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Abstract
Granular materials consist of macroscopic grains, interacting via contact forces, and 
unaffected by thermal fluctuations. They are one of a class systems that undergo jamming, 
i.e. a transition between fluid-like and disordered solid-like states. Roughly twenty years ago, 
proposals by Cates et al for the shear response of colloidal systems and by Liu and Nagel, 
for a universal jamming diagram in a parameter space of packing fraction, φ, shear stress, 
τ, and temperature, T raised key questions. Contemporaneously, experiments by Howell 
et al and numerical simulations by Radjai et al and by Luding et al helped provide a starting 
point to explore key insights into jamming for dry, cohesionless, granular materials. A recent 
experimental observation by Bi et al is that frictional granular materials have a a re-entrant 
region in their jamming diagram. In a range of φ, applying shear strain, γ, from an initially 
force/stress free state leads to fragile (in the sense of Cates et al), then anisotropic shear 
jammed states. Shear jamming at fixed φ is presumably conjugate to Reynolds dilatancy, 
involving dilation under shear against deformable boundaries. Numerical studies by Radjai 
and Roux showed that Reynolds dilatancy does not occur for frictionless systems. Recent 
numerical studies by several groups show that shear jamming occurs for finite, but not infinite, 
systems of frictionless grains. Shear jamming does not lead to known ordering in position 
space, but Sarkar et al showed that ordering occurs in a space of force tiles. Experimental 
studies seeking to understand random loose and random close packings (rlp and rcp) and 
dating back to Bernal have probed granular packings and their response to shear and intruder 
motion. These studies suggest that rlp’s are anisotropic and shear-jammed-like, whereas rcp’s 
are likely isotropically jammed states. Jammed states are inherently static, but the jamming 
diagram may provide a context for understanding rheology, i.e. dynamic shear in a variety of 
systems that include granular materials and suspensions.

Keywords: jamming, granular materials, friction, soft matter, shear jamming

(Some figures may appear in colour only in the online journal)

Key Issues Review

IOP

2019

1361-6633

1361-6633/19/012601+26$33.00

https://doi.org/10.1088/1361-6633/aadc3cRep. Prog. Phys. 82 (2019) 012601 (26pp)

publisher-id
doi
https://orcid.org/0000-0003-2499-2182
https://orcid.org/0000-0002-3589-8207
mailto:bulbul@brandeis.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6633/aadc3c&domain=pdf&date_stamp=2018-11-07
https://doi.org/10.1088/1361-6633/aadc3c


Key Issues Review

2

1.  Introduction

1.1.  General overview of granular materials

Granular materials belong to a class of systems that exhibit 
jamming, i.e. a transition from a fluid-like to a disordered 
solid-like state that occurs out of thermal equilibrium [1], in 
the absence of Brownian motion, and that is driven by external 
forcing such as compression or shear. This review is focused 
on jamming in systems without any thermal fluctuations, 
which occurs for collections of macroscopic particles of size 
larger than a micron. Other members of this class of ‘athermal’ 
materials include foams [2], emulsions [3], and non-thermal 
colloids. Unlike equilibrium fluid–solid transitions, jamming 
transitions have not been unified under a comprehensive theor
etical framework, although a unified jamming phase diagram 
has been proposed [4] and extensively investigated in the con-
text of frictionless granular particles [5]. Unanswered funda-
mental questions include: what are the relevant state variables; 
what role is played by the protocol, i.e. the history associated 
with the creation of a state; and indeed, what constitutes a well 
defined state. One source of difficulty in formulating a uni-
fied jamming theory is understanding the differences between 
the collective behavior of systems of particles with or without 
frictional contact forces between grains, or when particles do 
or do not have attractive forces such as cohesion. For dry gran-
ular materials, the absence of cohesion implies that a granular 
solid only exists in the presence of externally imposed stresses 
arising, for instance, from body forces, such as gravity, or 
through boundary stresses such as compression or shear. The 
question of rigidity of jammed solids is even more challenging 
since, unlike thermal matter, the usual notions of excitations 
and relations between fluctuations and response cannot be 
easily generalized to jammed solids, most particularly when 
the particle are frictional. It is the presence of mechanical con-
straints alone that determines whether a system can resist per-
turbing stresses, and be mechanically stable, or whether it will 
deform or flow until mechanical equilibrium is restored: there 
is no well-defined thermal equilibrium state about which to 
deform [6, 7]. The point of this review is to consider the nature 
of jammed granular states, and to understand: how these states 
arise as functions of preparation history (protocol), friction 
coefficients; how they behave in response to perturbations, 
and changes in the collective behavior of jammed states as key 
system properties are changed. In particular, particle friction 
and shape play key roles.

1.1.1.  Metastability.  Granular materials are almost always far-
from-equilibrium systems in the thermodynamic sense. When 
these materials are in a jammed state, they are typically in a 
local energy minimum, but by no means in the lowest pos-
sible energy. A heap of sand on a flat surface is an obvious 
example: in the absence of external perturbations, it can be 
stable, but a lower energy state is available where the heap 
has been reduced to a single layer of grains. Note that if the 
grains are dry and cohesionless, there are no attractive forces, 
and hence no surface tension. The heap is stable because the 
energy available from thermal fluctuations is much too small 

to dislodge a grain. For instance, at room temperature, the 
energy needed to lift a 1 mm sand grain off the surface of a 
heap is  ∼5 × 1012 times greater than thermal energies, kBT . In 
fact, vibration is often used as a strategy to provide a mechani-
cal analogue to thermal motion in granular materials.

The metastability of granular jammed states is a property 
they share with other glassy systems, which have fallen out 
of thermal equilibrium. Like glasses, jammed solids are also 
amorphous in nature, with no identifiable long-range spatial 
order. The two classes however differ in that thermal fluctua-
tions are important for stabilizing glasses, whereas they play 
no role in jamming. In addition, glasses are not defined by 
contact networks but by positional correlations, whereas the 
properties of jammed granular states for frictional particles 
are defined by contacts and contact forces. An infinitesimal 
displacement of a particle can break a contact and affect a 
jammed state [8].

1.1.2.  Fluctuations.  One might be tempted to assume that 
since temperature has no significant role in granular materials 
that there would be no fluctuations. In fact, the reverse con-
clusion applies. Since temperature cannot relax inhomoge-
neities, granular materials can exist in states with large local 
variations. When flowing, granular materials typically exhibit 
large spatial and temporal fluctuations with magnitudes vastly 
exceeding those of thermal fluctuations [9, 10].

The spatial and temporal scales of fluctuations during flow 
are at best partially understood, but are certainly sensitive 
to the nature of the underlying structure of the system. For 
instance, for slow to moderate shear-rate flows, where forces 
are carried on force chains, i.e. networks of grains carrying 
large forces, force fluctuations occur over many tens of grains, 
at least. In such flows, fluctuations occur with a fastest time of 
at least γ̇−1, where γ̇  is the shear rate.

1.1.3.  Coarse graining.  Although coarse grained measures 
such as density or stress show decreasing fluctuations when 
they are computed over increasing sizes, there is a delicate 
balance between computing coarse grained continuum mea-
sures, and averaging out meaningful spatial gradients [11, 12].  
Continuum models posit the existence of a reasonable coarse 
graining length scale, but there are few [12, 13] direct exper
imental tests to establish a rigorous coarse graining proce-
dure. The formation of shear bands in granular materials is an 
example where this matters. Such bands occur routinely as an 
instability in physical materials that are subject to shear, are 
no more than a few 10’s of grains wide, and are usually sig-
nificantly less dense than the neighboring material [14]. Once 
shear bands form, additional strain tends to be localized in 
the shear bands because their lower φ makes them weaker. 
The propensity to shear band formation presents a particular 
challenge for drawing conclusions about experimental data, 
since the response of a system containing shear bands is domi-
nated by the shear band, not the remaining material. It is no 
longer reasonable to think of the system as having a ‘state’. 
By contrast, numerically simulated systems of frictionless 
particles may exhibit shear bands, but to our knowledge, these 
are typically transient, forming in a given location, but then 
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vanishing and reappearing elsewhere in the system [15]. For 
our purposes, granular states will typically have local fluctua-
tions in density or perhaps other properties. A system that has 
persistent shear bands or other long range spatial variability 
cannot be represented as existing in a single well defined state.

1.1.4.  Stress tensor.  The appearance of contact forces in the 
description of microscopic configurations indicates the impor-
tance of the local stress or force moment tensor of each grain 
[16, 17] in determining the mechanical properties of granu-
lar jammed states. Here, we provide a discussion of the rela-
tion between the microscopic dynamics of particles and the 
resulting larger scale fields that arise in continuum descrip-
tions of particulate matter through conservation laws for basic 
mechanical properties such as mass, momentum and energy. 
The stress tensor occurs in the context of momentum conser-
vation, and its form is particularly important for statics and 
dynamics near jamming. As discussed in Goldenberg and 
Goldhirsch [18], the microscopic momentum density is given 
by

pmic(r, t) = Σimiviδ(r − ri)� (1)

where the mi and ri are the masses and positions of individual 
grains, and r is the position coordinate for the corresponding 
smoothed field. It is possible to obtain a continuum repre-
sentation of the momentum density by coarse graining, i.e. 
convolving, pmic(r, t) with an appropriate function, φ(R) that 
is unit-normalized, peaked uniquely at R = 0 and that has a 
finite width, w, that sets the coarse graining scale. Assuming 
that the particles satisfy Newtonian mechanics, the space-time 
varying continuum momentum density satisfies

ṗα = −∂[ρVαVβ − σαβ ]/∂rβ� (2)

where the dot implies partial differentiation with respect to 
time, and V, the coarse-grained velocity, is the ratio of the 
coarse grained momentum density and the coarse grained 
mass density. The coarse grained mass density is obtained 
from the microscopic mass density, Σimiδ(r − ri) by coarse 
graining/convolution with φ(R). The stress tensor, σαβ, con-
tains two parts:

σαβ

= (−1/2)Σi,jfijα(t)rijβ(t)
∫ 1

0
dsφ(r − ri + srij)

−Σimiv′iα(r, t)v′iβ(r, t)φ(r − ri),

�

(3)

where the fluctuating velocities are v′
α(t) = vα(t)− Vα(r, t) 

and Vα(r, t) is the local coarse grained velocity. The first 
term on the right side of equation  (3) is the contact or col
lisional stress, and the second term is the kinetic or streaming 
stress. The former is important for static or slowly evolving 
systems. The latter dominates for stiff particles and in rapid 
flows where contacts are short-lived. Similar relations can be 
derived for energy conservation, and for the familiar continu-
ity equation that expresses mass conservation.

The partitioning of the stress tensor into contact and kinetic 
parts, and the effect of dimension, d and friction coefficient, 
μ, on the mean number of contacts per particle, z needed for 

mechanical stability (discussed below) provide means of 
effectively partitioning granular systems into broad classes. 
There is a continuum of friction coefficients and particle stiff-
nesses, hence of ziso’s and of relative importance of the two 
stress components. Nevertheless, we expect that near jam-
ming, vastly different behavior is associated with frictional 
versus frictionless spheres, with rapid versus slow flows or 
static states, and infinitely hard particles (inherently col
lisional) versus deformable particles.

A particularly relevant example of a phenomenon that per-
tains to a given class is force chains. For frictional deformable 
particles and slowly sheared quasi-static systems, force chains 
are long-lived [19–22]. Although force-chain-like networks 
can occur for hard or slippery particles, they are dynamic 
phenomena because force chains are generically unstable for 
frictionless spheres or disks. A particularly interesting ques-
tion concerns crossover in behavior between low, moderate 
and high friction, and between situations where different parts 
of the stress tensor dominate. In this review, we are primarily 
concerned with the effects of friction in the regime where the 
contact stress dominates.

1.1.5.  Statistical mechanics of jamming.  Given that granular 
materials are characterized by large fluctuations, it is clear that 
they should be analyzed statistically, and that jamming should 
be studied as the emergence of collective behavior from a 
large number of interacting microscopic entities. This forces 
us to address difficult questions about statistical ensembles, 
history dependence, or protocol, and the effects of disorder. 
Because of frictional contacts, forces are not derivable from 
a potential energy that depends only on the particle coordi-
nates, and hence the microscopic configurations of static 
granular assemblies cannot be completely characterized by 
just the positions of the grains. The forces depend on the ‘his-
tory’ of preparation. However, one could enlarge the notion 
of a microstate to include the contact forces to eliminate this 
history dependence at the expense of creating a new kind of 
statistical ensemble and be faced with the task of construct-
ing a statistical mechanics based on such an ensemble. This 
approach was pioneered by Edwards and a number of collabo-
rators [17, 23–25] and has been developed over the last cou-
ple of decades [26]. A review appears in [27]. The notions of 
order parameters, correlation lengths and response functions, 
associated with phases and phase transitions in equilibrium 
fluid–solid transitions therefore, need to be reexamined in the 
context of such an ensemble.

1.2.  Contact and force networks

As noted, dry granular systems are cohesionless, and grains 
interact via purely repulsive contact forces. Since thermal 
fluctuations are absent, there is no smoothing out of the effects 
of contact breaking (and forming). The distinction between 
fluid-like states and jammed states is, therefore, all about the 
properties of the contact network and the contact forces that 
collectively satisfy the constraints of static mechanical equi-
librium. In a jammed state, force and torque balance have to 
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be strictly satisfied at the level of every grain (with the exclu-
sion of rattlers), and this imposes strict requirements on the 
contact network [28–31]. Unjamming occurs when the den-
sity or shear stress reaches a limit beyond which these local 
constraints can no longer be satisfied. With purely repulsive 
contact forces, it is not possible to create an isolated region 
of grains in contact via non-zero forces: any such region has 
to percolate to the boundaries. Unjamming or jamming thus 
has to be a collective phenomenon, where changes in macro-
scopic observables associated with the contact network and 
force network necessarily accompany these transitions.

1.2.1.  Rattlers.  A jammed granular material has some subset 
of particles, non-rattlers, that are in mechanical equilibrium, 
i.e. in force and torque balance. A coexisting subset of par-
ticles, rattlers, consists of all particles that are not mechani-
cally stable. Except just at jamming, systems of particles that 
are jammed, have mechanical rigidity in that they can resist 
non-zero applied stresses, although the applied forces that can 
disrupt a jammed state can be very small if the system is close 
to jamming.

1.2.2.  Isostaticity.  One way to think about the restrictions 
placed on contact networks by the constraints of packing 
and of mechanical equilibrium is by counting the degrees 
of freedom, commonly referred to as the Maxwell counting 
arguments [28, 29, 32]. The constraints of force balance in 
d dimensions leads to d equations  per grain. The condition 
of torque balance provides an additional d(d − 1)/2 equa-
tions per grain. The unknowns are the contact forces. If the 
total number of contacts in a packing of N grains is Ztot ≡ zN , 
we have zN/2 unknown vector forces since each contact force 
is shared by two grains.

For frictionless systems with purely normal forces, the 
torque balance equations  are trivially satisfied and we have 
zN/2 variables constrained by dN equations. For a solution 
to exist, z � 2d . Isostatic packings are ones that satisfy the 
equality condition with ziso = 2d , and packings with higher z 
are hyperstatic. For nonspherical grains, the isostaticity argu-
ment has to be revisited and it can be shown that hypostatic 
packings with z < ziso are stable [33–36].

The isostaticity argument can be extended to frictional 
grains with friction coefficient μ, by including the torque 
balance conditions and by adding an additional attribute to a 
packing, which is the fraction of contacts, q that are fully mobi-
lized with the tangential force ft saturating the Coulomb bound 
| ft| = µfN. The Maxwell counting argument can then be gener-
alized. The number of unknowns is ( zN

2 (q(d − 1) + (1 − q)d) 

and the number of constraints is Nd(d+1)
2 . The isostatic con-

dition, therefore, reads ziso = d(d+1)
(d−q) . This extended Maxwell 

argument agrees well with observations in numerical simula-
tions [37]. It is clear that ziso for frictional grains is not just 
determined by dimensionality but depends on q and, therefore, 
how the packing was prepared. In the limit of µ → ∞, q  =  0 
and ziso = d + 1, which is also a lower bound on the frictional 
isostatic contact number. This generalized argument can only 
be applied at finite μ: the frictionless case cannot be obtained 

as a limit of µ → 0. Specifically, setting ziso = d(d+1)
(d−q)  to the 

µ = 0 value ziso = 2d  leads, in general, to unreasonable val-
ues of q.

Since for grains that are close to the hard particle limit, the 
original implementation of the packing constraints is through 
the rigid sphere constraints: the distance between the centers 
of two particles in contact has to equal the sum of their radii. 
An upper bound on both the frictionless and frictional values 
of ziso can be obtained in this limit. The hard particle con-
straint provides zN/2 constraint equations for dN unknowns, 
the positions of the particles and a solution can be obtained 
only when zN/2 � dN , or z � 2d . Putting it all together, for 
frictional grains, (d + 1) � ziso � 2d . For frictionless, hard 
disks, ziso = 2d  since there is only one value at which the two 
sets of constraints can be satisfied. This is the special fric-
tionless jamming/unjamming point that occurs at φ = φJ and 
has been discussed extensively as an example of a marginally 
jammed solid [28, 30].

The Maxwell counting argument, from which the above 
values of values of ziso are derived, is valid in the absence of 
special correlations in particle positions. For instance, hard, 
frictionless disks can crystallize into a hexagonal packing. 
With or without friction, perfectly straight lines of particles 
can be in force and torque balance, and therefore regular two 
dimensional arrays of particles can have z as close as desired 
to z  =  2. However, such structures are unstable to small ran-
dom force perturbations, typically involve some specific cor-
relation, and have minimal probability of occurring in nature. 
For systems of frictional discs, ziso is empirically found  
[38–40] to be a bit larger than d  +  1, and in simulations, there 
is also an accumulation of contacts where the frictional forces 
lie at the limit of the Coulomb condition [37]

1.2.3.  Force networks.  Contact networks consist of those 
particles that share contacts. Force networks are built on 
top of the contact network, and consist of particles that also 
experience force at or above a chosen amount. A hallmark 
of jammed granular solids is that stress is transmitted in a 
highly heterogeneous manner described by the force networks  
[6, 41]. Conventionally, there are two types of measures used 
to quantify the heterogeneity: (a) the distribution of the mag-
nitude of the contact forces is broad and exhibits an expo-
nential tail [14, 21, 40, 42–44], and (b) spatial localization 
of stresses on a subset of grains [6, 14, 21, 41, 45–47]. The 
latter phenomenon is particularly noticeable in shear-jammed 
states of frictional grains in which there is a large number 
of ‘spectator’ particles [7], which form a bath for the force-
bearing grains [38]. The force networks have been difficult 
to characterize by two-point spatial correlation functions [48, 
49]. There has been an intensive effort from several groups 
to use network and topology tools to characterize granular 
networks, and their connection to macroscopic system prop-
erties [50–60]. Recent work has shown that there is an alter-
native representation of the forces in a network that is dual 
to the real-space network [61, 62], and this representation in 
two-dimensional systems can be used to quantify the extent 
of spatial localization of forces. Understanding the nature of 
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jammed states and the jamming transition requires analysis of 
both the real-space and force-space networks, which are not 
simply related in frictional systems.

1.2.4.  Rigidity.  The above discussion is focused solely on the 
conditions imposed on a network by the constraints of static 
mechanical equilibrium. The question of rigidity of a jammed 
state has to be carefully considered. A network of contact 
forces in static mechanical equilibrium has to satisfy the fol-
lowing grain and contact scale constraints: (i) force balance, 
(ii) torque balance and (iii) the Coulomb condition restricting 
tangential forces, ft to ft � µfN , where fN is the magnitude of 
the normal force and μ is the friction coefficient. Such a net-
work may or may not be stable to an external perturbation 
and the response depends critically on the magnitude of the 
additional imposed stress and how compatible the perturbing 
stress or strain is with the existing force network. For instance, 
a network that has force bearing grains only along the com-
pressive direction cannot support even an infinitesimal strain 
in the dilational direction [7]. Shear jamming [38] of frictional 
grains, discussed in section  4, clearly demonstrates the dif-
ference between the responses of fragile and shear-jammed 
states. The shear-jammed states are rigid to shear reversal 
but the fragile states are not. Theoretically, the question of 
rigidity of jammed granular solids poses many challenges. In 
thermal equilibrium, shear-rigidity is the characteristic that 
distinguishes crystalline and amorphous solids from fluids. 
The emergence of rigidity in these systems is a consequence 
of broken translational symmetry [63]. Granular solids in the 
absence of thermal fluctuations cannot be characterized in the 
same way because of the large number of metastable states 
and the absence of a well-defined zero-stress solid [7]. The 
rigidity, therefore, depends on the stress imposed to create 
the state. Theoretical analysis of shear-jammed states indeed 
show a symmetry breaking, but in the force network that is 
dual to the real space network [61, 64].

As commonly used, jamming is actually two distinct prob-
lems: jamming and unjamming. The former describes the 
transition between fluid states that cannot resist shear to solids 
that can. If the grains are modeled as hard spheres, jamming 
is concerned with the kinetic part of the stress tensor and, 
jamming is the transition at which the system cannot be com-
pressed any further without creating overlaps of grains: the 
kinetic pressure diverges but the contact stresses are strictly 
zero. It is important to note that interactions between dry 
cohesionless grains do not have tensile strength and respond 
only if there is compression.

The unjamming process occurs under decompression, and 
is the mirror image of jamming. It refers to the transition from 
a solid to a fluid, which is marked by the vanishing of shear 
modulus. This transition has been thoroughly investigated for 
frictionless, soft spheres [44].

2.  Isotropic versus anistropic jamming: early work

Pioneering theoretical work on jamming was carried out by 
Cates et al [7] who hypothesized models of sheared, athermal 

colloidal systems and by Liu and Nagel [4] who hypothesized 
a universal jamming diagram. The former authors proposed 
that force-chain-like structures, sketched in figure 1, consist-
ing of roughly linear sets of particles that carry much of the 
applied stress, form in sheared colloids, and that these struc-
tures are fragile, resisting continued shear in the original com-
pressive direction, but falling apart under reversal of shear. 
These authors also considered the fragility of sandpiles and 
the role of the friction angle.

We note that shear may be carried out by deforming a sys-
tems boundaries in various ways, as sketched in figure 2. No 
matter which protocol, shear involves compression along one 
direction, expansion (dilation) in the perpendicular direction, 
and possibly an affine rotation. Pure shear consists of just dila-
tion/compression; simple shear involves an additional rotation. 
Couette shear resembles simple shear in a curved geometry, and 
consists of shearing in a cylindrical or circular geometry where 
the relative motion of the curved boundaries have an opposite 
sense. Necessarily, shear is volume (area in 2D) conserving.

Liu and Nagel first hypothesized a universal jamming dia-
gram, sketched in figure 3 for systems that include colloids, 
foams, granular materials, glass formers, and other systems 
that form disordered solids. The Liu–Nagel phase diagram 
incorporated a non-equilibrium axis measuring shear stress 
(τ) to the traditional phase space spanned by density (or pack-
ing fraction φ) and temperature (T). The granular (athermal) 
part of this phase diagram is spanned by packing fraction and 
shear stress (φ− τ ) whereas thermal systems undergoing the 
glass transition live on the T − φ plane. This jamming dia-
gram was proposed by Liu and Nagel as a way to unify the 
dynamical glass transition with the purely athermal jamming 
transition into one class of fluid-disordered solid transitions 
with a special point at (φ = φJ, T = 0, τ = 0).

Contemporaneous experimental studies by Howell et  al 
[20, 21, 65, 66] showed the existence of a jamming trans
ition that contained features of both the Cates et  al shear-
ing response [7] and a density dependence that controlled 
the transition between jammed and unjammed states. These 
experiments, discussed in more detail below, used photoelas-
tic discs that were sheared in a Couette geometry. To our 
knowledge, it was the first use of photoelasticity to provide 
particle-scale force data. This system was also modeled by 
Luding et al [65] in an early application of discrete element 
(DEM) simulations to a granular material near jamming. An 
image from the experiments, figure  4, shows a network of 
complex strong force chains, in the spirit of Cates et al that are 
aligned preferentially along the compression direction of the 
shear. This figure uses a color map of photoelastic response, 
where red indicates strong force, and blue weak or no force. 
Experiments discussed below, [39, 68] and shown in figure 5, 
exemplify the fragile and shear jammed states.

Numerical studies have since focused on the special point, 
φJ corresponding to the lowest packing fraction for which 
isotropic jammed exists, to understand the jamming trans
ition in frictionless grains and its relationship to the glass 
transition [5, 44, 69–73]. These studies support the proposed 
jamming diagram of Liu and Nagel to some extent. However 
numerical studies of rheology clearly indicate that the limits 
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of shear rate going to zero and temperature going to zero are 
not interchangeable [72, 74]. Granular materials live in the 
T  =  0 plane, forcing us to always take the limit in the order 
of first T → 0 and then the shear rate γ̇ → 0, whereas the 
quasistatic shear response of glasses belongs to the class of 
talking the limit of γ̇ → 0 before taking T → 0. For isotropi-
cally compressed frictionless particles, the work of O’Hern 
et al [44] indicated a unique jamming density density φ = φJ 
(for a given particle type), and a critical point at zero stress 
and φ = φJ. Subsequent work [75] has shown that the value of 
φJ can depend on protocol and particle friction coefficient, μ 
but the properties of this special point are robust. Silbert [76] 
has computed the jamming packing fractions and values of 
ziso for isotropically compressed discs and spheres, as shown 

in figure 6. For small μ, these quantitites differ little from the 
µ = 0 values. However, for very large friction, µ > 1, both φ 
and z at jamming are measurably smaller. The low and high μ 
limits are joined by a sigmoidal curve.

2.1.  Insights from 2D experiments

Two dimensional (2D) systems, particularly where the particles 
are photoelastic, provide a powerful approach to understand-
ing the nature of granular systems in general and in particular 
near the jamming point. The use of photoelastic granular par-
ticles was pioneered by Wakabayashi [77] and Dantu [78], 
and was used to understand soil mechanics by Drescher and 
Josselin de Jong [79] and Drescher [80]. We show two typical 
photoelastic images that contrast states that have been achieve 
by isotropic compression and by shear in figure 7. In figure 8, 
we show a close-up of a single photoelastic particle that has 
three contacts. A disk that is subject to a set of point forces 
has a photoelastic pattern that uniquely represents the set of 

Figure 1.  Sketch of force chains of hypothetical force chains in a sheared colloidal system, after Cates et al [7] These authors argued that 
force chains would form along the compressive shear direction (here with slope  −1). These force chains would resist continued shear in the 
original direction, but there would be no strong force network that could resist shear if its direction were reversed (a) force chains along the 
compressive direction that can resist continued shear only in the original shear direction; (b) continued shearing leads to a two-dimensional 
force network, which can resist shear reversal.

Figure 2.  Two common forms of shear strain. Top shows a 
schematic of pure shear consisting of compression in one direction 
and equal dilation in the other, keeping the system area fixed. 
Bottom shows simple shear which corresponds to deforming a 
rectangle into a parallelogram, at fixed area. An additional common 
way to apply shear is in a Couette geometry, as in figure 4. In this 
geometry, the inner out and outer boundaries of a pair of cylinders 
(rings in 2D) rotate relative to each other.

Figure 3.  Adaptation of the Liu–Nagel jamming diagram [67]. 
In the proposal of Liu and Nagel [4], jammed states exist near 
the origin of a parameter space with axes T, temperature, τ, shear 
stress, and φ−1, inverse packing fraction. This diagram is a proposed 
unification of glassy systems, for which the thermodynamic 
temperature is relevant, and granular systems, for which 
temperature is not. The latter exist in a parameter space consisting 
of τ and φ−1 only.
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forces and their points of application. This property forms the 
basis of an inverse algorithm, first developed by Majmudar 
and Behringer [81], that determines quantitative vector inter-
grain contact forces from photoelastic images of single par-
ticles. Figure 8 also shows more recent data from Zhang et al 
[82] that contrasts, clockwise from top left: an original color 
photoelastic image of a shear jammed state, a color filtered 
version of the same image that is the input to the force-inverse 
algorithm of Majmudar and Behringer [81], and Zhang et al 
[82], and a representation of the output of the algorithm giving 
the expected photoelastic image, based on the fitted contact 
forces and particle locations.

It is worth noting that the ability to obtain forces, contacts 
and other particle-scale data was crucial to understanding 
shear jamming [38, 81, 82], as discussed in section 4. Contact 
force data, in combination with the vector displacements 
between particles allows for the determination of the force 
moment tensor at the particle scale, and the full stress tensor 
at the system scale. Force data also makes it possible to map 
out strong and weak networks, or networks that exist above 
or below a chosen force normalization. These data also allow 
for the determination of statistical constructions such as force 
tiles [83], or contemplation of a detailed comparison at the 
smallest scales between an experiment and a numerical simu-
lation [65, 84].

Empirically, a photoelastic image exhibits a series of light 
and dark fringes, and the pressure, or more properly, the trace 
of the particle scale force moment tensor acting on a particle 
is usually well approximated by computing the square gra-
dient of the image intensity, averaged over a particle. This 
technique, which is computationally very efficient, was first 

used by Howell et al [14, 21, 65, 66], e.g. figures 4 and 9, and 
it provides force information at the particle scale in experi-
ments. The key point is that using photoelastic particles with 
appropriate imaging and processing allows complete access to 
all mechanical properties of a system from the particle scale 
upwards.

Figure 9 shows particle-scale force distributions as a func-
tion of mean density, where Howell et  al [14, 21] used the 
symbol γ for the packing fraction. These data pertain to a 
strongly anisotropic system, as characterized by figure  4. 
Notably, the mean force/particle vanishes at a packing frac-
tion, φc = 0.766. The force distributions for φ � 0.795 show 
an exponential fall-off seen in similar situations [40, 42, 43], 
and a peak at low force. The data indicate a transition in the 
range 0.790 � φ � 0.795 where the exponential tail vanishes. 
As discussed below, this system exhibits a shear band, such 
that φ is lower near the inner boundary than in the rest of the 
system. This means that it is difficult to assign a single den-
sity for this system. The exponential tail of the force distribu-
tion has become a hallmark jammed granular systems, and 
recently, the behavior of the distribution below the peak has 
attracted attention in the context of yielding [85].

Figure 4.  Image from experiments of Howell et al [20, 21, 65] 
showing the response of a system of photoelastic disks to shear. 
In a photoelastic image, particles that carry larger/weaker forces 
appear brighter/darker. In this image, bright/dark is mapped to 
color with bright/dark corresponding to red/blue. The experimental 
apparatus is a two dimensional Couette shear apparatus, where 
the inner boundary of an annulus rotates at a constant slow rate. 
Here, the rotation was clockwise, leading to force chains along the 
compressive shear direction (see below).

Figure 5.  Fragile and shear jammed states, as seen in a simple shear 
experiment using photoelastic discs [39, 68]. In the experiment, 
discussed in more detail below, a rectangular container of discs is 
sheared quasi-statically from a rectangle to a parallelogram, without 
changing the area. The top image shows a fragile state for which the 
strong force network, i.e. the brighter discs, percolates from only in 
the compression direction. The bottom state shows a shear jammed 
state for which the strong network extends to all boundaries. (Note that 
a small portion of the actual experiment is not visible in these images.)
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3.  Density-driven jamming and unjamming

In this section we review our understanding of the density-
driven jamming transition, especially in frictionless grains, 
which necessarily comes from numerical simulations and the 
ensuing theoretical framework. The density-driven jamming 
transition of grains has been the subject of several reviews 
[5, 73], and here we only highlight the crucial features of this 
transition to set it in context of the range of jamming behavior 
observed in physical granular materials which have non-zero 
friction. We do not attempt or claim to do full justice to this 
field.

3.1.  Hard sphere jamming

At zero temperature, hard spheres exist as a disordered solid 
(maximally random jammed state [86]) only at a the special 

jamming point. Soft spheres can exist as disordered solids 
over a range of packing fractions and the unjamming point is 
the lower limit of stability of such solids [76, 87]. The unjam-
ming transition is the solid-to-fluid transition of soft grains, 
and it has to do with both forces and positions. After all, 
strictly hard particles cannot be compressed beyond the jam-
ming transition. There is a real physical boundary separating 
the allowed region in phase space of hard and soft grains. The 
jamming and the unjamming transitions could therefore hypo-
thetically be defined by completely different physics. This is 
purely a consequence of granular assemblies being athermal. 
Introducing even an infinitesimal temperature eliminates this 
strict partitioning of phase space. Unjamming is concerned 
with the contact part of the stress tensor whose components 
vanish at the unjamming transition.

The hard-sphere jamming transition has been studied 
extensively in the last few years. Mean-field models [88–91] 
distinguish between the glass transition and the jamming 
transition. Other studies show that there is a well-defined 
maximally random jammed state [86] of hard particles, and 
that these disordered states are hyperuniform [92–95]: dis
ordered solids with suppressed density fluctuations. Research 
from the group of Torquato, Stillinger and their collaborators 
have also provided us with valuable information about the 
influence of particle shape on the nature of jammed states, rig-
orous definitions of jamming and the notion of order param
eters in jammed states [96].

3.2.  Jamming and unjamming of soft spheres

The density-driven jamming and unjamming transitions of 
soft grains involve contact forces and stresses from the first 
term on the right side of equation  (3). This feature clearly 
distinguishes the statistical framework that needs to be devel-
oped for soft grains from that of hard grains. For soft grains, 
jamming is the transition at which contact force networks 
are stabilized, and the jammed state is rigid to shear defor-
mations. Therefore, this transition need not coincide with the 

Figure 6.  Data from Silbert [76] for values of φ and z at jamming 
for isotropic compression of systems of particles with a given 
friction coefficient, μ. Top: for spheres, Bottom for discs.

Figure 7.  Photoelastic images from Majmudar and Behringer [81] 
contrasting an instropically compressed state and a shear jammed 
state.

Figure 8.  Photoelastic images. Clockwise from upper left: 
photoelastic image, as obtained with a high resolution color camera; 
this includes a raw photoelastic image, and a fitted image, plus a 
close-up of a single particle [82].
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transition at which there are no solutions to the hard sphere 
packing problem. For a jammed state of soft spheres to be 
rigid, i.e. to have shear rigidity, nascent contact chains have to 
be stable under shear. Unjamming of frictionless soft grains, 
which has been extensively studied over the last two decades 
[44, 73] is characterized by the disappearance of mechanically 
stable solutions. This phenomenon can be described within 
the concept of isostaticity [30, 44] and the unjamming trans
ition occurs at some protocol dependent density at which the 
structure becomes isostatic [75]. For spherical frictionless 
grains, it has been shown that the unjamming transition of soft 
grains occurs at the density at which hard spheres jam into the 
maximally random jammed state [44, 86].

The forces and stresses in frictionless systems are derivable 
from potentials: these are conservative systems. Therefore, 
jammed states sit at local minima of the potential energy. 
The questions of shear rigidity and mechanical stability can 
be referred to the properties of these minima [97]. The chal-
lenge in understanding frictionless jamming is understanding 
the role of the underlying disorder in the contact network [31], 
and classifying the enormously large number of local energy 
minima and their properties as an ensemble [98, 99]. From 
this perspective the jamming transition of frictionless grains 
and the glass transition share common features, and signifi-
cant theoretical advances in understanding the jamming trans
itions have been made by extending meanfield approaches to 
the glass transition [88]. In contrast to jamming of frictional 
grains, jamming in frictionless systems can be completely 
characterized by the contact network and one does not need to 
analyze the force network as a separate entity. The constraints 
of mechanical equilibrium, however, do impose restrictions on 
the contact network in the jammed state even infinitesimally 
above the jamming transition. An important unanswered ques-
tion in our view is the relationship between jammed contact 
networks and the networks defined by particles in near contact 

just below the jamming transition. Both networks are isostatic 
in the limit of φ → φJ but it is not known whether distribu-
tions of microscopic variables characterizing the network 
are statistically similar. Below, we will discuss recent work 
that focuses on the statistical properties of jammed networks 
approaching the unjamming transition [31].

3.3.  Force network ensemble

A framework for density-driven unjamming that has been 
developed for both frictionless and frictional grains is based on 
an assumption of scale separation between forces and grain-
level compression. This assumption is justified for grains that 
are nearly rigid since a very small change in compression can 
lead to large changes in the contact forces. This framework, 
known as the force-network-ensemble [62, 100], assumes that 
all force balanced configurations on a given contact network 
are equally likely (Edwards equiprobability hypothesis). This 
approach has been used to study the distribution of contact 
forces in frictionless [100] and frictional [37] systems, to ana-
lyze the applicability of the Edwards stress ensemble, and also 
to explore the effects of body forces such as gravity on stress 
transmission [101].

3.4.  Scaling at φJ

The density-driven unjamming transition for frictionless parti-
cles is characterized by a special point with packing fraction φJ 
and vanishing shear stress and temperature. This special point 
has many hallmarks of a classical critical point. Scaling analysis 
has established relationships between the exponents character-
izing the power law behavior of physical properties approach-
ing this transition from the jammed side [69, 70, 102–104]. This 
transition has been traditionally analyzed by characterizing the 
behavior of a few macroscopic quantities: pressure, average 
number of contacts, and bulk and shear moduli. In addition, it 
has been shown that the phonon spectra of frictionless jammed 
solids exhibit an excess of soft modes [97]. Growing length 
scales emerge at the unjamming transition, which have been 
associated with isostaticity [30, 71, 105, 106], and measured 
from the properties of the soft modes [71]. There are two such 
length scales characterized by different exponents [71]. The 
origin of these is not completely understood although recent 
scaling analysis sheds some light [69]. A different approach by 
Banigan et al to understanding the nature of the density-driven 
jamming transition in sheared systems has been based on the 
notion of chaotic dynamics [107]. In simulations, these authors 
find that jamming is associated with the onset of non-chaotic 
dynamics indicated by the vanishing of the first Lyapunov 
exponent, and the divergence of an associated dynamical length 
scale. This study suggests that jamming in slowly driven sys-
tems such as in the 2D Couette experiments of Howell et al 
[14, 21] is characterized by a growing dynamical length scale 
in contrast to the growing static length scaled identified at φJ in 
frictionless unjamming of soft spheres.

The shear modulus and yield stress vanish continuously at 
the unjamming transition, and the former is described by a 

Figure 9.  Distribution of the force, F acting on photoelastic 
particles for the φs indicated in the figure. These data, from Howell 
et al [20, 21, 65, 66], pertain to states that were created by steady-
state quasi-static shear in a Couette geometry, as in figure 4. The 
forces were determined by using the G2 method described below.
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power law with a non-trivial exponent. Pressure (from con-
tact stresses) also vanishes at the unjamming transition as 
a power law with an exponent determined by the force law. 
A recent scaling description of jamming relates the expo-
nents associated with the vanishing of bulk and shear moduli 
[69]. Recently, Muller and Wyart have argued that a jammed 
state created by a generic protocol has the characteristics of 
the marginal solid at the unjamming point [85]. And, recent 
experiments on emulsions by Brujic et al provide evidence for 
this marginal stability [3].

Recent work by Ramola and Chakraborty [108] has 
focused on the scaling properties of distributions of micro-
scopic variables. This work demonstrates that distributions 
of areas covered by grains exhibit singularities at the unjam-
ming transition, and that the macroscopic scaling laws can be 
derived from the scaling properties of these distributions.

3.5.  Experiments

Majmudar et al [109] used a system of photoelastic particles 
to explore the concept of jamming in a physical granular 
material under isotropic conditions that were intended to pro-
vided a test of how well frictionless simulations by O’Hern 
et al [44] and later by Silbert et al [110] applied to systems of 
frictional particles. (At the time, there were no simulations of 
jamming in frictional systems.) The points of comparison for 
the simulations and these experiments, are z and P as func-
tions of φ. It is not obvious that such experiments and the 
simulations should agree for several reasons. First, frictional 
particles are expected to have z � 3 at jamming, compared to 
z  =  4 for frictionless particles. Second, the algorithms used 
for the simulations sought a minimum energy as part of its 
calculation, whereas the frictional particles of the experi-
ments did not have a conserved energy. Thirdly, the simula-
tion algorithm ‘grew’ the particles uniformly, ensuring local 
isotropy; by contrast, in the experiments, the system was sub-
ject to compression or dilation from the boundaries. This is 
an example of a more general issue: various simulations and 
experiments often have different protocols for achieving what 
is thought to be a similar end state. But, the role of protocol 
is largely not understood. An additional part of the protocol 
for the experiments was that the particles rested on a smooth 
but still weakly frictional base that exerted a small drag on the 
particles that was not present in the simulations. However, the 
experimental protocol involved an additional step that tended 
to make the experiments more similar to the simulations: after 
each small strain step of compression/decompression, the sys-
tem was gently ‘tapped’ to relax friction at contacts and fric-
tion with the base.

The experimental data by Majmudar et al [109] following 
the protocol above and shown in figure 10 substantively resem-
ble the the frictionless simulations, although there were some 
residual differences. The expectations from the simulations are 
that z would be 0 below a certain φc, i.e. the jamming density, 
that it should then jump discontinuously to the isostatic value, 
z = ziso, and then grow as a power law in φ− φc  with an expo-
nent of α = 1/2. In fact, z for the experiments show a rapid 

increase over a small range of φ for a φc = 0.8422 ± 0.0005, 
followed by a continued increase as a power law with an expo-
nent, α = 0.495 if rattlers are included and α = 0.561 if they 
are excluded. This is consistent with observations in simu-
lations [44] and the theoretically predicted exponent of 1/2 
based on isostaticity arguments [30]. Careful numerical stud-
ies, however, indicate corrections to these predictions, and 
a recent analysis [31] indicates α = 0.56. Experiments on 
emulsions also measure an exponent closer to 0.56 [3]. The 
pressure in the Majmudar et al experiments increased above 
φc with an exponent of ψ = 1.1 ± 0.05, which is consistent 
with predictions for frictionless particles and the measured 
interaction force law for the experimental particles. Recent 
work on scaling at the frictionless jamming transition [108] 
demonstrates how the exponents are determined by both the 
geometry of jammed packings and the force law.

The fact that z did not jump discontinuously at φc is not 
surprising. The determination of a contact has experimental 
error that substantially exceeds numerical simulations. Also, 
very weak contacts could be stabilized by the weak basal fric-
tion. This effect is presumably only relevant very close to jam-
ming, and may contribute to the rounding of z versus φ.

Thus, there is reason to think that under the experimental 
protocol of Majmudar et al [109] the jamming of frictional 
particles is similar in character to jamming of frictionless par-
ticles, following the protocol of O’Hern et al [44]. We empha-
size that if the relaxation part of the experimental protocol is 
omitted, the system jams at a much lower density.

3.6.  Jamming in 3D experiments with visualization

Recent 3D compression experiments carried out by Brodu 
et  al [111] showed that visualization at the grain scale, 
including contact forces and grain positions was possible. 
Specifically, these experiments consisted of uniaxial compres-
sion of hydrogel spheres in water. The friction coefficient for 
these spheres is very low, µ � 10−2. Since the spheres were 
largely water in a polymer ‘skeleton’, they were only slightly 
denser than the water solution, and the uncompressed state 
was at nearly zero gravity. The lack of gravitational loading 
is important, since near-jamming systems are very soft, and 
small hydrostatic pressure can jam the system. The spheres 
also contained a fluorescent dye (Nile blue) that responded 
to laser excitation. When a laser sheet was swept across this 
system, the plane containing the laser sheet was bright where 
it intersected the spheres. An important part of this work was 
a set of algorithms that provided precise reconstruction of the 
particle surfaces. From this reconstruction, it was also pos-
sible to determine the deformation at contacts, and from that, 
the actual contact forces. Although laser scanning of granular 
systems was used previously [112], the important new feature 
of this work was the fact that it was possible to determine 
the inter-particle forces by determining the deformations at 
contacts. These experiments consisted of multiple cycles of 
uniaxial compression, starting from a state where the parti-
cles were just touching the top boundary which provided the 
compression. The pressure was a nonlinear function of strain, 
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and grew roughly as a power-law starting at φ = 0.62, and 
continuing smoothly through φ = 0.64 and up to values of 
φ � 0.74.

4.  Shear-driven jamming

This section highlights the role of stress and stress response 
in jamming of physical granular materials where friction is 
important. One of the objectives is to clearly identify the roles 
played in jamming by two different but related networks: the 
contact network and the force network, which adds informa-
tion about the magnitude and direction of the forces to the 
contact network. In frictionless systems with a well defined 
force law and only normal forces, the contact network car-
ries all the information. By contrast, the hallmark of frictional 
granular materials is the indeterminacy of the forces, given 
only contact information. In the frictional case, the force and 
contact networks are necessarily distinct.

In the Liu–Nagel picture, jamming is driven by density and 
shear stress can only lead to unjamming. This is in contrast 
to the shear-driven rigidity picture of Cates et  al [7]. Also, 
physical granular materials exhibit Reynolds dilatancy [113] 
in which a granular system expands under shear that is carried 
out under constant pressure. Thus, Reynolds dilatancy reflects 
physics similar to the Cates et al scenario, which pertains to 
shearing at fixed volume. Recent studies on frictional grains 
uncovered the phenomenon of shear jamming [38, 39, 82], 

which is a concrete realization of this theoretical scenario 
based on shear-driven solidification, [7] and is a conjugate 
phenomenon to Reynolds dilatancy.

Shear Jamming was discovered in experiments, as first 
reported by Bi et al [38] (see also Zhang et al [82] and Ren 
et al [39]). In these experiments, a 2D system of photoelas-
tic disks is prepared in an initially stress-free state with a 
fixed density in the range φS < φ < φc. When shear strain is 
applied, the system develops non-zero stresses and networks, 
or force chains, that evolve from fragile to robustly jammed 
with increasing shear strain, γ. The networks are highly aniso
tropic when they first form, and resemble the fragile states 
of Cates et al [7]. The particles that carry the majority of the 
force form force chains [19] that are roughly straight and 
that lie approximately along the compression direction of the 
applied shear.

Figure 11 shows the shear jamming phase diagram of Bi 
et al [38, 39, 82]. This figure is a sketch based on the exper
imental results shown in figure 13, as well as more recent data. 
It is slightly modified from the sketch of the original paper 
[38] to more accurately represent these experiments. The 
relevant theoretical framework has now been further devel-
oped [61, 64] to provide a quantitative characterization of 
shear jamming. Systems with packing fractions in the range 
φS < φ < φJ  where shear jamming occurs, can, for a given 
φ, have stress magnitudes ranging from zero to large values. 
Associated stresses and contact networks are often highly 
anisotropic and the force response of these states depends sen-
sitively on the as-created, protocol dependent, force network. 
Two classes, depicted in the experimental images of figure 5, 
of states can be broadly identified in this packing fraction 
regime. Fragile states are created at low imposed stresses, 
have force-chains that percolate in the compressive direction 
[38] defined by the imposed shear stress, and can only resist 
compression along this direction. At higher stresses, there is a 
continuous transition to shear-jammed states characterized by 
force chains that percolate both in the compressive and dila-
tional direction, and can support shear in both directions.

Several results from Bi et al [38] are key to characteriz-
ing shear jamming. These include identifying the formation 
of fragile and shear jammed states from the strong force net-
works, the identification of a clear onset of shear jammed 
states for a value of Z that is slightly above 3.0, and the obser-
vation that pressure, shear stress and Z all collapse onto com-
mon scaling curves, irrespective of the value of φ in the range 
φS < φ < φc when expressed in terms of the non-rattler frac-
tion, fNR, as shown in figure 14, i.e. the fraction of particles 
that have at least two contacts. We show some of these results 
below. In figure 12, we show data for the length of the net-
works in the compression and dilation directions. The onset of 
fragile states occurs when the strong network first percolates 
in the compression direction. The system is shear jammed, 
i.e. able to resist strains in both compression and shear direc-
tions when the strong networks percolate in all directions. 
The results from many experiments to determine the onset of 
fragile and shear jammed states, figure 13, show several key 
features. As might be expected, there is a lowest φ = φS below 
which shear jamming is not observed. But, more remarkably, 

Figure 10.  Data for the mean packing fraction, z and the system 
pressure versus φ− φc  (main figure) and versus φ (inset) from 
the experiments of Majmudar et al [109]. Near φ = 0.9845, there 
is a significant jump in z. For φ > φc, there data for both z and P 
are consistent with power-laws in φ− φc , with exponents of  ∼0.5 
and  ∼1.1 respectively.
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there is a ‘nose’, i.e. a re-entrant part of the jamming diagram, 
indicating that there is a regime where unjammed, fragile and 
shear jammed states can all occur for the same φ. These data 
form the basis for the schematic jamming diagram, includ-
ing shear jamming, in figure  11. fNR is a monotonic but φ-
dependent function of γ, as shown below.

The final feature of shear jamming from Bi et al that we 
reproduce here in figure 15, is data for the amount of shear 
strain needed to reach a shear jammed state. This quantity 
becomes large as φ → φS from above. The apparent limiting 
value of 0.79 suggested by this figure is likely larger than the 
true φS because the strain that could be attained in the experi-
ments of Bi et al was modest.

Recent data by Wang et al [114] show that the strain needed 
to reach fragile and shear jammed states is also a function of 
friction. These data, figure 16, are for particles that are Teflon-
wrapped and have low friction (µ � 0.15), moderate friction 
(µ � 0.65) ‘bare’ particles, and very high friction particles 
that have gear-like teeth along their surfaces.

One possible manifestation of shear jamming may be the 
formation of deep shear bands. For instance, the Howell et al 
experiments show a very deep shear band at the inner rotat-
ing surface of the Couette experiment, as in figure  17. The 
force networks, as in figure 4, cross the shear band without 
evident effect, despite the strong decrease in φ near the inner 
shearing surface. This is consistent with the re-entrant ‘nose’ 
of the shear jamming diagram: it is possible to have force-
bearing states even at very low density. Except for a smooth 
radial dependence, the stresses in the mean, must be uniform 
from the inner to the outer surfaces of the experiment, reflect-
ing overall force balance. This situation corresponds to a line 

Figure 11.  Shear jamming phase diagram for frictional granular 
materials, after Bi et al [38]. The dark gray region indicates states, 
characterized by τ and φ for which frictionless materials would be 
jammed. Frictional systems jam at lower φ, and in particular, there is 
a reentrant region. In φS < φ < φJ, systems with the same φ can be 
unjammed, fragile in the sense of Cates et al [7], or shear jammed. 
Fragile states are highly anisotropic, and only stable to one direction 
of shear strain. Shear jammed states are also anisotropic, but can resist 
both forward and reverse shear. For large enough τ, shear jammed 
states reach the yield stress curve, where the material will begin to flow.

Figure 12.  Fragile and percolating networks as seen in the 
pure shear experiments of Bi et al The compressive direction 
corresponds to y, and the dilation direction to x. In the fragile states 
of part (a), the strong force network percolates in the compressive 
direction, but not in the dilation direction. In the shear jammed 
states (SJ), right part of (a), the strong force network percolates in 
all direction. Part (b) shows the ratio of the largest cluster for the 
indicated sets of particles to the lengths, Ly and Lx of the system in 
the compressive and dilation directions, as functions of fNR.

Figure 13.  Experimental determination of shear jamming diagram, 
from Bi et al [38]. These data were obtained through multiple 
experiments at many different values of φ in the range of the figure. 
Each dot represents a state of the system, where black diamonds are 
unjammed states, red squares are fragile states, green crosses are 
shear jammed states, purple circles correspond to the yield stress 
surface.
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on the shear jamming diagram, figure 11, at roughly constant 
shear stress that starts at low φ near the nose of the shear jam-
ming diagram, and extends towards the higher φ’s that apply 
in the larger-radius parts of the system. Here, the notable point 
is that it is possible to have flowing, i.e. unjammed states for 
the low φ’s in the shear band that resemble nearby static frag-
ile states.

The onset of jamming by shear necessarily involves pres
sure, P, and shear stress, τ, that evolve with the strain, γ. P in 
particular grows nonlinearly with γ, as shown in figure 18 (Ren 
et al [39]). These data were obtained in a special apparatus that 
applies simple shear strain on the base as well as the bounda-
ries of the system. This means that rattlers experience affine 
strain, and are not ‘left behind’. This system does not form 
shear bands. Consequently, the system has uniform density, 
modulo small fluctuations, and exists in well defined states.

The data of figure 18 are consistent with the form

P(φ) = (1/2)R(φ)γ2
�

(4)

where the Reynolds coefficient, introduced by Ren et al [39], 
quantifies the strength of the nonlinear strain response. The 
growth of P with γ is a conjugate phenomenon to the usual 
Reynolds dilatancy, where a material that is sheared dilates 
against a weak confining stress. In the Ren et al experiments, 
the boundaries were rigid, prohibiting expansion, and lead-
ing instead to a strong increase in P. The Reyolds pressure 
observed by Ren et al implies that Reynolds dilatancy is an 
explicit part of shear jamming for particles with friction.

The dependence of R on γ, shown in figure 19 is also of inter-
est. This quantity diverges strongly as R = A(φc − φ)α, where 
α = −3.3 ± 0.1, and φc = 0.84 ± 0.004, i.e. experimentally 
indistinguishable from φJ for isotropic jamming of friction-
less particles.

Related experiments by Zheng et  al [115] also involved 
shearing photoelastic discs in the shear jamming regime. But, 
in this case, the particles floated in a density-matched fluid, 
thus removing any effect from basal friction. In the Zheng 
et al experiments, P was zero up to some characteristic onset 
strain γo that depended on φ. As the strain was increased above 
γo, P initially increased quadratically in γ − γo and then grew 
linearly for larger γ.

As with the data of Bi et  al [38], the data of Ren et  al 
[39, 68] collapse well when expressed as functions of the 
non-rattler fraction, fNR. Figures 20 and 21 show results for, 
respectively isotropic measures P and Z and anisotropic meas-
ures τ, fabric anisotropy, and stress anisotropy. The isotropic 
measures continue to grow over the full range of the experi-
ments, whereas the anisotropic measures reach peaks and then 
decrease with fNR. The anisotropic behavior is a reflection of 
the fact that the force networks in the dilation direction lag 
those in the compression direction, but eventually ‘catch up’ 
with sufficient strain.

We also show in figure 22 the dependence of fNR on γ for 
several different packing fractions. Necessarily, fNR depends 
in an essential way on φ as well as γ, although it is possible to 
represent fNR in a scaling form [83].

5.  Experiments related to jamming

We consider additional experiments that inform the granu-
lar states near jamming. Early work by Rice, Bernal, Finney, 
Scott, and Kilgour focused on determining the densest and 
loosest packings that can be achieved by monodisperse (fric-
tional) spheres that are randomly packed. In most cases, the 
spheres were subject to gravity, and in a mechanically stable 

Figure 14.  (a) Data for the pressure, P, and shear stress, τ, versus φ or versus fNR, the non-rattler fraction for many different experimental 
runs. (b) When these data are expressed in terms of fNR instead of φ, the data collapse onto a common curve. Data from the experiments of 
Bi et al [38].

Figure 15.  Minimum amount of shear strain needed for a given φ 
to reach a shear jammed state, after Bi et al [38]. Here, shear strain 
is represented by the symbol ε.

Rep. Prog. Phys. 82 (2019) 012601



Key Issues Review

14

state. Bernal [116] proposed packings of hard spheres as a 
model for fluids. A problem of particular interest was the 
range of packing fractions that could be achieved for ran-
dom packings of spheres, typically confined in a container by 
gravity. Scott [117] and Scott and Kilgour [118] carried out 
detailed measurements using spheres made of steel, Plexiglas 
and Nylon. They used several different techniques to compact 
or dilate their samples, including simple pouring and tapping 
approaches that varied from manual tapping, to mechanical 
tapping, electromagnetic vibrators, air jets, and shearing. 
Scott [117] also measured and manipulated packing densi-
ties by placing particles in elastic balloons. These measure-
ments took careful account of ordering and dilation effects 
at boundaries, and yielded maximum and minimum φ’s (rcp 
and rlp, respectively) of 0.637 and 0.575. More recent experi-
ments have extended these values a little bit, in particular the 
rlp density. (Note that the φ’s corresponding to rlp and rcp are 
substantially lower than their counterparts in 2D.)

Onodo and Liniger [119] carried out a series of experi-
ments that included sedimenting glass spheres into liquids 
with densities that could be almost as large as the bulk den-
sity from which the spheres were made. A key point was to 
observe the limit, as gravitational compaction vanished, for 
rlp. In this limit, they found φ = 0.555 ± 0.005. Onodo and 
Liniger also explored the extent of dilatancy as a function of φ 
using a Couette-type shear apparatus where the particle-fluid 
system was sheared between two cylinders. They found that 
dilatancy vanished at the rlp density. We note that dilatancy 

Figure 16.  Minimum amount of shear strain to reach fragile and 
shear jammed states for various inter-particle friction coefficients, 
after Wang and Behringer [114].

Figure 17.  Data from the Couette shear experiment of Howell et al 
[20–22, 65] for the packing fraction profile as a function of the 
distance, expressed in units of the mean particle diameter, d, from 
the inner shearing wheel of the experiment. The original packing 
fraction profile, before the application of shear, is indicated by 
the dashed line. The solid circles and the open squares show the 
packing fraction profile after 10 and 220 rotations of the inner 
shearing wheel. A clear, and deep shear band forms as a result of 
the shear. The smooth lines are least-squares fits to a profile that 
decays exponentially with distance from the shear wheel to the 
large-radius value [22].

Figure 18.  Pressure response versus γ2  showing the nonlinear 
pressure response leading to shear jamming. The Reynolds 
coefficient, (∂2P/∂γ2)/2 diverges strongly as φ approaches φJ. 
Note that P grows (from 0) regardless of the direction of shear, 
hence the essential property that P is a nonlinear function of γ.  
(See also figure 19.)
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is well known from soil mechanics, and was discovered by 
Reynolds [113]. If a material is not too loose, finite shear 
strain can only be accomplished if the material expands or 
dilates. This idea is incorporated into modern soil mechanics 
models, such as critical state soil mechanics [120].

The sedimentation approach was advanced with the devel-
opment by Schroeter et  al of fluidization techniques for a 
column of particles that are saturated with a fluid [121]. A 
pulse of fluidizing liquid lifts the column of particles, which 
then sediments under gravitational forces on the particles that 
are reduced by the buoyancy provided by the fluid. The final 
states are controlled by the length and strength of the fluidiz-
ing pulses, providing a fine control. The densities that can be 

achieved in any column experiment depend on how the gravi-
tational forces are supported. If the fluid density is exactly 
matched to that of the grains, the particles are neutrally buoy-
ant; in principle any φ up to rcp could be achieved. Otherwise, 
when the buoyancy is too low to support the full weight of the 
grains, there must be forces at the boundaries that support the 
residual load. This implies contact forces between the grains, 
and finite isotropic and shear stresses. The latter are typically 
non-zero, and can exert vertical forces on the walls. This is 
often explained in the context of a model due to Janssen [122] 
that assumes proportionality between vertical and horizontal 
stresses, and mobilization of friction at the sidewalls, lead-
ing to shear stress at the walls. Under these assumptions, the 
granular pressure as a function of distance from the top of the 
column decays exponentially to a limiting value, instead of 
increasing linearly with depth, as in a fluid.

Figure 19.  Reynolds coefficient R = (∂2P/∂γ2)/2 versus φ from 
Ren et al [39]. These data reveal a diverging R that satisfies a 
power-law in φc − φ, where φc is experimentally indistinguishable 
from φJ.

Figure 20.  Scaling collapse of (a) P and (b) z as functions for the 
non-rattler fraction, fNR, from the work of Ren et al [39, 68]. These 
results parallel those of Bi et al [38], for which a similar collapse is 
observed.

Figure 21.  Scaling collapse versus fNR for the shear stress, τ, the 
fabric anisotropy, given by the ratio of the difference to the sum of 
the fabric tensor eigenvalues, and the stress anisotropy, τ/P. These 
data correspond to five different φs in φS < φ < φJ . For small 
fNR, there is significant scatter for some of these data, due to the 
sensitivity of the initial stress values to initial conditions, and to 
experimental errors which are relatively larger for smaller stresses 
and smaller values of fNR.
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Jerkins et  al [123] used fluidization of glass spheres 
with varying amounts of density matching to determine 
φrlp in the limit of zero granular pressure, obtaining a value 
φrlp = 0.550 ± 0.001. These authors found that this lowest 
value for φrlp depended on the inter-particle friction coeffi-
cient: high friction led to operationally lower φrlp. In experi-
ments by Farrell et al sequential deposition of cohesionless, 
monodisperse spherical particles whose frictional properties 
were very well characterized [124], shows a clearly decreas-
ing trend of φrlp with the static friction coefficient, μ. One 
of the distinguishing features of this experiment is that the 
particles are large enough to guarantee that they are outside 
the realm of attractive interactions. The results are consistent 
with the results, described above that were obtained with other 
protocols.

Schröter et  al [125] and Métayer et  al [126] considered 
the response of granular systems to respectively, the intrusion 
of a rod, and extraction of a rough plate, where the systems 
consisted of glass spheres that had been prepared over a range 
of densites using the fluidization method. The Schröter et al 
experiments extended earlier work by Schiffer et al [127, 128] 
and Hill et al [129], to allow for a range of system packing 
fractions. The Métayer studies yielded information on the 
shear response, again for a range of φ. Both studies found that 
responses that increased with increasing φ, and in particular, 
the φ-dependence of these responses was stronger above 
φ � 0.595, than below this value. Here, we highlight data 
from Métayer et al in figure 23 which show the yield force 
versus φ when pulling a rough plate (open circles and filled 
triangles), and when pulling a horizontal rod (solid squares).

The above work addresses the issue of a bulk property, the 
mean packing fractions for rlp and rcp packings. However, 
this does not elucidate the nature of structure associated with 
the packings, since there was no visualization. Schröder-Turk 
et al [130] used a variety of techniques, including fluidization, 
and tapping followed by x-ray computed tomography (CT) 
scans and numerical simulations, to prepare and characterize 
packings over the range of rlp to rcp. The goal was to develop 

an understanding of the extent of local packing anisotropy for 
states that are nominally globally isotropic. To characterize 
the local extent of anisotropy in the packing, these authors 
first computed the Voronoi tessilations of their samples, and 
then the Minkowski tensors for the Voronoi cells. They found 
strong anisotropy in the Voronoi cells, implying that the con-
tact network at the local scale is similarly anisotropic. The 
average Voronoi anisotropy is characterized by parameters 
〈βrs

ν 〉, which are averages of eigenvalue ratios representing dif-
ferent aspects of anisotropy for a Voronoi volume. For spatially 
ordered packings, 〈βrs

ν 〉 approaches 1, and it is lowest for rlp. 
Figure 24 shows some of their results. For all packings and for 
all 〈βrs

ν 〉, there is a striking transition for φ = 0.64 = φrcp. At 
the transition, the rate of change with φ of the 〈βrs

ν 〉 changed 
sharply. The transition observed by Schröder-Turk et  al is 
reminiscent of the sharp divergence in the Reynolds coeffi-
cient at the corresponding 2D rcp density observed by Ren 
et al [39].

In the work of Geng et  al [131], a particle, the intruder, 
was pushed slowly and for large strains, through an annular 
channel filled with smaller photoelastic discs. The results 
from these experiments also demonstrate a density-related 
transition in the force response of granular systems. Primary 
data included the pushing force on the intruder and also the 
photoelastic response. These experiments showed a transition 
in the mean pushing force versus φ where the functional form 
of 〈F〉 changed discontinuously when φ � 0.65, figure  25. 
Below this density, the force response varied linearly with 
φ and above, it varied as F ∝ (φ− φt)

a, where a  =  1.53 , 
indicating a more rapidly increasing (with φ) pushing force 
above the transition. (Geng et  al used the symbol γ for the 
packing fraction.) These experiments can be contrasted to 3D 
studies by Albert et al [127, 132], who pushed rods through 
3D systems of grains, and the work of Schröter et  al [125] 
and Métayer [126] discussed above. In the Geng et al experi-
ments, the system exists near the yield curve, and alternates 
between states that are stable, and states characterized by sig-
nificant plastic deformation. The sharp functional change in 

Figure 22.  fNR versus γ for five different values of φ, from the data 
of Ren et al [39]. (See also Sarkar et al [83].) The colors correspond 
to φ’s according to gray: φ = 0.8269; blue: φ = 0.8163; red: 
φ = 0.8036; cyan: φ = 0.7863; yellow: φ = 0.7728.

Figure 23.  Data for the yield force as a function of φ for a rough 
plate (open circles and filled triangles) and a horizontal rod (solid 
squares) that are pulled from a carefully prepared system of glass 
spheres, after Métayer et al [126].
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the average force at φ = 0.65 suggests that for lower φ, the 
stable states are fragile, and for higher φ they are more robust, 
and hence shear jammed.

Related studies by Reichardt and Reichardt [133] involve 
pushing of a model intruder particle with a constant force 
through an assembly of frictionless discs interacting through 
a linear contact force law. These simulations differ from the 
Geng et al experiments in that the force law in the simulations 
is linear and frictionless, whereas the force law in the experi-
ments is roughly Hertzian and the particles have friction. 
Also, the simulation protocol involves pushing the intruder 
at constant force, whereas the experiments involve pushing 
the intruder at constant speed. Nevertheless, these two studies 
show a number of similarities, including power-law depend-
encies of key quantities on the distance in density to jamming, 
and strong fluctuations in relevant quantities, e.g. intruder 
speed (simulations) and force on the intruder (experiments). 
For instance, both studies show a change in the intruder 
force dependence on φ at the onset of an appropriate jam-
ming transition. In the simulations, the force needed to push 
the intruder through the system was zero below a jamming 

density of φJ � 0.84, and was non-zero above that φ, i.e. the 
system exhibited a yield stress above φJ. In the experiments, 
figure 25, the pushing force at constant speed increased lin-
early from φ � 0.50 to φ = 0.65, and then increased faster 
with φ, for φ > 0.65, as fragile force chain elements evolved.

In related studies, Candelier and Dauchot [134, 135] car-
ried out experiments involving an intruder driven through a 
system of vibrated brass cylinders. Well below their observed 
φJ, the intruder mean speed varied linearly with the pull-
ing force, F, but on approach to φJ from below, the intruder 
motion became intermittent, with F ∝ ln(V). These authors 
reported φJ that varied slightly from realization to realization. 
Near jamming, the intruder dynamics were intermittent, with 
bursts of displacement of length L and duration T. The distri-
butions of T and F showed critical behavior exemplified by 
P(T) = T−αf (T/θ(φ)) where α � 1/2 and θ diverges as a 
power law in φJ − φ.

Figure 24.  (a) Data for the means of the anistropy measures 〈βrs
ν 〉 

versus φ for Voronoi cells in 3D packings, after Schroeter-Turk, 
et al [130]. Isotropic packings have βrs

ν = 1. LS corresponds to 
data generated with the Lubachevsky–Stillinger algorighm, FB 
experimental data obtained by a fluidized bed method, and DA 
experimental data obtained with a tapping/compression method, 
(b) rescaled distributions for the anisotropy indices, 〈βrs

ν 〉 versus 
r = (1/βrs

ν − 1)/(1/〈βrs
ν 〉 − 1) for experimental and simulated 

3D packings having 0.55 < φ < 0.64 (c) similar results to those 
from (b) produced by the LS method, and at the packing fractions 
φ = 0.644, φ = 0.679, and φ = 0.698. The peak at 0, grows with 
increasing φ and is indicative of semi-crystalline regions .

Figure 25.  Data from Geng et al [131] for (a) the mean force 
〈F〉 to quasi-statically push an intruder through a channel of 2D 
photoelastic particles versus the mean packing fraction, represented 
here by the symbol γ. In these data, 〈F〉 increases slowly with 
increasing γ, until there is a sharp change in slope, d〈F〉/dγ . (b) F-
Fc is plotted versus (γ-γc)/γc to demonstrate the the scaling of <F> 
above the critical packing fraction γc, indicated in (a).
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6.  Numerical studies and theoretical frameworks

In this section, we review numerical studies of jamming and 
the progress made in constructing a theoretical framework 
applicable to rigidity of and stress-transmission in jammed 
states.

6.1.  Shear jamming in frictionless systems: numerical studies

Dilatancy and shear jamming in frictionless systems have 
been extensively studied in numerical simulations. As dis-
cussed earlier, Reynolds dilatancy occurs in granular sys-
tems when they are sheared under constant biaxial stress, 
which correspond to fixed pressure on one side, and uniaxial 
compression on the second, with fixed width in the third for 
three dimensional systems. There is emerging consensus that 
shear-jamming in frictional granular materials is a reflection 
of the consequences of dilatancy when granular materials are 
sheared under constant volume conditions. Note that biaxial 
strain always involves non-zero P, and hence has inherently 
different protocols and initial states than the shear jamming 
experiments. Under these conditions, shearing typically leads 
to increasing pressure, as discussed in 4.

The usual explanation of Reynolds dilatancy is based on 
a purely kinematic argument: hard particles have to expand 
to accommodate shear [113, 136]. The question of whether 
frictionless grains exhibit dilatancy is different. In a series of 
papers, Roux, Radjai and collaborators demonstrated that fric-
tionless packings can support deviatoric stress but they do not 
exhibit dilatancy [136, 137] non-transiently. This observation 
then raises the question of whether frictionless grains exhibit 
Reynolds pressure, or shear-jamming under constant volume 
conditions.

Recent studies have addressed this question using numer
ical simulations. One important question that has been 
addressed is the behavior of these systems in the thermody-
namic limit, i.e. as the number of particles diverges. Bertrand 
et  al [138] and Baity-Jesi et  al [139] have investigated the 
probability of creating jammed states with a finite value of 
the deviatoric stress as a function of packing fraction and 
systems size. Both of these studies show that in the thermo-
dynamic limit, this probability becomes a step function at 
φ = φJ. These studies are consistent with the Roux et al studies  
[136, 137] in that frictionless jammed packings can support 
deviatoric stress. In the thermodynamic limit, two types of 
jammed states can exist at φJ: isotropic states with no devia-
toric stress and anisotropic contact networks that support a 
deviatoric stress. Interestingly, Baity-Jesi et al [139] demon-
strate that these two types of states have the same symmetry 
of the elastic modulus tensor: the states with deviatoric stress 
and the isotropic states differ only in the direction of the prin-
cipal axis of the elastic modulus tensor. This observation was 
also made by Roux et al [136] for the systems that exhibited 
deviatoric stress but no dilatancy. Additional work by Luding 
et al [140, 141] and Vinutha and Sastry [142] are consistent 
with the Roux et al results, and the picture that has emerged is 

that shearing frictionless systems leads to a fabric of contacts 
that can exhibit pronounced anisotropy, and looks very similar 
to structures seen in frictional systems [142]. These structures 
can support a deviatoric stress. However, under shear, the force 
network undergoes constant rearrangement [136, 137]. In the 
constant pressure simulations [136, 137], the particles in the 
frictionless packings can have displacements in response to 
shear that lead to both dilation and compaction with no bias 
in either direction. This leads to the lack of macroscopic dila-
tancy. If friction biases the dilational displacements that can 
then explain Reynolds dilatancy.

In 3D constant volume studies, Vinutha and Sastry [142] 
have shown that the geometrical structures created by shear-
ing frictionless systems below φJ are mechanically unstable. 
They can be stabilized by introducing friction through a tan-
gential spring. This observation is consistent with the lack of 
dilatancy in frictionless systems. It also suggests that the fric-
tionless systems will not exhibit Reynolds pressure. Careful, 
precise studies of the Reynolds pressure in systems with dif-
ferent friction coefficients and increasing system sizes will be 
essential for understanding the difference between sheared 
states in frictional and frictionless systems. A lack of Reynolds 
pressure would imply the absence of shear jamming.

Interestingly, thermal hard spheres approaching the jam-
ming transition, exhibit the phenomenon of Reynold’s dila-
tancy [143]. Understanding the role of thermal fluctuations 
and friction on the phenomenon of Reynold’s dilatancy 
will, in our view, help us gain better understanding of shear- 
jamming and even shear thickening in suspensions.

6.2.  Ensembles of jammed states

As we have argued, in order to understand jammed states of 
frictional grains, we need to analyze both the contact network 
and the force network. The presence of large fluctuations and 
the underlying disorder in the contact network necessitates 
the use of statistical approaches in understanding the emer-
gence of force networks in frictional granular media. Since 
the forces are not derivable from a potential, a microscopic 
jammed state is specified by both the set of positions and the 
set of contact forces. The contact forces are constrained to 
satisfy the requirements of mechanical equilibrium. In addi-
tion, contact vectors have to satisfy loop constraints since 
the grains form a packing in real space. A recent study has 
shown that one can solve this constraint satisfaction problem 
to obtain the contact forces from a knowledge of the contact 
network [144], thus opening up the possibility of analyzing 
properties of force networks in experiments that can only 
measure positions of grains, which includes the vast majority 
of studies. However, statistical theories of jamming and force 
transmission have to be based on a description of microstates 
that include grain positions and contact forces whether the lat-
ter are measured directly or obtained through the algorithm of 
[144]. In the next sections, we describe the construction of a 
theoretical framework that addresses the emergence of rigid-
ity in dry, granular systems.

Rep. Prog. Phys. 82 (2019) 012601



Key Issues Review

19

6.3.  Constraints on granular aggregates: gauge potentials

The problem of rigidity of a dry granular packing can be form
ulated as a constraint satisfaction problem. Such a packing has 
to satisfy four different types of constraints which arise from 
the requirement of mechanical equilibrium at zero temper
ature. The constraints of force and torque balance have to be 
satisfied for every grain. Since the contacts are frictional, the 
Coulomb criterion of static equilibrium has to be satisfied. This 
introduces an additional constraint, |ft| � µfn, where µ is the 
coefficient of friction and ft(n) is the tangential (normal) comp
onent of the contact force. The interaction between dry grains is 
purely repulsive, hence the normal force always points towards 
the grain center, imposing a condition on the sign of the normal 
force, which by convention we phrase as an inequality con-
straint: fn � 0. As discussed below, the constraints of force 
balance are the most straightforward to implement and can be 
incorporated in a geometric representation, dual to the real-
space geometry. The inequality constraints and the torque bal-
ance constraint are not easily captured by this representation; 
however, they do play an important role in determining the 
statistical properties of the geometric patterns. There is also a 
global constraint that relates the sum of the grain level stresses 
to the external stresses imposed at the boundary.

The local nature of the constraints that need to be satisfied 
in a static granular packing allows a description of the system 
in terms of gauge potentials. A static granular aggregate is in 
mechanical equilibrium, and one of the necessary constraints 
is that the forces on every grain sum to zero: 

∑
c
�fg,c = 0, 

where �fg,c represents the force acting on the grain g, through 
the contact c. The sum is taken over all the contacts {c} for a 
given grain g. Newton’s third law dictates that �fg,c = −�fg′,c, 
at each contact c between the grains g and g′. These two con-
straints can be used to construct a representation of the forces 
in a granular packing known as the ‘force tiling’ representation 
[31, 61, 64, 145, 146], as illustrated in figure 26. In an alterna-
tive representation [16, 26, 147], the force at each contact can 
be written as: �fg,c = �hv −�hv′, defining a set of height vectors 
{�hv}, where g indexes a grain, c a contact, and v, v′ index the 
two voids bracketing the contact {g, c} (figure 27). Given a set 
of contact forces, the definition of {�hg,v} is unique, modulo a 
choice of origin: they are gauge potentials for the stress tensor, 
σ̂ [16, 26]. From a continuum perspective, the height field can 
be viewed as the gauge potential that enforces ∇ · σ̂ = 0

The force tiling and and height field representations are of 
course related: it is easy to see that the vertices of the force 
tiles represent the height vectors starting from an arbitrary ori-
gin since edges of the tiles represent the contact force vectors. 
The point pattern of these vertices provide information that is 
complementary to the positional pattern of grains. The bound-
ing box enclosing the vertices is determined by the externally 
imposed stresses [61, 64]. Changing external stresses distorts 
the bounding box and can be viewed as the analog of ‘strain’ 
on the tilings, which leads to displacements of the vertices. 
The collective response of the vertices of the force tilings to 
this change is the analog of the response of particle positions 
to strain [61, 64]. This analogy has been used to construct a 
theory of shear-jamming that is discussed below.

6.4. Theories of shear jamming

Providing a theoretical basis that can characterize shear jam-
ming is a subject of ongoing study. An approach taken in 
Sarkar et al [61, 64] is to analyze the statistical properties 
of the force tilings. Analysis of shear jamming and discon-
tinuous shear thickening in suspensions show that the collec-
tive behavior of the tiles change across the transition. Ideas 
such as ‘broken symmetry’ that are crucial to understand-
ing phase transitions have a counterpart in the force tilings. 
Measurements of order parameters and correlation functions 
in the space of tilings reveal clear signatures of shear jam-
ming and shear thickening where real-space correlations fail 
to do so. Sarkar et  al [61] has also used a representation 
of the local force states of grains in terms of a spin model. 
Depending on the region of parameter space, this model can 
capture the features of shear jamming, or the phenomenon 
of discontinuous shear thickening in sheared suspensions 
[148].

Since forces can be arbitrarily small, the heights are contin-
uous variables. Any set of vertices in a force tile with N faces, 

and confined within the parallelogram bounded by 
(
�Fx, �Fy

)
 

represents a force-balanced configuration of N grains confined 
in a box of size Lx × Ly, such that the integral of the stress 
tensor is:

Σ̂ =

(
Lx 0
0 Ly

)
×




�Fx · x̂ �Fx · ŷ

�Fy · x̂ �Fy · ŷ


 .� (5)

Thus, in the absence of any other constraints, the heights 
should not show any correlations. The torque balance con-
dition, the positivity of the normal forces, and the Coulomb 
criterion, however, provide additional constraints that could 
lead to correlations between the vertices of the force tiles. 
The defining feature of a solid is its ability to resist shear: a 
consequence of breaking continuous translational symmetry 
[63]. Unlike a crystalline solid, defining an order parameter 
that signals this broken symmetry for disordered, amorphous 
solids is difficult [149] and is an outstanding problem. What is 
clear is that unlike a liquid, the patterns of particles persist in 
a solid. This persistence of patterns can be measured through 
an overlap order parameter that has been most widely used in 
spin glasses [150]. Figure 28 show a series of force tiles cre-
ated from the set of experiments of Ren et al [39]. Shear jam-
ming is captured by an overlap order parameter [61, 83] that 
measures the persistence of patterns of the vertices of force 
tiles at different strain steps (figure 29).

7.  Looking beyond jamming

7.1.  Applications and broader issues

Although the focus of this review is jamming of granular mat
erials, we note that there are many broader issues associated 
with the science and application of particular matter. Here, we 
note of few of these, and we refer the reader to the extensive 
reviews in the review volume by Franklin and Shattuck [151].
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7.1.1.  Applications.  Granular materials are of great practical 
as well as theoretical interest [152]. Examples of the former 
include soils, cereals, coal ores, sand and snow pharmaceuti-
cal powders, pills and feed stock for forming plastics. The cost 
of handling these materials is huge [153], and there is consid-
erable need to have reliable and predictive tools for describing 
their flow and even static states for practical purposes.

7.1.2.  Granular gases.  In addition to jamming, which 
involves transtions between fluid-like and solid-like ‘phases’ 
granular materials have a gas-like phase. For instance, grains 
in a container with plenty of free space resemble a gas if they 
are shaken [154]. Although, arguably, granular gases are the 

best understood granular phase, the statistical mechanics of 
the gas state is still a subject of continued study. Granular 
gases exhibit novel phenomena, such as becoming inhomoge-
neous without continued energy input.

7.1.3.  Force transmission in granular solids.  A long-standing  
question regarding granular solids is how they respond to 
external stresses [6, 41]. This question is of considerable 
theoretical interest and it is crucial for many common engi-
neering applications, such as the design of bins and hoppers. 
Highly evolved continuum models provide a practical tool 
[120]. But the nature of the differential equations on which 
they are based contain undesirable mathematical complexities, 

Figure 26.  Illustration [83] of the mapping from positional space to force space: (a) a typical grain configuration. The colors are used to 
tag a grain and the corresponding force tile, otherwise they have no physical significance; (b) the real space contact network. (c) A portion 
of the real space contact network; (d) the faces (a point inside every face is marked by a red dot) of this portion of the real space contact 
network as obtained by constructing the minimum cycle basis; (e) the dual graph (blue dashed line) topology obtained from the minimum 
cycle basis. The edges of this dual graph become the edges of force tiles; (f) the force tiling for this configuration is obtained by distorting 
the dual graph according to the actual force vectors representing these edges. The force tiling is not a graph since the lengths and the angles 
between edges are meaningful quantities that carry information about the contact forces. The color of the force tile matches the color of the 
corresponding grain in (a).
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Figure 27.  In two dimensional granular packings [16, 26, 147, 162], each contact is shared by two void polygons. (Left) Illustration of 
the partitioning into grain polygons (white) and void polygons (blue) for a jammed packing of 128 bidispersed frictionless disks. (Right) 
Enlarged view of a region of the packing on left showing location of height vectors and auxiliary fields ([162]).
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including run-away instabilities [155–157]. At a more basic 
level, the question is: ‘Is the force response of a granular solid 
to a small deformation elastic or is it described by some other 
model?’ is at best partially answered, as reviewed in [41]. 
When materials are in a strongly jammed state, experiments 
and simulations indicate that an elastic description is likely 
reasonable [18, 45, 158–161]. However, when a system is a 
‘solid’ but only slightly beyond jamming, then small perturba-
tions can irreversibly deform or destabilize a system [8, 160].

A fundamental open question that has bearing on all the 
above aspects of stress transmission is how the constraints of 
vector force balance on a disordered network of contacts influ-
ence the response of granular systems to force perturbations.

Recent work [162] has focused on this question by extend-
ing the force-space representation discussed in section 6. To 
describe the response to a body force, the formalism was 
extended to include an additional set of gauge potentials, as 
described below. By introducing these auxiliary fields one can 
account for the change in the local stress tensor induced by 
an external perturbation. It was shown that the inhomogene-
ous propagation of stress through the system can be linked 
to the inherent randomness in the underlying fabric of con-
tacts: the response of a granular packing to a localized force 
perturbation is related to the spectrum of the graph Laplacian 

representing the contact network of grains. These Laplacians 
form an ensemble of random matrices, and the stress trans-
mission problem maps onto a problem of diffusion on a ran-
dom network, which can lead to localized states [163].

The local constraints of mechanical equilibrium discussed 
in section  6 are also crucial in determining the response of 
jammed packings to external perturbations, and give rise 
to deviations from linear elasticity. In the presence of body 
forces, the continuum equation of mechanical equilibrium is 
∇ · σ̂ = −�fbody. We generalize the height field and force til-
ing framework, which impose mechanical equilibrium at the 
discrete grain level, to account for a localized body force by 
introducing additional auxiliary fields on the grains {�φ} (see 
figure 27). The sum of forces can then be represented as

�fg0,c1 =
�hv1 −�hv2 +

�φg1 − �φg0 ,
�fg0,c2 =

�hv2 −�hv3 +
�φg2 − �φg0 ,

�fg0,c3 =
�hv3 −�hv4 +

�φg3 − �φg0 ,
�fg0,c4︸︷︷︸
−�f body

g0

= �hv4 −�hv1︸ ︷︷ ︸
0

+ �φg4 − �φg0︸ ︷︷ ︸
�2�φ0

.

� (6)

The summation on the right is simply the network laplacian 
defined, on grain g0 as

Figure 28.  Force tiling: the evolution of the shape of the force tiles in a shear jamming experiment [39, 83] at φ = 0.8163. For the sake of 
clarity, we have not shown the evolution of the size of the force tiles, which increases with increasing shear strain (marked on the snapshot). 
Each force tile is colored according to its asphericity, which provides a measure of how strong the tangential forces are in the system [83]. 
In the unjammed state (a), the force tiling is very small (due to small forces) and formless. In the fragile states ((b)–(d)) the force tilings are 
very anisotropic (as characterized by high asphericity of individual tiles) and begins as a quasi one dimensional structure (b), which evolves 
towards a well defined two dimensional shape as the shear jamming approaches (d). In the jammed states ((e)–(i)), the tiling has a well-
defined shape which is preserved even when a large amount of strain is applied. Also, individual tiles become more isotropic.
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�2 �φ0 = �φg1 +
�φg2 +

�φg3 +
�φg4 − 4�φg0 .� (7)

In general, one can write this equation in a vector notation as

�2|�φ〉 = −|�f body〉,� (8)

where |�φ〉 represents the vector (�φ1, �φ2, ...�φN). We can invert 
this equation to obtain the auxiliary fields {�φ}. Once we have 
determined the �φ  field, we can construct force polygons for 
every grain and hence construct force tilings. This also means 
that we have determined effective contact forces that incorpo-
rate the effect of the body forces, and add up to zero on every 
grain. We can subtract ��φ  from the original contact forces 
to obtain effective contact forces which satisfy the constraints 
of local force balance. The difference between these effective 
contact forces and the original ones represents the response of 
the granular packing to the perturbation.

7.1.4.  Implications of shear jamming for rheology and for 
granular-like materials.  As noted above, shear jamming is 
seen in the existence of random loose packings. But, there are 
other ways in which its effects are manifested, for instance in 
steadily sheared systems. The response of granular systems 
when they are steadily sheared is referred to as rheology, and 
is, by itself, a major research topic, and beyond the scope of 
this review. Using numerical simulations, Teitel et al [164], 
Heussinger et al [165], Otsuki and Hayakawa [166, 167] and 
others have extensively explored the states that occur for sys-
tems of frictionless and frictional particles that are subject to 
steady state shearing. Of particular interest here are studies by 
Otsuki and Hayakawa [166, 167] who explore the response 
of sheared systems of frictional particles near jamming, and 
contrast these to similar systems without friction. These stud-
ies show, among other things, that frictional systems exhibit 
a discontinuity in the shear stress and pressure as a function 
of φ, for the limit of vanishing shear rate. Steadily sheared 
systems are continuously rearranging, they are in some sense 
‘fluid-like’. An alternate analogy in this case is plastic yield in 
a solid. Many flows of practical interest fall in this category, 
and older granular models, such as critical state soil mechan-
ics [120] provide continuum descriptions. More recently, 
there have been significant advances in understanding rheo-
logical flows using so-called µ(I) models [168]. The fact that 

sheared granular systems can statically or dynamically sustain 
shear bands, highly dilated regions within a granular material, 
is presumably related to shear jamming. And in simple shear 
flows, systems are close in density to shear jammed states. 
Then, when such a flow is arrested, as in a flow in a chute 
or hopper, the system can quickly transition from flowing to 
jammed, with an end state that is shear jammed. Thus, there 
are interesting connections to explore between granular rheol-
ogy and shear jamming. And, it it is interesting to consider 
related phenomena occurring in systems such as suspensions 
or colloids.

For instance, in an interesting new development, analysis 
of recent experiments and numerical simulations in dense sus-
pensions, which exhibit impact-driven solidification and the 
phenomenon of discontinuous shear thickening [148, 169–173],  
shows remarkable similarities with the phenomenon of shear 
jamming and the theoretical picture of stress transmission in 
shear-jammed solids that was presented in the 90’s [7, 21]. 
There is a developing consensus that particle contact and 
friction play a crucial role in dense suspension rheology 
[174, 175]. Combining fluid mechanical interactions with 
contact friction between particles has been shown to cap-
ture critical features of both discontinuous shear thickening  
[148, 169, 172, 173, 176, 177] and shear induced jamming 
[178]. Furthermore, clear connections have been made 
between a dynamic shear-jamming front and impact-driven 
solidification [179]. The connection between shear-jamming 
in dry grains and shear-driven rigidity in dense suspensions 
is being actively explored but the field is too new for us to 
include in this review.
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Robert P. Behringer, James B. Duke Professor of Physics at Duke University, passed away on July 10 2018, after a short 
illness.  This review is one of the last papers that he coauthored while in residence at the Kavli Institute for Theoretical Physics 
at Santa Barbara in the spring of 2018 as a participant in two programs:  Memory Formation in Matter and Physics of Dense 
Suspensions.  Bob Behringer is widely known as a pioneer in the field of granular materials.  His innovative research techniques 
and his deep physical intuition shed light into the collective behavior of the class of fragile solids and fluids, reviewed in this 
article. Behringer earned his Ph.D. in 1975 from Duke University.  His PhD thesis was on low temperature physics, and his 
postdoctoral work at Bell Laboratories focused on Rayleigh- Bénard instabilities. He joined the Department of Physics at Duke 

University in 1982. He was named the James B. Duke Professor of Physics in 1994.  Behringer has made lasting contributions to low temperature 
physics, Rayleigh–Bénard convection, porous media, pattern formation, chaos, nonlinear dynamics in thin fluid films, and granular media. Behringer’s 
use of photoelastic material to measure contact forces in granular helped launch the field of granular physics in the late 1990s. “Force chains”, which 
have become synonymous with granular materials, were stunningly visualized using photoelastic techniques.  He was passionate about unearthing the 
physical processes that led to this collective behavior of grains, and helped develop theories of jamming and stress propagation in granular media. 
Behringer was a Fellow of the American Physical Society and American Association for the Advancement of Science, and won the Jesse Beams 
Award from the Southeastern Section of the American Physical Society.

Rep. Prog. Phys. 82 (2019) 012601

https://doi.org/10.1103/PhysRevLett.114.015701
https://doi.org/10.1103/PhysRevLett.114.015701
https://doi.org/10.1103/PhysRevLett.116.078001
https://doi.org/10.1103/PhysRevLett.116.078001
https://doi.org/10.1103/PhysRevLett.100.238001
https://doi.org/10.1103/PhysRevLett.100.238001
https://doi.org/10.1122/1.4890747
https://doi.org/10.1122/1.4890747
https://doi.org/10.1122/1.4890747
https://doi.org/10.1088/1751-8113/44/3/035001
https://doi.org/10.1088/1751-8113/44/3/035001
https://doi.org/10.1103/PhysRevLett.79.2486
https://doi.org/10.1103/PhysRevLett.79.2486
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/PhysRevLett.70.1619
https://doi.org/10.1103/PhysRevLett.70.1619
https://doi.org/10.1103/PhysRevLett.70.1619
https://doi.org/10.1016/0022-0396(87)90038-6
https://doi.org/10.1016/0022-0396(87)90038-6
https://doi.org/10.1016/0022-0396(87)90038-6
https://doi.org/10.1002/cpa.3160400403
https://doi.org/10.1002/cpa.3160400403
https://doi.org/10.1002/cpa.3160400403
https://doi.org/10.1017/jfm.2015.412
https://doi.org/10.1017/jfm.2015.412
https://doi.org/10.1017/jfm.2015.412
https://doi.org/10.1103/PhysRevE.77.041303
https://doi.org/10.1103/PhysRevE.77.041303
https://doi.org/10.1103/PhysRevLett.96.168001
https://doi.org/10.1103/PhysRevLett.96.168001
https://doi.org/10.1038/nature03497
https://doi.org/10.1038/nature03497
https://doi.org/10.1038/nature03497
https://doi.org/10.1103/PhysRevLett.89.084302
https://doi.org/10.1103/PhysRevLett.89.084302
https://doi.org/10.1007/s10955-017-1857-0
https://doi.org/10.1007/s10955-017-1857-0
https://doi.org/10.1007/s10955-017-1857-0
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.99.178001
https://doi.org/10.1103/PhysRevLett.99.178001
https://doi.org/10.1103/PhysRevLett.102.218303
https://doi.org/10.1103/PhysRevLett.102.218303
https://doi.org/10.1103/PhysRevE.83.051301
https://doi.org/10.1103/PhysRevE.83.051301
https://doi.org/10.1103/PhysRevE.95.062902
https://doi.org/10.1103/PhysRevE.95.062902
https://doi.org/10.1098/rsta.2009.0171
https://doi.org/10.1098/rsta.2009.0171
https://doi.org/10.1098/rsta.2009.0171
https://doi.org/10.1103/PhysRevLett.111.218301
https://doi.org/10.1103/PhysRevLett.111.218301
https://doi.org/10.1038/nmat2627
https://doi.org/10.1038/nmat2627
https://doi.org/10.1038/nmat2627
https://doi.org/10.1088/0034-4885/77/4/046602
https://doi.org/10.1088/0034-4885/77/4/046602
https://doi.org/10.1103/PhysRevLett.112.098302
https://doi.org/10.1103/PhysRevLett.112.098302
https://doi.org/10.1007/s00397-014-0795-x
https://doi.org/10.1007/s00397-014-0795-x
https://doi.org/10.1007/s00397-014-0795-x
https://doi.org/10.1122/1.4709423
https://doi.org/10.1122/1.4709423
https://doi.org/10.1122/1.4709423
https://doi.org/10.1103/PhysRevLett.95.268302
https://doi.org/10.1103/PhysRevLett.95.268302
https://doi.org/10.1103/PhysRevE.88.050201
https://doi.org/10.1103/PhysRevE.88.050201
https://doi.org/10.1103/PhysRevLett.111.108301
https://doi.org/10.1103/PhysRevLett.111.108301
https://doi.org/10.1103/PhysRevE.91.052302
https://doi.org/10.1103/PhysRevE.91.052302
https://doi.org/10.1038/ncomms12243
https://doi.org/10.1038/ncomms12243

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿The physics of jamming for granular materials: a review
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿1.1. ﻿﻿﻿General overview of granular materials
	﻿﻿1.1.1. ﻿﻿﻿Metastability. 
	﻿﻿1.1.2. ﻿﻿﻿Fluctuations. 
	﻿﻿1.1.3. ﻿﻿﻿Coarse graining. 
	﻿﻿1.1.4. ﻿﻿﻿Stress tensor. 
	﻿﻿1.1.5. ﻿﻿﻿Statistical mechanics of jamming. 

	﻿﻿1.2. ﻿﻿﻿Contact and force networks
	﻿﻿1.2.1. ﻿﻿﻿Rattlers. 
	﻿﻿1.2.2. ﻿﻿﻿Isostaticity. 
	﻿﻿1.2.3. ﻿﻿﻿Force networks. 
	﻿﻿1.2.4. ﻿﻿﻿Rigidity. 


	﻿﻿2. ﻿﻿﻿Isotropic versus anistropic jamming: early work
	﻿﻿2.1. ﻿﻿﻿Insights from 2D experiments

	﻿﻿3. ﻿﻿﻿Density-driven jamming and unjamming
	﻿﻿3.1. ﻿﻿﻿Hard sphere jamming
	﻿﻿3.2. ﻿﻿﻿Jamming and unjamming of soft spheres
	﻿﻿3.3. ﻿﻿﻿Force network ensemble
	﻿﻿3.4. ﻿﻿﻿Scaling at ﻿﻿
	﻿﻿3.5. ﻿﻿﻿Experiments
	﻿﻿3.6. ﻿﻿﻿Jamming in 3D experiments with visualization

	﻿﻿4. ﻿﻿﻿Shear-driven jamming
	﻿﻿5. ﻿﻿﻿Experiments related to jamming
	﻿﻿6. ﻿﻿﻿Numerical studies and theoretical frameworks
	﻿﻿6.1. ﻿﻿﻿Shear jamming in frictionless systems: numerical studies
	﻿﻿6.2. ﻿﻿﻿Ensembles of jammed states
	﻿﻿6.3. ﻿﻿﻿Constraints on granular aggregates: gauge potentials
	﻿﻿6.4. ﻿﻿﻿Theories of shear jamming

	﻿﻿7. ﻿﻿﻿Looking beyond jamming
	﻿﻿7.1. ﻿﻿﻿Applications and broader issues
	﻿﻿7.1.1. ﻿﻿﻿Applications. 
	﻿﻿7.1.2. ﻿﻿﻿Granular gases. 
	﻿﻿7.1.3. ﻿﻿﻿Force transmission in granular solids. 
	﻿﻿7.1.4. ﻿﻿﻿Implications of shear jamming for rheology and for granular-like materials. 


	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿


