.4.
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Fig. 4: (Colour on-line) Shear strength sinϕ∗ of packings
composed of various particle shapes (see fig. 2) as a function
of η.

which defines the shear strength at large strain at a steady
stress state.
Figure 4 shows the dependence of sinϕ∗ with respect

to η for our different shapes. Remarkably, sinϕ∗ increases
with η at the same rate for all shapes. The data nearly
coincide between the A and B shapes, on the one hand, and
between C and D shapes, on the other hand. This suggests
that non-convex trimers and rounded-cap rectangles, in
spite of their very different shapes, belong to the same
family (rounded shapes). In the same way, the truncated
triangles and elongated hexagons seem to belong to the
family of angular particles and exhibit a shear strength
slightly above that of rounded shapes. Note also that the
results are robust with respect to the numerical approach
as the packings A and A′ were simulated by two different
methods.
The increase of shear strength with η may be attributed

to the increasing frustration of particle rotations as the
shape deviates from a disk [11,25]. Since the particles
may interact at two or three contact points (A-shape) or
through side-to-side contacts (shapes B, C and D), the
kinematic constraints increase with η and frustrate the
particle displacements by rolling. The restriction of rolling
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Fig. 5: (Colour on-line) Friction mobilization in the steady state
as a function of η for different particle shapes.

leads to enhanced role of friction in the mechanical equilib-
rium and relative sliding of particles during deformation.
A related static quantity is the mean friction mobilization
defined by M = 〈ft/(µfn)〉, where ft is the magnitude of
the friction force, fn is the normal force, and the average
is taken over all force-bearing contacts in the system.
To evaluate the effect of particle shape, we consider the

parameter

Mη =
M(η)

M(η= 0)
− 1 (3)

as a function of η for different shapes, where M(η= 0)
is the friction mobilization for circular particles. Figure 5
shows thatMη is a globally increasing function of η for all
shapes. The parameter η appears also in this respect to
account for the global trend of friction mobilization, and
the differences observed in fig. 5 among different shapes
are rather of second order.
We also observe that the proportions of double and

triple contacts for A-shape packings and the proportion
of side-to-side contacts for other shapes increase with
η. For non-circular particles, one should distinguish the
coordination number Z, defined as the mean number
of contacting neighbors per particle, from the “contact
coordination number” Zc defined as the mean number
of contacts per particle. Obviously, for the calculation
of both Z and Zc only the force-bearing contacts and
non-floating particles are taken into account [26]. We
have Z =Zc � 4 for the disks in the initial state prepared
with µ= 0. This value corresponds to an isostatic state in
which one expects Z = 2Nf , where Nf is the number of
degrees of freedom of a particle [27]. For frictionless disks,
we have Nf = 2 (two translational degrees of freedom),
leading to Z = 4. For non-circular shapes, we have Nf = 3
since the rotational degrees of freedom take part in the
mechanical equilibrium of the particles. Hence, if isosta-
ticity holds also for non-circular frictionless particles, we
expect Z = 6. We observe instead Z < 5 for all our pack-
ings. However, we find Zc � 6 for η �= 0 if each side-to-side
contact is counted twice, representing two independent
constraints. This result is consistent with the isostatic
nature of a packing of frictionless non-circular particles
and shows that the packings of non-circular shape are
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Fig. 6: (Colour on-line) Packing fraction in the isotropic state
as a function of η for different particle shapes.

not under-constrained as previously suggested [28]. For
µ= 0.5, the packings are no more isostatic and Z and Zc
vary only slightly with η with values in the range 3 to 4 for
Z and in the range 4 to 5 for Zc in the course of shearing.
We now focus on the packing fraction which crucially

depends on particle shape. Figure 6 shows the packing
fraction ρiso in the initial isotropic state as a function
of η. We observe a non-trivial behavior for all particle
shapes: the packing fraction increases with η, passes by
a peak depending on each specific shape and subsequently
declines. For the B-shape a sharp decrease of ρiso occurs
beyond η= 0.5 as was shown in [10].
This unmonotonic behavior of packing fraction was

observed by experiments and numerical simulations
for spheroids as a function of their aspect ratio
[2,16,17,28–30]. The decrease of the packing fraction
is attributed to the excluded-volume effect that prevails
at large aspect ratios and leads to increasingly larger
pores which cannot be filled by the particles [29]. The
observation of this unmonotonic behavior as a function
of η for different shapes indicates that it is a generic
property depending only on deviation from circular shape.
This behavior may thus be explained from general consid-
erations involving the parameter η but with variations
depending on second-order shape characteristics.
A plausible second-order parameter is

ν =
Vp

πR2
, (4)

where Vp is the particle volume in 2D. Its complement
1− ν is the “self-porosity” of a particle, i.e. the unfilled
volume fraction inside the circumscribing circle. Keeping
the radius R of the circumscribing circle constant, ρiso =
Vp/V varies with η as a result of the relative changes of
Vp and the mean volume V per particle. The free (pore)
volume per particle is Vf = V −Vp.
At η= 0, the free volume Vf is only composed of steric
voids, i.e. voids between three or more particles, and the
packing fraction is given by ρ(0) = πR2/V (0). For η > 0,
the void patterns are more complex but can be described
by considering the generic shape of particles belonging to
a given η-set. The borders of a particle involve “hills”,
which are the parts touching the circumscribing circle, and

(a) (b)

Fig. 7: Pore volume reduction by (a) overlap between self-
porosities; (b) steric pores.
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Fig. 8: (Colour on-line) Normalized packing fractions fitted by
eq. (6).

“valleys” touching the inscribed circle. The volume V per
particle varies with η by two mechanisms. First, the hills
of a particle may partially fill the valleys of a neighboring
particle, fig. 7(a). Secondly, the steric voids between the
hills shrink as η increases due to the increasing local
curvature of the touching particles, fig. 7(b). To represent
this excess or loss of pore volume due to the specific
jamming configurations induced by particle shapes, we
introduce the function h(η) by setting

V (η) = V (η0)−πR2 h(η), (5)

with h(η0) = 0. With these assumptions, the packing
fraction is expressed as

ρ(η) =
ν(η)ρ(η0)

1−h(η)ρ(η0) . (6)

The function ν(η) is known for each shape but h(η)
needs to be estimated. A second-order polynomial approx-
imation

h(η) = α(η− η0)+β(η− η0)2 (7)

together with eq. (6) allows us to recover the correct trend
and to fit the data as shown in fig. 8. The error bars
represent the variability at η0 assumed to be the same for
all other values of η. The parameter α ensures the increase
of packing fraction with η at low values of the latter and
it basically reflects the shrinkage of steric pores (fig. 7(b))
whereas β accounts for the overlap between circumscribing
circles (fig. 7(a))) and is responsible for the subsequent
decrease of the packing fraction.
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The fitting parameters in fig. 8 are α� 1.30, 1.29, 1.14,
1.17 and β � 1.23, 1.20, 0.23, 0.20 for C, A, D and B
shapes, respectively with increasing peak value. Note that
the values of β are considerably smaller for B and D that
have an elongated aspect and for which the overlapping of
self-porosities prevails as compared to A and C for which
the shrinkage of the initial pores is more important.
In summary, our benchmark simulations show that a

low-order shape parameter η, describing deviation with
respect to circular shape, controls to a large extent
both the shear strength and packing fraction of granular
media composed of non-circular particles in 2D. The shear
strength is roughly linear in η whereas the packing fraction
is unmonotonic. Our simple model for this unmonotonic
behavior is consistent with the numerical data for all
shapes. It is governed by a first-order term in η for the
shrinkage of the initial steric pores and a second-order
term in η for the creation of large pores by shape-induced
steric pores. The effect of higher-order shape parameters
may be analyzed also in this framework in terms of
differences in packing fraction and shear strength among
various shapes belonging to the same η-set. An interesting
issue to be addressed in future is whether a generic
second-order parameter accounting for such differences
exists. Another aspect that merits further investigation
is the joint effects of size polydispersity and particle
shape. The shear strength is independent of particle size
polydispersity as a result of the capture of force chains by
the class of larger particles [31]. But the packing fraction
and force and contact anisotropy depend on both shape
and polydispersity.
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