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The rule is,
jam tomorrow and jam yesterday,
but never jam today.

— The White Queen
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Sammanfattning

Jamming ar en fasovergang dér ett material gar fran en flytande
vatskeliknande fas till en oordnad fast fas. Fenomenet kan observeras
i en stor grupp fysikaliska system, till exempel granulara material,
skum, kolloida losningar och emulsioner. Dessa material ar mycket
vanliga och i princip alla industriella tillverkningsprocesser innefattar
nagon form av granuldra ravaror, till exempel sand, traflis, fron och
allehanda pulver och pellets. Att forsta hur dessa material beter sig
under olika omstindigheter ar darfor mycket viktigt av saval veten-
skapliga som ekonomiska skal.

Dessa granulara system modelleras ofta som elastiska partiklar med
repulsiva kontaktkrafter. I den héar avhandligen underscker vi flera
olika modeller for att simulera granulara material. Vi undersoker
bland annat effekten som olika dissipativa krafter har pa systemet och
studerar hur olika sétt att generera partikel-konfigurationer paverkar
deras sannolikhet att “jamma” nar de kyls hastigt. Vi studerar reolo-
gin hos skjuvade partikelsystem i narheten av jammingovergangen. Vi
anvander skalningsmodeller besliktade med renormaliseringsgrupps-
teori for att undersoka hur olika kvantiteter skalar i nirheten av den
formodade kritiska punkten J. Utifran skalningsmodellerna bestdmmer
vi densiteten vid punkt J och nagra av de kritiska exponenter som
beskriver uppférandet i narheten av denna punkt.

vii



Abstract

Many different physical systems, such as granular materials, colloids,
foams and emulsions exhibit a jamming transition where the system
changes from a liquid-like flowing state to a solid jammed state as
the packing fraction increases. These systems are often modeled us-
ing soft-core particles with repulsive contact forces. In this thesis we
explore several different dynamical models for these kinds of systems,
and see how they affect the behavior around the jamming transition.
We investigate the effect of different types of dissipative forces on the
rheology, and study how different methods of preparing a particle con-
figuration affect their probability to jam when quenched. We study
the rheology of sheared systems close to the jamming transition. It
has been proposed that the athermal jamming transition is controlled
by a critical point, point J, with certain scaling properties. We investi-
gate this using multivariable scaling analysis based on renormalization
group theory to explore the scaling properties of the transition and de-
termine the position of point J and some of the critical exponents.
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Chapter 1

Introduction

Rheology is the science of characterizing how a substance flows or
deforms. The substance can be any soft material, from low-viscosity
liquids like water to more complex substances like pastes and emul-
sions, or even granular materials like sand and pebbles. In this thesis
we will look at the rheology of soft-core particles. Soft core indicates
that the particles are soft in the sense that two particles can deform or
penetrate each other if pressed together by an external force, similar
to how two rubber balls deform if pressed together. We investigate
several mathematical models to describe the motion of these particles
under various circumstances. We are especially interested in the be-
havior close to what is known as the jamming transition, a liquid-solid
phase transition, where the rheological properties of granular materials
change dramatically.

The first part of this thesis is a brief introduction to granular ma-
terials and the jamming phase transition, after that we turn our at-
tention to the mathematical models used to model granular materials
and the assumptions they are based on. We then take a closer look at
critical scaling and how it can be used in the context of the jamming
phase transition and finally, we give a short summary of the included
papers.

The main findings of this thesis are contained in the papers, the
aim of these introductory chapters is not to repeat the content of the
papers but instead to expand on some of the concepts and methods
used in getting those results, which hopefully will help the reader to
more easily understand the contents of the papers.






Chapter 2

Granular Materials and
Jamming

2.1 What is granular matter?

Granular matter is very common in our every-day life, examples range
from sand and rocks to common food items like rice, beans or more
fine grained substances like table salt or ground coffee. Understanding
the properties of these types of materials is important not only from
an academic standpoint, but also from both a technical as well as an
economical perspective. In manufacturing industry, a significant part
of raw materials are at some point transported and processed either as
powder or as larger grains, so any understanding that could improve
the effectiveness of processing and handling of these materials would
be of significant economic interest.

A granular material is a substance that consists of a large number
of discrete particles or grains. The particles are usually assumed to
be macroscopic in size, which means that microscopic effects such as
thermal motion can be ignored. This also means that the particles
motion are accurately described by classical physics and that quan-
tum effects are negligible. Thermal motion is important for particles
smaller than ~ 1um; for larger particles the thermal motion is usu-
ally negligible and they can therefore be considered macroscopic. The
shape of the particles can be arbitrary, but in this work we will only
work with the simplest case which is spherical particles. One impor-
tant property of granular materials is that particle interactions are
dissipative, which means that energy is not conserved in the system.
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In reality, if two particles collide their kinetic energy is converted to
thermal energy because of the friction between the particles, but since
the microscopic effects such as thermal vibrations are negligible from
the perspective of a macroscopic observer, it will effectively look as if
the kinetic energy in the system decreases over time.

Granular materials exhibit some very peculiar properties: the macro-
scopic properties of the material depend both on the detailed proper-
ties of the particles but also a lot on the surrounding environment. For
example, when working with materials with small grains the macro-
scopic properties of the material can vary significantly with envi-
ronmental parameters such as air humidity, since increased moisture
changes the cohesive properties of the particles. Anyone who has ever
tried to build a sand castle knows that dry sand is notoriously hard to
form into structures, and that adding some water to the sand really
helps the castle stick together [1]. But if one adds too much water,
the properties start to deteriorate again, and if one where to construct
the sand castle completely submerged under water, it would be just
as hard as constructing it on land from dry sand.

The macroscopic behavior of a granular material depends a lot on
how the individual grains are arranged within the system. This means
that the present properties of the system depend on the history of
the system. When trying to explain an effect in granular matter it
is therefor important not only to ask: “What is it made of?” but
also: “How did it get there?”. For example, when filling a container
with sand the particles may pack more or less densely depending on
the details of how it is done [2]. If one, for example, wants a dense
packing one can shake or vibrate the container, this will allow particles
to move slightly, and because of gravity any void that appears in the
lower parts of the system will quickly be filled by particles falling down
into the “free” positions. This type of effect can significantly alter the
macroscopic properties of the material, and this is one of the things
that make granular materials interesting to work with. But it also
poses a lot of challenges when trying to characterize the materials,
and making reproducible measurements. In paper I we look at one
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aspect of this where we compare particle configurations generated in
different ways. Another related phenomenon that appears when a
container of granular materials is vibrated is what is known as the
Brazilian nut effect that we will discuss in section 4.3.1.

2.2 Jamming

One of the phenomena that can be observed in granular matter is
jamming. A system of granular material is said to be jammed if it
exhibits a non-zero yield stress. A non-zero yield stress means that
the system of particles can withstand the action of a force without
collapsing, this is the signature of a solid substance. If the system is
not jammed, the particles will rearrange when subjected to the force,
and the material will behave more like a fluid. In figure 2.1 we see
a typical situation where jamming is likely to occur: particles are
flowing out from a container through a funnel with a narrow opening.
This is the typical textbook example of jamming. The probability of
forming an arch spanning the opening and blocking the flow is strongly
dependent on the size of the opening [3]. The decreasing diameter of
the funnel near to the opening forces the particles to get closer to each
other, further increasing the likelihood of forming jammed structures
that block the flow. In this setting jamming is usually considered
a problem. However, there are many emerging applications where
jamming is used in a controlled way to manipulate flows and rigidity
of objects, for example as actuators in robots [4].

It turns out that the probability of jamming is closely connected to
the packing fraction ¢ of the material, the packing fraction is a measure
of how densely stacked the particles are. The packing fraction for a
system of N particles is given by

Y, Vi
¢ = v (2.1)
where V; is the volume of particle ¢ and V is the total volume of
the container. This applies for a three-dimensional system. For a
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(a) Flowing (b) Jammed

Figure 2.1: Granular flow trough a constriction in a pipe. (a) Initially the material
flows through the opening but after some time (b) the the flow stops and the system
jams as a load-bearing arch forms across the opening. The particles forming the
arch have been highlighted in panel (b).



two-dimensional system one would of course use the area instead of
the volume. It turns out that a system of particles at low ¢ is fluid,
while at high ¢ the system jams and becomes rigid. The physics in
the transition region where the system transitions between these two
states is highly non-trivial, and understanding this transition is a very
active research field.

2.3 Jamming as a Phase Transition

The jamming phenomenon and other similar effects can be observed
in a wide variety of systems, not only in granular materials. Other
disordered liquid-to-solid transitions are for example the glass tran-
sition were we have a temperature-dependent transition, or the flow
of more cohesive systems like foams and emulsions, which have finite
yield stress and require some minimum applied force to start flowing.
In 1998, Liu and Nagel [5] proposed a way to unify all of these systems
by combining them as different planes in a common phase diagram,
see figure 2.2. The phase diagram has three axes, temperature 7', in-
verse packing fraction ¢!, and stress o. Together these three axes
divide the phase space into two regions, one jammed region close to
the origin, surrounded by an unjammed outer region. In the 7' — ¢!
plane we have the glass transition, and in the ¢! — o plane we have
the athermal jamming transition for driven granular materials. Point
J in figure 2.2 is a critical point located at the packing fraction ¢;.
Originally it was thought that point J would govern the behavior of
both the athermal jamming transition and the equilibrium glass tran-
sition, however it has later been shown that the glass transition is a
separate transition occurring at ¢ < ¢; and controlled by a separate
critical point [6] [7].

Most of the work in this thesis have been done in the vicinity of
point J. Since the point is located on the ¢! axis with 7' = 0 and
o = 0, it is difficult to access the point directly with simulations.
Since the dynamics of granular matter is dissipative, in order to get a

7



unjammed

=)
.\,a“\((\

1

¢
Figure 2.2: The jamming phase diagram.

dynamic system to measure we have to drive/excite the system. In our
case we have mainly used shearing to drive the system. We drive the
system by shearing at a constant shear strain rate -, see section 4.2.3
for more details on how this can be implemented. The shear causes
the particles to move relative to each other which leads to non-zero
stresses ¢ in the system.

The exact value of ¢; is dependent on the details of the stud-
ied system. Factors like particle shape, the size distribution of the
particles, amount of friction between the particles and the dimension-
ality of the system all affect the value of ¢;. For spherical particles
on finds that ¢; =~ 0.84 in two dimensions and ¢; ~ 0.64 in three
dimensions. We can compare this to the corresponding values for
ordered close-packing of spheres, which for two dimensions is the tri-
angular lattice with ¢, = 7/(2v/3) &~ 0.907, and in three dimensions
bep = T/ V18 & 0.740 using either the fcc- or hep-lattice. Since a
jammed system by definition is disordered, ¢; will always be lower
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than the corresponding ¢cp.

2.4 Critical Scaling

Physicists have over time built up a large theoretical framework within
the fields of statistical physics and thermodynamics for working with
phase transitions, however most of that work has been on systems in
equilibrium. Since the athermal jamming phase transition requires
driving in order to explore phase space, it is per definition a non-
equilibrium phenomenon. It is currently unclear how well this type of
non-equilibrium transition will fit into the existing theoretical frame-
work for equilibrium transitions. But there is an increasing amount of
work [8-10] suggesting that the transition shares many properties of
a continuous phase transition.

One of the hallmarks of equilibrium critical points is the notion of
universality; the critical behavior, specifically the exponents describ-
ing the divergence or vanishing of observables, depend only on the
symmetry and dimensionality of the system, and not on details of the
specific interactions.

If point J is a critical point, we would expect the system to exhibit
critical scaling which means that many quantities start to obey power
laws as we get closer to point J. What this means is that the behavior
of an observable O approaching the critical point J from below could
be written in the form

O(¢) = (¢s — 0), (2.2)
where ¢ is the critical packing fraction, i.e. the location of point J,
above which the system is jammed. Here ¢; — ¢ is the distance from
the critical point and ¢p is the critical exponent associated with the
observable O. Each critical point is characterized by a set of critical
exponents. These critical exponents serve as a finger print that can be
used to classify the phase transition into what is known as universality
classes. All transitions with the same critical exponents are said to
belong to the same universality class.



The region in which the critical behavior can be observed is usually
rather small so in order to measure the critical exponents with some
accuracy, one has to get good data fairly close to the critical point,
and this can be a challenge both in real-world experiments and in
computer simulations.

From traditional thermodynamic phase transitions one would ex-
pect that the values of the critical exponents are fairly robust and that
small changes in the microscopic interactions should not change the
universality class of the transition. However, for the jamming tran-
sition thing seem to be a bit more complicated. In 2003 O’Hern et
al. [11] showed that some exponents depend on the form of the inter-
particle potential. The exponents are also sensitive to the way the
system is driven, as we show in paper II and III, where the critical
exponents differ between sheared and compressed systems.

The scaling shown in equation (2.2), is a limiting case where we as-
sumed that only the ¢ parameter is important, in reality the dynamics
may depend on more variables, i.e. T" and/or % depending on how we
drive the system, and L, which is the size of the simulated system. In
chapter 5 we will look closer at the full scaling relations that are used
for analyzing the data in the papers.

2.5 The coordination number 2z

The coordination number z, also known as the contact number, is the
average number of contacts per particle. Two particles are said to be
in contact if they are close enough that they touch one another. In the
previous sections we have introduced jamming in terms of the packing
fraction ¢, it is also possible to look at jamming from the perspective
of the contact number. When we increase ¢ the particles get closer
together and eventually jam as ¢ > ¢;. As the particles get closer
more contacts are formed which means that z increases and that the
system jams as z > z;.

It turns out that under some circumstances it is possible to calculate
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zy exactly. The argument goes as follows. In order for the system to
jam and form a stable (rigid) mechanical structure the particles have
to be sufficiently constrained. If we know the number of particles and
the number of degrees of freedom for each particle we can calculate the
total number of variables needed to specify the state of the system. In
order to get a stable mechanical structure we need at least as many
equations as unknown variables in the system. When the number
of equations exactly matches the number of unknown variables, the
system is said to be isostatic. A configuration of frictionless particles
is believed to be isostatic exactly at the jamming transition [12].

For the following argument we are going to need a stricter definition
of z. We define Z to be the average number of contacts per particle
but this time we first remove so called rattlers (free particles that
are not part of the jammed force-network) from the system before
calculating the average. For each particle we should have force balance
and torque balance, the number of equations needed to achieve this
depends on the number of degrees of freedom for each particle. For
spherical particles in D dimensions dimension we get Zi,, = 2D in
the absence of friction, and Zi,, = D + 1 if the friction coefficient
i — 00. which means spherical particles with finite friction will jam
somewhere in the interval D 4+ 1 < Z; < 2D, the exact point depend
on the details of the specific particle configuration. For non-spherical
particles Zis, increases as the rotational symmetry is broken. From the
previous argument one would expect Zi, to change discontinuously as
the symmetry is broken, however in reality the number of contacts
increases continuously as the shape is varied [13,14]. This effect can
be explained with some more careful analysis [15].
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Chapter 3

Rheology

Rheology is the science that describes how substances flow and de-
form. The study of rheology is normally aimed at describing the flow
properties of liquids and other soft materials, such as granular ma-
terials. However, even materials we normally consider solid can be
made to flow, given extreme enough circumstances. Rheology is a
large subject and this chapter will only be a quick introduction to the
most common rheological behaviors which one are likely to encounter
while working with granular materials. We will focus on the rheology
of sheared systems.

3.1 Elastic Solids

The simplest model of a solid is a linear elastic solid in which deforma-
tions follow Hooke’s law. Here the deformation of the substance will
be proportional to the applied stress 0. Once the stress is removed
the system will return to its original shape. In reality this behavior
is only observed for small stresses/deformations; a real material will
start to deform permanently once the stress reaches a material-specific
threshold value known as the yield stress oy. If 0 > oy the material
will plastically deform and will not return to the original configuration
when the stress is removed. In the elastic region the relation between
the shear strain, v, and the stress is given by

o=Gy (3.1)

where GG is the shear modulus. We expect to see this behavior in
jammed systems of granular material. Jammed materials are in gen-
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eral fragile and particle rearrangement will occur if o > oy

3.2 Newtonian Fluids

Normal liquids such as water are known as Newtonian fluids which
means that their flow can be described by a single parameter, the
viscosity 7. The shear viscosity of a Newtonian fluid is given by

8
Here we see that ¢ ~ 4 in a Newtonian fluid. Below the jamming
transition we expect the system to exhibit a linear (Newtonian) rhe-
ology if the particle dynamics is overdamped. See paper IV for more
details on when a system can be considered to be overdamped.

3.3 Non-Newtonian Fluids

Non-Newtonian fluids, i.e. fluids that do not flow according to equa-
tion (3.2), includes a large group of materials which shows a wide
variety of phenomena. One example is Bingham plastics, a type of
viscoplastic materials [16]. These materials have a low but finite yield
stress, at higher stresses the material flows at a rate which is propor-
tional to the part of the stress that exceeds the yield stress. One such
material is mayonnaise, which is a type of emulsion.

Other interesting effects can be seen in materials where the viscosity
is not linearly dependent on the shear rate. A material where the
apparent viscosity decreases at high shear rates is said to exhibit shear
thinning, and a material where the apparent viscosity increases at high
shear rates is said to exhibit shear thickening.

A striking example of shear thickening is found when corn starch
is suspended in water. Any reader that has not had the opportunity
to study this kind of systems are encouraged to do some kitchen sci-
ence. At low shear rate this suspension is flowing like a liquid, but for

14



higher shear rates the viscosity rapidly increases to the point where
the material turns almost solid.
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Figure 3.1: Schematic diagram of the relation between shear stress and shear strain
rate for different types of fluids.

Figure 3.1 illustrates how the shear stress depends on the shear rate
in the above-mentioned systems. This is in no way a complete list of
non-Newtonian effects, however, the flow types mentioned in figure 3.1
includes the most common effects that one is likely to observe when
studying granular materials.

The rheology of dry granular materials often exhibits shear thick-
ening below jamming. If we ignore the effects close to the critical
point, one finds that the shear stress ¢ ~ 42, this indicates that the
dynamics is not overdamped and that inertial effects are important for
the dynamics. The effect was first observed by Bagnold in 1954 [17]
and his name is often used to refer to this type of dynamics.
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Chapter 4

Numerical Models

In this chapter we will look at some of the different numerical ap-
proaches used to simulate granular materials. This is a big subject
and we will therefore mainly focus on the methods used in the pa-
pers. Other methods will be mentioned briefly where appropriate to
highlight pros and cons of the methods used in the papers.

4.1 Common Notation

We will consider two dimensional, D = 2, systems of soft-core circular
particles usually in a bidisperse mixture in order to avoid crystalliza-
tion. There are N particles in the system. Each particle ¢ is described
by a position r;, a velocity v; and a radius R;. The distance between
two particles i and j is r;; = |r;;| where r;; = r; — r; and the sum of
their radii d;; = R; + R;. If r;; < d;; the particles are touching and
the size of the overlap is given by d;; — r;;. The direction of the unit
vector T; = :Tj is consistent with a repulsive radial contact force.

4.2 Shearing and Boundary Conditions

In many models of granular materials there is no temperature, 7' = 0,
and the dynamics is often dissipative, which means that any kinetic
energy in the system will dissipate over time, leading to a stationary
state. This means that in order to get a dynamic behavior to study,
we need to perturb or drive the system in some way. One way to drive
the system is to shear it. Shear could be seen as a deformation of

17
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Figure 4.1: Schematic view of shear deformations.

the system where we change the shape of the simulated system while
keeping the area constant. There are two main types of shearing:
simple shear and pure shear. Figure 4.1 shows schematic diagrams of
the two different types of shear deformations. We use simple shear to
drive our system.

In the simulations we use two types of boundary conditions. When
there is no shear applied to the system we use normal periodic bound-
ary conditions, but in order to shear the system we need to modify
the boundaries. There are several ways of applying simple shear to
a system. We use what is known as Lees-Edwards boundary condi-
tions [18]. In the following section we will take a closer look at the
boundary conditions we use and also look at some alternative ways of
shearing the system.

4.2.1 Periodic Boundary Conditions

Periodic boundaries is a standard approach which the reader probably
already is familiar with, it is included here mainly as a reference when
comparing with the more specialized boundaries used when shearing
the system. Figure 4.2 shows the main idea with periodic boundary

18
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Figure 4.2: Periodic boundary conditions.

conditions. The particles we actually simulate are represented by the
shaded circles in the middle box. This is our simulation cell. We as-
sume that the central cell is surrounded by identical cells, repeated
periodically in all directions. To illustrate this, one particle in the fig-
ure has been highlighted, so one easily sees where the periodic images
of this specific particle are located. What this means in practice, is
that if a particle leaves the cell by passing the cell boundary at one
side of the cell, it will instantly reappear on the opposite side of the
cell.

Periodic boundaries are often used in order to limit the boundary
effects. If we instead of periodic boundaries had a box with solid
walls, a particle close to the wall would be restricted in the way it
could move, and would behave slightly differently than a particle far
away from the wall. Using periodic boundary conditions this boundary
effect disappears and all particles experience the same environment
independent on where in the system they are located. This makes the
system in many respects appear bigger than it actually is. However,
the system is still of finite size and depending on what type of system
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one studies, there could still be finite size effects affecting the dynamics
of the system.

4.2.2 Shearing by sliding walls

@) O @) @) @) O

® @) ® o ® @)
O O @) O @) O

O O @) @) @) O

Figure 4.3: Shearing with moving walls.

Moving walls is a straight-forward method of adding shear to a
system. The main idea is to use a system which is periodic along one
axis, and closed off by walls in the other direction, see figure 4.3. The
shear is then added by actively sliding the two walls relative to each
other. For this to work there must be friction between the wall surface
and the particles in the system. One common way of achieving this is
to construct the walls as a row of fixed particles with similar size and
properties as the free particles in the system. This gives a wall with
a rough surface which will work even in models without any explicit
friction term.

Since the shear force from the wall only directly affects the particles
located right next to the walls, it takes some (finite) amount of time
for the shearing motion to reach the central part of the system. This
means that we can observe what is known as shear banding where
different parts of the system experience different shear rates. This is
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normally a transient effect; if the walls move at constant velocity the
central part of the system will eventually catch up and experience the
same shear as the rest of the system.

4.2.3 Lees-Edwards Boundary Conditions
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Figure 4.4: Lees-Edwards boundary conditions.

The Lees-Edwards boundaries is a clever way to shear the system
and still maintain most of the benefits of periodic boundaries in both
directions. The idea is to have ordinary periodic boundaries in one
direction, while in the other direction periodic images of each par-
ticle are displaced. The concept is illustrated in figure 4.4, where
we see that the three rows are displaced relative to each other. The
system experiences shear whenever the displacement between the dif-
ferent rows changes. In order to avoid a sharp velocity gradient at the
system boundary, the particle positions are interpolated across the
system. This is indicated by the dashed lines in 4.4, and is accom-
plished through a clever coordinate transformation, described below.
The benefit of this method is there are no boundary effects and all
particles in the simulation experience the same environment.
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One difference between this method and the sliding wall approach
is that the shear is done by directly imposing a displacement by a
coordinate transformation rather than by applying a force that then
causes the particles to move. Another effect of this is that a change in
shear rate is visible to the whole system immediately. This effectively
prevents the formation of shear banding.

4.2.4 The sheared coordinate system

Ly

Figure 4.5: Sheared simulation cell using Lees-Edwards boundary conditions. The
cell has size L, x Ly, the cell have been sheared so that the upper and lower part
of the cell have been displaced a total of L.~y

When implementing Lees-Edwards boundary conditions one intro-
duces a special sheared coordinate system. In the simulation we use
two different coordinate systems. We let r, and r, refer to the lab
frame, the real physical coordinates of the particles, while x and y are
the sheared coordinates that are used to facilitate the shearing of the
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system. The two coordinate systems are related as follows:

Ty = 1.

The relation between the two systems is also shown in figure 4.5. The
coordinate axis for the r, and r, coordinates are always fixed, while
the direction of the y-axis shifts as the shear strain v changes. The
particle positions are stored in the z-y-coordinates so when v changes
the physical positions of all particles are automatically modified. An
important quantity here is the shear strain rate,

dry

- (4.2)

i =
which controls how fast the system is sheared. Using this setup it is
possible to shear the system to arbitrary large strains . However,
numerically the value of v is usually kept in the interval 0 < v < 1.
When v = 1 we can utilize the symmetry in the system and transpose
the triangular right half of the system to the left side of the system,
forming a physically equivalent configuration with v = 0 from which
we can continue shearing. The same type of technique can also be
used to keep 7 in other intervals e.g. —0.5 < v < 0.5, which is what
we use in our simulations.

Using the sheared coordinates we can define the lab-frame velocity
as
{vx—f’x—f{chervy, (4.3)

vy =Ty = 1.

One is often interested in how much the velocity is deviating from the
affine shear velocity given by 4y. It is then convenient to work with
the modified velocities u which are defined as

{% o (4.9

Uy = V.
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A particle with u, = 0 follows the velocity profile of the shear flow
exactly. Note that the modified velocities are not simply (&, ), instead
we get:

T =Ty = YTy = YTy = Vg =YY = Yy = Uy — YUy, (4.5)
Y =Ty = Uy = Uy.

4.3 Particle Properties

4.3.1 Distribution of Particle Sizes

The distribution of particle sizes affects the properties of the resulting
granular material. One usually distinguishes between three types of
distributions. A granular material can be either: monodiperse, mean-
ing that all particles have the same size, bidisperse, meaning that the
material consists of particles with two different sizes, or polydisperse,
meaning that the system consists of more than two different particle
sizes.

One effect that can be observed if particles with different sizes are
mixed together is phase separation, where the dynamics under some
circumstances can make particles of different sizes separate and end up
in different parts of the system. One example of that would be gravity
acting on particles in a container. If the particles are disturbed by
some external force vibrating the container, small particles will start
to migrate to the bottom while large particles rise to the top [19]. This
is known as the Brazilian nut effect, since the size separation effect can
often been seen when handling bags containing nuts of different sizes.

Another size-dependent effect is crystallization. Even though the
materials we consider do not have any attractive forces between the
particles, the dynamics may still favor a crystal-like ordered state. If
we once again consider a container with particles and vibrate the con-
tainer under the influence of gravity, the packing will compactify as
the vibrations causes particles to rearrange. If all particles have the
same size they will begin to arrange themselves in ordered layers, and
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the packing will approach a close-packed crystalline state. One thing
to mention here is that the size of the container is also of some impor-
tance, the system crystallizes more easily if the length of the container
is an integer multiple of the particle size. For bi- and polydisperse sys-
tem, crystallization is in general more difficult, but the probability to
form crystals depends on the specific combination of particles sizes.

In our simulations there is no gravity, but we instead shear the
system, a driving mechanism that under some circumstances can also
lead to the formation of ordered layers. These effects can be good or
bad depending on what property of the system one would like to study.
In our case, since we want to study the behavior of disordered systems,
both crystallization and phase-separation are unwanted effects which
we strive to avoid. This is achieved by using a bidisperse system, where
the ratio between the diameter of the large and small particles have
been specifically selected to suppress crystallization [20,21]. We use a
mixture of equal number of large and small particles with a diameter
ratio of 1.4.

The difference between using mono- and bidisperse particles is
shown in figure 4.6 and 4.7. Each figure shows two particle config-
urations, before and after shearing. Initially, both configurations are
disordered. The two systems are then sheared at a constant shear rate
for the same amount of time. From the resulting configurations one
sees a clear difference between the monodisperse configuration where
the particles align and the bidisperse system which remains disordered.
Crystallization of monodisperse systems happens very quickly when
shearing a two dimensional system. For simulations in three dimen-
sions, crystallization is less likely, but the effect can still be observed,
especially in small systems [22].

4.3.2 Soft Core vs Hard Core - The Inter-particle Potential

When selecting a model for simulating granular materials one impor-
tant aspect is to choose what type of particles to use. There are
basically two classes of particles: hard and soft.
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Figure 4.6: A monodisperse configuration with N = 256 particles, at ¢ = 0.8,
before and after shearing for ¢ = 10° time units at ¥ = 1073. The shearing
rapidly aligns the particles into crystal planes sliding against each other. Once
the particles have aligned into planes the configuration will remain in a low energy
ordered state, it is highly unlikely that the system would revert back to a more
disordered high energy state.
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Figure 4.7: A bidisperse configuration with N = 256 particles at ¢ = 0.8, before
and after shearing for ¢ = 10° time units at 4 = 10~2. The diameter ratio between
the large and the small particle is 1.4, configuration contains equal numbers of
large and small particles. Here the different radii makes it difficult to form a
regular lattice and the system remains disordered even after long simulations of
continuous shearing.
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A hard particle consists of an infinitely stiff material. This means
that two hard particles can never overlap or deform, and that a colli-
sion between two such particles is instantaneous. These are of course
mathematical idealizations and there are no perfectly hard particles in
the real world, but particles made out of hard relatively incompressible
materials such as steel behave almost like hard particles under normal
conditions, but its all a matter of which parameters one uses since
even a steel ball will deform given enough pressure. More formally,
the hard-core potential between two particles is defined as

. oo, for Tij < dij,
V(rij) B { O, fOI' Tij 2 dz] (46>

Soft particles, on the other hand, are allowed to deform or overlap,
i.e. they behave more like soft rubber balls. In simulations one usually
keeps the particle shape fixed (i.e. no deformations), but instead al-
lows two colliding particles to penetrate each other, the force between
the two particles is then based on the size of the particle overlap. The
exact expression for this force and how it depends on the size of the
particle overlap will give a wide variety of different types of soft parti-
cles with different properties. In our simulation we use this interaction
potential

. L (1 — Tij/dij)a, for Ty < dij7

V(rij) N { ¢ O, for Tij Z dija (47>
where k. is a coupling constant which can be used to adjust the
strength of the potential, and the exponent « controls the stiffness
of the potential. For most simulations we use o = 2 which give a
one-sided harmonic potential. In some cases we also use a = 2.5, the
Hertzian potential. The reason for using the Hertzian potential is that
it more closely matches the potential observed in experiments on real
granular materials [23]. However, in many cases that degree of realism
is not needed, and since the harmonic potential is faster to compute
and gives simpler expressions, it is usually preferred. When investi-
gating the universality of the jamming transition it is also useful to
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test different potentials as the critical behavior is dependent on the
parameter « [11,24] something we also observe in paper III.

A significant difference compared to hard particles is that for soft
particles the collision takes a finite amount of time. This has far-
reaching consequences for how the numerical simulation of these sys-
tems are done. For hard particles at finite temperature, one typically
uses event-driven simulations where each particle collision is handled
exactly, there is no fixed time step since the exact time of the next
collision can be calculated based on the current particle positions and
velocities. One can then advance the system to that time, solve the
collision, and then calculate when the next collision will occur and so
on [25].

There are also methods for simulating hard-core particles at zero
temperature. In that case contacts last a finite amount of time and
the normal hard core dynamics can not be used. One such method is
described by Lerner et al. in Ref. [26].

For soft particles collisions take a finite amount of time, which
means that several contacts are present at the same time. The normal
way to advance a system of soft particles in time is therefore to nu-
merically integrate the equations of motion using some standard finite
differential method to step forward in time with a small time step At.

Since soft-core particles are allowed to overlap, it is possible to
simulate systems at packing fractions above the jamming transition,
¢s. This means that it is possible to study the transition while ap-
proaching ¢; both from above and below. Simulations using hard-core
particles are limited to packing fractions below jamming.

4.4 Soft-Core Particle Dynamics

Here we will take a closer look at the models used in the articles to
represent our granular material. In all models the particles have been
modeled using a repulsive potential with frictionless contacts. The
dissipation has been modeled using different types of viscous forces.
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We have studied both massive particles (paper IV and V) and over-
damped models where the particles do not have any mass (paper I, II
and IIT). In the studied models the particles have no rotational de-
gree of freedom. With the exception of the Monte Carlo simulations
in paper I, all simulations have been at temperature 7' = 0.

4.5 The Durian Bubble Model

In 1995 Durian presented a model for simulating bubbles using over-
damped soft-core particles [27] sheared using Lees-Edwards boundary
conditions. In this model there are two forces acting on a given particle
i, first an elastic force f! given by

N
£ = =3 " VV(ry), (4.8)
JF#i

created by some inter-particle potential (in our case Eq. (4.7)), and
fdis which is the dissipative force, which we will define shortly. From
Newton’s second law we normally get the equations of motions as

m;t; = fz‘el + fzdisa (4.9)

where m; is the mass of particle i. However since this model has
overdamped dynamics, which corresponds to the limit m — 0, we
instead base our equation of motions on the following force balance

el 4 £ = 0. (4.10)

Durian describes two versions of this model using different expressions
for £15. In the following sections we will look at both these models,
which we refer to as CDy and RDg, where CD stands for Contact
Dissipation, and RD for Reservoir Dissipation. The “0” indicates that
m = 0, which means that the models are overdamped.
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4.5.1 The CD; model

The dissipative force is modeled as a viscous drag force. Durian sug-
gested two different expressions for f&*, first the more general

£ = kg > (vi—vy), (4.11)

Tij <dij

where the sum only runs over particles j in contact with . Here ky
is a coupling constant that can be used to adjust the strength of the
dissipation. If we plug in this expression for £ in (4.10) we get the
following implicit formula for the velocity

1 1
== ) v £l 4.12
v - v+ kg ( )
T‘ij<dij

where z; is the number of particles in contact with particle i. In
order to solve for the velocity we have to rewrite this in matrix form.
We define vectors containing the values for all N particles: vy =
(V20 Va1 -y Van—1) and £ = (S, f&, o 1), and similarly for the
other component v, and f,. We can then rewrite (4.12) as

_ 1
Avse = 3,5 (4.13)
Av, = k—ldfy,

where the matrix A is defined as
2, fori=j,
Aij = —1, for i 7&] and Tij < dij7 (414)
0, for T > dzj

Since the matrix only contains equations describing the relative veloc-
ity between the particles, the matrix is singular and there is no unique
solution. The physical meaning is that there is nothing in equation
4.12 that prevents all particles from simultaneously translate at arbi-
trary speeds in a common direction. In order to get a unique solution
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we need to add further constraints. This can be done by a slight
modification to the model where we add a small friction term 6 < 1
between the particles and the background substrate. We can then
redefine the matrix A as

2 + (5, for i = Js
Ay =1 —1, for ¢ # j and r; < d;;, (4.15)
0, for r;; > d;;.

Using this approach we are guaranteed that A will always be invertible.
The above equations can be used directly if the system is not periodic
in the y-direction, but they need some adaptations in order to fulfill
the Lees-Edwards boundary conditions. We can get the correct form
for Lees-Edwards boundary conditions by rewriting Eq. (4.11) using
the modified velocities,

fidis = —kd Z (Vi — Vj) — k(]VZ'

Tij<di]

= —ky Z (ui —u; + Yy — ?Jj]Lyfi) — ko(u; + JyiX)
Tij<di]

= —k‘d Z Aijllj — k‘d’)/ Z [yz — yj]Ly)A( — ko’}/yzfi (416)
7’,]<d” T’z]<dzj

Here the friction term has been included and we can identify § = ky/ky.
The notation [y; —y;]z, stands for the shortest distance between 7 and
7 in the y direction, considering the periodic boundary conditions. We
then insert Eq. (4.16) into Eq. (4.10) and rewrite the expression in
vector form as

Au, = lExa
BT kg (4.17)
Auy = k_dfy’
where the components of f, are given by
fir = [ = kay D i — vile, — ko (4.18)
'rij<d¢j
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The particle velocities can be obtain by solving Eq. (4.17). Once the
velocity is known it is trivial to write down the equations of motion,
which in the sheared frame are

y = Uy
When simulating Eq. (4.19) one never needs to calculate the inverse of
the matrix A explicitly, which would be very time consuming. Instead
one applies an iterative solver to (4.17), which is faster, but still takes
significantly more computations than the other models that can be
solved explicitly without any matrices. In paper V we show that in
some cases it is possible to approximate the solutions of the CDy model
using the much faster non-overdamped model CD described in 4.6.1.

4.5.2 The RDjy model

The second version of the model introduced by Durian is a mean field
version of the CDy model, where instead of actually summing over
the neighboring particles in Eq. (4.11) we replace the sum with an
estimated average velocity of the neighboring particles (v),

£ = kg2 (vi — (V). (4.20)

Here z is the average number of contacts per particle. This number
is hard to know in advance so in the simulation we use z = 1. From
the results it is then possible to calculate the true z which tells us the
effective ky of the simulation. There is an alternative interpretation
of this model which justifies the use of z = 1: one could see the
dissipation as not acting between contacting particles but instead be
proportional to the velocity difference between the particle and the
flow velocity of the surrounding medium vgp which serves as a velocity
reservoir. In this case we imagine that the particles are immersed in
a viscous liquid, and the dissipation would effectively be the normal
Stoke’s drag. The dissipative force then looks like

fl-dis = —kd (Vi — VRD) . (421)

33



The velocity of the background liquid vgp (or similarly (v)) is assumed
to be a perfect Couette shear flow, given by vgp = Ay;x From the
numerical point of view, the actual simulation is the same for both
of these methods, the only difference is the post-processing, if one
chooses to rescale the results to adjust for the z factor or not. In
the articles we have used this second interpretation of the dissipative
force.

Written in shear frame coordinates the equations of motion become:

. o1 el _ el
im0
= U = 1 el :

Yi = Uiy = 32 Jiy-

Here the z factors have been included for completeness, but in practice
all our simulation have been done with z = 1. The act of keeping z

constant means that the strength of the dissipation no longer varies
with ¢.

4.5.3 Differences between the CD,- and RD; models

In earlier work, Olsson and Teitel [8] showed that for the RDy model
it is possible to extract a shear rate dependent length scale from the
spatial velocity correlation:

o <Uy(xia yi)vy(xi +, yz)>

9(w) = {0y (2)?)

(4.23)

where v,(z,y) is the y component of the velocity field at (x,y), and
the function g(z) is the autocorrelation of v, along the z-direction and
averaged over all particles. This length scale was shown to diverge as
one approaches point J, indicating that point J is a critical point.
However, Tighe et al. [28] noted that the velocity correlations in the
CDg models are very different, and that they lack a diverging length
scale as point J is approached. Figure 4.8 shows the velocity correla-
tion for the two models and how it depends on the shear rate. This
raises the question: Does the type of dissipative mechanism in the
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Figure 4.8: The normalized velocity correlation function g, (z) for different values
of 4 for a system with N = 1024 particles at ¢ = 0.8. a) Data for the RDg
model, here we observe a minimum in the curves which can be used to define a
correlation length. This length diverges as the shear rate ¥ — 0. b) Data for
the CDg model, here there is no minimum, and the correlation length seem to be
almost independent of the shear rate.

system affect the critical behavior close to point J? In order to answer
this question we decided to investigate several models with different
dissipative forces. We also included mass to be able to determine what
properties in the models change as we go to the overdamped limit.

In paper V we provide evidence that the critical behavior, close to
the jamming transition, for both the RDy and CDy models are very
similar. We have however not yet found the complete answer on what
changes that can be made to the dissipative force without altering the
observed critical behavior.

4.6 Adding Mass to the Simulations

We are now going to reintroduce mass to the Durian bubble model. As
described above one reason for investigating these models was to see
if the difference, as seen in figure 4.8, observed between the velocity
correlation functions for the RDy and CDg model still remain when
we have massive particles, and also to investigate in which parame-
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ter ranges the models with mass agree with the overdamped models.
However, it turns out that the behavior of these models is highly de-
pendent on the choice of parameter values and we have observed a lot
of interesting effects away from the overdamped limit that we origi-
nally were interested in when starting the work on paper IV and V.

In these models each particle now has a finite mass m;. The equa-
tion of motion is then simply Newton’s second law,

mt; = £ 4 £35S (4.24)

Written in the sheared coordinates and modified velocities one gets

Tp = Uiz — Yy,

Yi = Uy,

-1 el dis Lng
Uix—ﬁi< iz T ix)_’wzy?
g _ 1 el dis

iy = o (Fi + 13°)

ms 1y 1y

(4.25)

which is known as the SLLOD equations of motions [29] [18].

4.6.1 The CD model

for the CD model we use the same dissipation as in the CDy model,
i.e. the dissipative force 3 is proportional to the relative velocity
between contacting particles:

£0 = —ky Y (vi—v;). (4.26)

T‘l‘j<dij
We can rewrite the force in terms of the modified velocity which gives
(0 =~k Y (w-wril -yl x) . (427)

Tij<dij

The notation [y; —y;]z, stands for the shortest distance between 7 and
J in the y direction, considering the periodic boundary conditions.
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Inserting the force into the equation of motions gives

Li = Uiz — YUiy,

yi = Uiy,
. el . . 4.28

g
Uiy = T — ,% Z; (wiy — ujy)

where the sums run of all particles j in contact with <.

4.6.2 The CD,, model

The dissipation in the CD model used the relative velocity. We now
limit the dissipation to only act on the normal component of the rel-
ative velocity. This type of dissipation is often used to model massive
granular particles [30,31]. An interesting difference between this model
and the overdamped models like RDy and CDy is that the rheology
below jamming is now Bagnoldian, o ~ 42. A reason why we are inter-
ested in this model, is that it will help us determine what properties of
the particle interaction that are important in order to get Newtonian
or Bagnoldian rheology.
We use the following expression for the dissipative force:

£ = —kg Y [(vi—vy) - Bi] By (4.29)

T‘ij<dij

The equations of motion can be obtained by substituting f3 with
£7P in Eq. (4.25).

(2

4.6.3 The CD; model

We can also define a dissipation to only act on the tangential compo-
nent of the relative velocity:

S R A (4.30)
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This model has, to the best of our knowledge, not been studied before.
It might be difficult to find a physical system that behaves according
to this dissipation, however from a theoretical point of view this model
has been very useful in understanding the difference between the CD
and CD,, model.

4.6.4 The RD model

We can also add mass to the RDy model. We then use the same
dissipation as for RDy:

fl-dis == —k’d (Vi - VRD) s (431)
which we can insert in equation (4.25) to get the equations of motion,

Tj = Ui — YUgy,

y’i = uiy7
cl (4.32)
T }rf;z m; i 1Y
o= W Bd g,
Uiy = 0 = Uiy

The same discussion as for the RDy model regarding whether to replace
kq with k,z in the dissipative force applies here as well and depends
on which interpretation we use for the dissipative force.

4.7 Emergy Minimization and the Quasistatic-Limit

The limit when 4 — 0 is known as the quasistatic-limit. This limit
is interesting since we would like to get data as close as possible to
the critical point J. Approaching this limit using a finite ¥ is difficult
since the time it takes the system to shear a certain amount ~ is
directly proportional to 7. With the currently available computer
resources it is possible to do simulations down to 4 ~ 1072, More and
faster computers will of course lower this limit, but there are more
efficient methods of obtaining the limiting value. What we would
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like to do is to give the system time to relax completely between
each shear increment. This is however a very slow process since the
relaxation times close to jamming can be very long [32]. The approach
we use instead is to do quasistatic shearing by numerically minimizing
the energy of the particle configuration in between each small shear
increment A~y. The algorithm for doing quasistatic shearing is simply

1. Repeat until done:
2. Shear system v — v+ Axy
3. Minimize energy of system

Here it is important to note that since we use the numerical mini-
mization we can not say how long physical time it would have taken
for the system to reach the minimized state using the normal dynam-
ics, and consequently we do not know how long time it is between
successive shear steps. This is also why we use the notation A~ in-
stead of 4, which would imply that there is a known time interval
between successive steps. If Ay is small enough, the resulting dy-
namics is independent of the exact value of A+, which means that we
have reached the quasistatic limit. For the minimization we used the
Polak-Ribiere method [33], which is a non-linear conjugate gradient
method, see the appendix of paper I for more details on the mini-
mization. One thing to remember when using this type of minimizing
routines is that the particles will not follow the exact same paths as
if the system was allowed to relax using the normal dynamics, which
means that when looking at a specific configuration the final energy
after minimization/relaxation will differ. However, on average, when
considering the average minimized energy over a large collection of
particle configurations, the two methods agree.

Another issue to consider when modeling particles configurations
with very small overlaps is the numerical accuracy, especially when us-
ing iterative methods like this. For example, in order to get the whole
system of particles to minimize uniformly, all particles should have the
same degrees of freedom. This is not the case if the particle coordi-
nates are represented using ordinary floating point variables. Due to
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the nature of floating point variables, the position of particles close to
the origin can be specified more accurately than the position of parti-
cles far from the origin. This can be seen as a force gradient across a
minimized system. The effect is however only seen when minimizing
to very low energies, the onset of this effect depends on the system
size and it can usually be ignored for smaller systems. The system
sizes used in the included papers were all small enough that this effect
did not affect the jammed states in any significant way. The effect can
however be seen if studying the low energy unjammed states, but that
is no problem since they were never used in the analysis. It is possible
to eliminate this effect by making sure that all particle coordinates
have the same resolution. One way of doing this is to split the coor-
dinate r of a particle into two parts r = r, + r,, where 7, is the base
giving the rough position of the particle and r, is an offset from the
base position. Since minimization only involves small displacements,
the r, value can be set at the beginning of each minimization, and any
changes to the particle position can then be performed on r,. Using
this method all particles behave the same regardless of their position
within the system.
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Chapter 5

Criticality and Scaling

Critical scaling is a phenomenon that can be observed close to critical
points or critical lines in parameter space. These critical points (or
lines) are associated with continuous phase transitions and constitute
the boundary between two phases in such a transition. Close to the
phase transition many properties of the system exhibit power-law de-
pendencies. Using Renormalization group theory we can explain this
behavior and explain the behavior in terms of scaling relations that
describe how an observable in the system transforms if the length scale
of the system changes. The main idea is that there exists a correla-
tion length £ in the system, and as we approach the critical point, &
diverges. This means that at the critical point the whole system is
correlated and fluctuations occur at all length scales. The system is
then said to be scale-free.

The renormalization group was initially devised in particle physics,
but nowadays its applications extend to solid-state physics, fluid me-
chanics, cosmology and even nanotechnology. In the study of equilib-
rium phase transitions scaling theory is well established and has seen
extensive use especially in different types of spin systems. Applying
multivariable critical scaling to the athermal jamming transition, a
non-equilibrium transition, which presently lacks a solid theoretical
foundation, is a fairly new approach. The first use of these methods
in the context of jamming were by Olsson and Teitel in 2007 [8].
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5.1 Scaling around point J

Sufficiently close to point J we can formulate a scaling assumption
that predicts how an observable (e.g. shear stress, pressure, energy,
and jamming fraction) will behave if we rescale the system with a
scale factor b. For athermal systems, T' = 0, sheared at a constant
shear strain rate 7, in the vicinity of the critical point J we expect an
observable O to scale as

O (¢4, L) = b7 [ (6 — ¢g) B/",4b*, L710) , (5.1)

where L is the system length, f is an unknown scaling function and
b is an arbitrary scale factor. We will explain the use of f and b
shortly. Here yop, v and z are the critical exponents describing the
behavior close to point J. The critical exponent ye» is associated with
the specific observable and may be different for different observables,
the exponent v is the correlation length critical exponent, and z is the
dynamical critical exponent. The exponents v and z are assumed to
be the same for all observables. The scaling function f depends on
three parameters ¢, 4 and L, this is a very general expression and in
order to more easily analyze the system behavior one usually looks at
limiting cases where two of the three parameters have known values.
We are free to select the scale factor b however we like, and we will
use this freedom to cancel one of the parameters in f.

5.2 Scaling in the limit L — oo

If we take b = 4~'/* the second parameter in the scaling function

f, equation (5.1), becomes a constant. If we then look at the limit
L — oo, which takes the third parameter to zero, we get the following
scaling relation

O (¢, 74) =44 f ((¢ — ¢) /4%, 1,0) . (5.2)

This relation tells us that if we plot O/4%0/* vs. (¢ — ¢s) /5
all points in the two-dimensional (¢, ) plane will collapse to a sin-
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Figure 5.1: Example of scaling collapse of data in the (¢,%)-plane. Since ¢ — ¢
changes sign at ¢; we use the magnitude of » — ¢ ; in order to see both branches in
the log-log plot. Data for RDg-model with N = 1024 particles, using ¢; = 0.8433,
y = 1.1, and zv = 3.5.

gle curve, as illustrated in figure 5.1. We can continue to reduce the
number of variables further by looking at the behavior exactly at the
critical jamming density, ¢ = ¢;. The scaling function is now a con-
stant, f(0,1,0), and we expect

O~ 4% at ¢ = oy, (5.3)

where go = yo/zv. This corresponds to a non-linear rheology. Sim-
ilarly, we can look at the ¢-dependence above and below ¢;, in the
limit ¥ — 0. Below jamming, ¢ < ¢, we expect the rheology to be
linear if 4 is small enough. In order to get linear rheology in the limit
4 — 0, the scaling function f(z,1,0) should be proportional to z¥0~*"
as r — —oo, which gives

% ~ 16— 50 for & < b1, (5.4)

where the exponent is o = z2v — yo.
For ¢ > ¢;, above jamming, we expect a finite yield stress which
suggests that all observables should be independent of 4 in the limit
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4 — 0. This implies that the scaling function f(z,1,0) must be pro-
portional to z¥¢, which gives

O ~ (d) — ¢J)yo for ¢ > ¢;. (55)

5.3 Finite Size Scaling

In the above, we assumed that we had a really large system so that
any finite size effects can be neglected. However, obtaining good data
for large systems is computationally expensive. An alternative way
of approaching the problem is to study how system properties change
with system size. It is then possible to use data for smaller system
sizes which are affected by finite size effects, and through the use of
scaling relations determine the critical exponents.

We start from the same scaling assumption as before, Eq. (5.1),
however this time we select b = L. In the limit ¥ — 0 this becomes

O (6,4, L) = Lvo/" f (%—/¢” 0, 1) . (5.6)

An advantage of using finite size scaling is that we can determine

the v exponent separately, which is in contrast to the scaling analysis

described above where it only appeared in the combination zv. By

doing both of these scaling analyses together we can determine the
values of both z and v.

5.4 Correction to Scaling

For many phase transitions it could seem to be fairly straight-forward
to determine the exponents and the location of the critical point by
fitting data to the type of scaling expressions discussed in the previous
sections. However, for the jamming transition the situation is a bit
more complicated, as it turns out that the scaling assumption (5.1) we
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started with is somewhat too simple. The scaling function f in equa-
tion (5.1) does in fact take more arguments than what we explicitly
show here. The complete expression would look like

O (i, ooy fn) = DY f (uy bV, .. bV (5.7)

where the state of the system is given by the set of parameters pq, ..., fin.
The reason to exclude most of these parameters is that they consti-
tute irrelevant variables. An irrelevant variable describes a property
of the system that decreases in importance as the system is rescaled
with a factor b > 1, reducing the number of degrees of freedom in
the system. Relevant variables on the other hand are properties that
remains important after rescaling, in our case ¢, %, and L. Mathe-
matically, a parameter u; is relevant if the corresponding exponent is
y; > 0, and irrelevant if y; < 0. Exactly at the critical point only rel-
evant variables remain after rescaling, however, if we are not exactly
at the critical point there might still be contributions from some of
the irrelevant variables. The idea is that if we are close enough to the
critical point the scaling expression in equation (5.1) should hold as
the contribution from the irrelevant variables can be neglected. How-
ever what constitutes “close enough” is usually not known in advance.
It turns out that for the jamming transition we often need to include
a correction term, which includes the effect of the largest remaining
irrelevant variable, in order to get good agreement between the data
and theory. When we add this term the scaling assumption changes
to

O (¢, 4, L) = b [ fo (¢ — ¢.s) b'/",4b%, L7"D)
+b7 f1 (¢ — ¢g) UMY, 407, L70) ], (5.8)

where we now have two scaling functions, fy and f;, and a new critical
exponent w associated with the second term. Note that we do not need
to know which parameter “u” that we are correcting for in order to
use this method. Including this second term in the scaling expression
is known as using corrections to scaling [34] [35]. In Ref. [36] Olsson
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and Teitel show that such corrections need to be included, they also
show that the correction term is larger for the shear stress o than for
the pressure p. That is why we choose to mainly look at pressure
rather than shear stresses in the subsequent works.
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Chapter 6

Summary of Papers

Here follows a short description of the publications included in this
thesis. Since all of the papers have multiple authors a short descrip-
tion of my contribution to each paper is also included. A significant
part of my work has concerned the development and testing of numer-
ical simulation software, running the software, data management, and
doing statistical post-processing of the output. However all articles
have been written in close collaboration, which means that I have had
the opportunity to provide input at all stages during the production
of the manuscripts.

6.1 Paper I

Glassiness, Rigidity, and Jamming of Frictionless Soft Core
Disks

In this paper we investigate how the jamming probability of a config-
uration of particles depends on the way it was generated. A configu-
ration is considered jammed if the energy per particle after quenching
is larger than a small cut-off value e, = 1071°. We generate a large
number of configurations using several different protocols, the config-
urations are then quenched to determine what fraction of them that
jam. We find that cooling followed by compression leads to a wide
distribution of jamming packing fractions ¢;, that depends on both
the cooling rate and the initial properties of the configuration. We
show that shearing gives a narrower distribution of ¢;, and attribute
this difference to the mixing that occurs during shear which prevents
phase separation of large and small particles, i.e. the formation of
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larger monodisperse regions in an otherwise bidisperse system. This
makes the sheared ensemble independent of the initial configuration.
We conclude that shear-driven jamming is a unique and well-defined
critical point.

contribution: Ezxtensive developments of the numerical methods for
both minimizations with the conjugate gradient method and quasistatic
shearing simulations as detailed in Appendiz A. Performed all the nu-
merical simulations except the Hard-Core simulations in section D.

6.2 Paper II

Finite-Size Scaling at the Jamming Transition: Corrections
to Scaling and the Correlation-Length Critical Exponent

In this paper we perform a finite size scaling analysis. We compare
the result from two ensembles, RAND where we quench starting from
random initial positions, and QS obtained from quasistatic shearing.
We determine the spatial correlation length exponent v and show that
corrections to scaling must be included when analyzing the data in
order to get correct results. Including corrections to scaling gives a
significantly higher value of v than have been reported in earlier work
that did not consider corrections to scaling [11].

contribution: All the numerical simulations and I was also involved
in several attempts at analyzing the data with finite size scaling.

6.3 Paper III

Pressure Distribution and Critical Exponent in Statically
Jammed and Shear-Driven Frictionless Disks

In this paper we study the distribution of pressures of configurations
from the RAND- and QS-ensembles. For the RAND ensemble we use
both harmonic and Hertzian particle interactions. When approaching
the jamming transition from above we expect the pressure to scale
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as p ~ (¢ — ¢s)Y. We show a simple way of determining if the pres-
sure critical exponent is y > 1 or y < 1 based on a divergence in the
pressure distribution. We confirm that y > 1 for the QS-ensemble as
expected from previous work based on simulations at constant shear
rate [36].

contribution: Numerical simulations, both quasistatic shearing and
manimizations for the harmonic RAND ensemble.

6.4 Paper IV

Dissipation and Rheology of Sheared Soft-Core Frictionless
Discs Below Jamming

The background of this paper was the intriguing observation that gran-
ular particles are usually found to obey Bagnoldian scaling whereas
foams and emulsions are found to obey Newtonian scaling. We there-
fore set out to compare the rheology of the RD, CD, CD,, and CD,
models. We investigate which of these models have a well-defined over-
damped limit, and which criteria that must be fulfilled in order to get
an overdamped dynamics. We note that several of these models can
exhibit both Newtonian rheology and Bagnoldian rheology depending
on the relation between the parameters k., k; and m, and that there
in some cases seem to be sharp transitions between the two types of
rheology. We find that the Newtonian rheology is associated with the
formation of large particle clusters, while in the Bagnoldian regime
particles separate after contact and no large clusters are observed.
contribution: All the numerical simulations and I was also deeply
involved in the development of the theory.

6.5 Paper V

Universality of Jamming Criticality in Overdamped Shear-
Driven Frictionless Disks
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Here we compare the RDy and the CDy models. We investigate the
claims by Tighe et al. [28] regarding the different scaling behavior
of the RDg and the CDy models. We present an argument for why
the velocity correlations are so different, and show that both models
seem to scale the same way close to the jamming transition in the
overdamped limit. We show that it is possible to use data from the
much faster CD model with finite m, simulated in the overdamped
limit, in place of “real” overdamped data from the slower CDy model
where m = 0.

contribution: All simulations for the CD model and I was also in-
volved in the analyses, at an early stage especially on the crucial ques-
tion on the velocity correlations which were then calculated with zero
mass, and later also on the divergence of the pressure as point J is
approached.
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