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Abstract

Two-dimensional impact experiments by Clark et al. identified the source of inertial

drag to be caused by ‘collisions’ with a latent force network, leading to large fluctu-

ations of the force experienced by the impactor. These collisions provided the major

drag on an impacting intruder until the intruder was nearly at rest. As a comple-

ment, we consider controlled pull-out experiments where a buried intruder is pulled

out of a material, starting from rest. This provides a means to better understand the

non-inertial part of the drag force, and to explore the mechanisms associated with

the force fluctuations. The pull out process is a time reversed version of the impact

process. In order to visualize this pulling process, we use 2D photoelastic disks from

which circular intruders of different radii are pulled out. We check the effect of the

initial depth of the intruder, as well as the widths and friction of boundaries. We

present results about the dynamics of the intruder and the structures of the force

chains inside the granular system as captured by high speed imaging. Before con-

ducting the pull-out dynamic experiments, we first measured the critical pulling force

that is needed to pull the intruder out. Under gradually increasing upward pulling

force, a steadily strengthening force network forms in response to small displacements

of intruder, then eventually fails and the intruder exits the material in a rapid event.

We find that just before failure, the force chains bend in a way that is consistent with

recent predictions by Blumenfeld and Ma. We found the boundary width together

with friction plays an important role in this static pre-failure experiment. However,

iv



the system boundary does not have much effect on the dynamics of the intruder once

the pull-out process starts.
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1

Introduction

1.1 General properties of granular material

A granular material is an aggregation of macroscopic particles with diameters greater

than 10 µm. For example, snow, sand, coal and fertilizer all belong to granular

materials. Because of the macroscopic size of the particles, granular materials will

not be affected by thermal fluctuations. However, no matter when these particles

in granular materials interact with each other, energy loss will occur. Behaviors

of granular materials are very complex: sometimes they can flow like fluid, e.g.

quicksand, while sometimes they can stay static like a solid, e.g. a sand castle, other

times they can also act like gas, e.g. a sandstorm. (Jaeger et al., 1996)

The discreteness of granular matter greatly affects the complexity of granular

properties. Particles compared with their neighbors can have very different force

configurations and dynamical motions. Therefore, a granular system may not be well

described by traditional hydrodynamics, using macroscopic quantities with length

scales much larger than the typical microscopic scales set by particle sizes.

To understand the behaviors of particle packings, many systems have been stud-
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ied, e. g. impact experiments, compression experiments, shear experiments et al.

1.2 Motivation of pull-out experiment

The initial enthusiasm for this pull-out experiment comes from a number of impact

experiments (Katsuragi and Durian, 2007; Nordstrom et al., 2014; Tsimring and

Volfson, 2005; Clark et al., 2012), in which multiple collisions with the network de-

termined by the forces exerted on the intruder were discovered. However, the specific

cause of the force fluctuations still remain unknown. As a comparison and alterna-

tive, I started to work on controlled pull-out experiments to explore the mechanisms

associated with these fluctuations. The pull out process is, to some extent, the

time reverse of the impact process. This pull-out experiment reveals interesting new

results. Additionally, the pull out process from a granular material has many ap-

plications for pilings and buildings.(Nusier and Alawneh, 2004; Krishna and Murty,

2013)

1.3 Related phenomena

There are several phenomena closely related with this pull-out experiment, e.g. gran-

ular impact, Janssen effect, and fluid flow around an infinite cylinder.

The granular impact is the reverse process of the dynamic pull-out experiment

in some perspective, as shown in the Fig.1.1 and Fig.1.2. Janssen effect shows the

frictional boundary’s effect on the internal pressure in the granular system, which

also affect the static pre-pull experiment.Fluid flow around an infinite cylinder is

one fluid version for the dynamic pull-out experiment with circular intruder. There

are some interesting similarities when comparing those phenomena with the pull-out

experiment, though some difference can still be found.

2



Figure 1.1: Typical image(Clark et al., 2015) in A.H. Clark’s impact experiments
in quasi-2D photoelastic granular particles with diameters 6 mm and 9 mm with
elastic modulus of 10 MPa. The circular intruder radius is 6.4cm. In this experiment,
the intruder freely falls on the quasi-2D particle bed from certain heights. As shown
in the image, bright parts are particles inside the granular system experiencing force
and the black part in the middle top is small part of the circular intruder.

1.3.1 Impact

Impact and the corresponding energy loss in granular material have attracted at-

tention at least since 1829 (Poncelet, 1829). Recently, there have been much more

research (Tsimring and Volfson, 2005; Katsuragi and Durian, 2007; Clark et al., 2012;

Nordstrom et al., 2014) about impact in granular material. When an intruder hits

a granular material, such as sand, the velocity of the intruder decreases due to the

force exerted by the granular particles. Impact in granular materials is particularly

common in applications, including spaceship landings and ballistic trajectories.

The goal of past research has been to understand the dynamics of the impact in

this complex system of granular material. A slow dynamics model of the impact has

been established through empirical results from experiments with intruders that have

much smaller velocities than the acoustic velocity in granular materials. The force

3



Figure 1.2: Typical image in dynamic pull-out experiments in quasi-2D photoelas-
tic granular particles with diameters 6 mm and 9 mm with elastic modulus of 1 MPa.
The intruder radius is 10.2cm. In my quasi-2D pull-out experiments, the intruder
is buried inside the granular materials and pulled out with a constant force. Bright
parts are particles inside the granular system experiencing force and the black part
in the middle is the circular intruder.

exerted upon the intruder is composed of three parts: the intruder’s gravitational

force, a static force, and an inertial force. The gravitational force is the result

of interaction between the intruder and the earth, which has no relationship with

granular materials. However, the static force and the inertial force both arise from the

granular material. In some experiments, the inertial term is known to be proportional

to velocity squared of the intruder with a multiplicative factor that may depend on

depth and shape.(Katsuragi and Durian, 2007; Umbanhowar and Goldman, 2010;

Clark et al., 2012) It is called inertial term because it models the momentum and

also energy transfer processes from the intruder to the particles of granular material.

The static term is thought to be a function of only depth, which matters most in the
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later period of the impact. This term plays an important role when the intruder is

in the almost static state.

Although these macroscopic force laws can describe the intruder’s trajectories on

average, the deceleration of the intruder is not as smooth and simple as described by

this force law. Dominated by large fluctuations, the deceleration can be connected to

intermittent force pulses which carry energy and momentum away into the granular

material.

Using high speed imaging experiments, A. H. Clark et al have established a

collisional model(Clark et al., 2015) to connect macroscopic force laws to a grain-

scale description.This approach sheds light on the stress on the intruder boundary

and its space-time correlations with intruder velocity.

1.3.2 Janssen effect

In order to improve corn and fruit depositories, storage and transportation, the

strength of storage silos has been widely explored. H.A. Janssen, who was a German

engineer, explained novel behavior of granular materials in his paper in 1895. From

simple experiments with corn he inferred the saturation of pressure with increasing

depth of granular systems. Additionally, Janssen derived a formula for pressure

vs. depth for a granular material from the assumption that the walls carry part

of the weight. In Janssen’s paper, he also mentioned earlier works: in 1829 Huber

Burnand demonstrated the pressure saturation qualitatively, and Hagen predicted

the saturation of pressure in 1852. I will briefly discuss Janssen’s work.

In Janssen’s experiments, four different wooden cuboidal boxes with horizontal

side lengths of 20, 30, 40, and 60 cm are used. A box is mounted on four screws S, as

is shown by Fig.1.3. The lower end of the box is separated by a movable base. This

base is counterbalanced by weights on the plate G. The corn is weighed before being

poured into the apparatus. The box is only filled up to the point where plate G with
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Figure 1.3: Apparatus for Janssen’s Experiments(Janssen, 1895). A box is
mounted on four screws S. The lower end of the box is separated by a movable
base, counterbalanced by weights on the plate G. The box is only filled up to the
point where plate G with the applied weights starts moving upwards from its center
position. Weighing the remaining corn in the container, one can determine accurately
the quantity of corn that is causing the pressure at the base.

the applied weights starts moving upwards from its center position. Weighing the

remaining corn in the container, one can determine accurately the quantity of corn

that is causing the pressure at the base. After placing an additional weight on the

plate G, the apparatus is lifted with the screws S to the point where the balance is

in equilibrium again. In this way it was possible to determine the bottom pressure

for various filling heights while filling the box just once.

The results of Janssen’s Experiments for boxes with side lengths of 20cm to 60cm

are displayed in Fig. 1.4. The smooth and similar curves of the observed pressure
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Figure 1.4: Graph of bottom pressure vs. corn amount for boxes with widths 20
cm, 30 cm, 40 cm, 60 cm in Janssen’s ExperimentsJanssen (1895). At first, when
more corn is poured into the box, more pressure the bottom will feel. Saturation of
the bottom pressure appears for every box size.
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Figure 1.5: Jasssen’s model to explain the pressure difference

persuade us that these observations are correct. If the content inside the box were a

liquid, the bottom pressure would be equal to the weight of the box’s content. The

experiments with corn, however, yield a much smaller bottom pressure.

Janssen constructed a model for granular materials to explain this huge difference

in pressure from a liquid, as shown in 1.5. From the balance of vertical forces on

that layer of corn, differential equation can be written as:

App` dp´ pq “ γAdx´ µpsCdx, (1.1)

with boundary condition p(x=0)=0. Here, x=0 corresponds to the top of the

layer.(Janssen, 1895)

After solving the above Eq.1.1, the expression for the pressure is as follows:

ppxq “
Lγ

4K
p1´ e´4K

x
L q (1.2)

In Eq. 1.1 and Eq. 1.2 , p is the vertical pressure of the corn, ps is the horizontal

pressure of the corn exerted on side walls, µ is the friction coefficient between corn

and cell wall, K =psµ/p, which is around 0.2, can be given by experiment data , L

is the side length of the quadratic box, C=4L is circumference of the square, A is

the area of the cross section parallel the bottom of box, which equals L2, x is the
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Figure 1.6: Jasssen’s assumption on horizontal pressure distribution(Janssen, 1895)

filling depth of the corn in the box, γ is the specific weight of the content, e is the

base of the natural logarithm. The friction coefficient µ, measured by Janssen with

another small experiment by horizontally pulling a wood above the corn, is around

0.33. This indicates that, on average, ps « 0.7p.

Additionally, Janssen has made some assumptions(Janssen, 1895), as is shown in

Fig. 1.6. The first assumption is that near the corners of the square, the pressure

is lower than this mean value, while it is higher in the center part of the walls. The

second assumption is that the pressure is transmitted to the side walls radially from

the center and exerts a pressure against the wall of psinα, with α being the angle

under which the pressure ‘ray’ hits the wall. The maximum pressure against the

wall, around 1.15 of the mean pressure, is reached in the middle of the cell wall, or

psmax= 1.15¨ 0.7¨ p« 0.8 p.

Janssen’s experiments and model(Janssen, 1895, 1896) greatly improved silo de-
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sign. As Sperl (Sperl, 2005) notes, Janssen’s paper had been cited 40 times before

1977. Between then and 2005, it has been cited 375 times. This indicates increasing

interest in the Janssen effect in granular physics. As will be shown later, Janssen’s

experiment is helpful in understanding my pre-pull experiment described later.

1.3.3 Fluid flow around an infinite cylinder

In fluid mechanics, flow around a transverse circular cylinder is a classical problem.

Many related calculations and experiments have been done for hundreds of years.

For inviscid, incompressible fluid around a cylinder, unlike a real fluid, the analytical

solutions indicate zero drag on the cylinder, which is well known as d’Alembert’s

paradox.

The incompressible Navier-Stokes equations without internal source are as fol-

lows:

Bu

Bt
` pu ¨∇qu´ ν∇2u “ g, (1.3)

where ν “ µ
ρ0

is the kinematic viscosity. There is an analytical solution of Navier-

Stokes equation (Eq. 1.3) for fluid flow around a sphere in low Reynolds number

region. However, Stokes cannot take the convective term ( (u ¨ ∇quq as a small

correction to get an analytical solution for an infinitely long cylinder in low Reynolds

number flow, as what he has done for a sphere. Proudman and Pearson (Proudman

and Pearson, 2006) have used expansion methods to get an approximation for the

solution for a circular cylinder in low Reynolds number flow. More recent work, with

the help of computers, have been done for higher Reynolds number flow around the

cylinder with different boundary conditions.
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Figure 1.7: Flow around a fixed circular cylinder, considered as superposition of
uniform flow and doublet.(Gramoll, 2017)

Potential flow around an infinitely cylinder

Potential flow around a fixed circular cylinder is a classical solution for an inviscid,

incompressible fluid flowing around a transverse cylinder. The flow far from the

cylinder is uniform with constant velocity. The space is infinitely large in this case

with no other boundaries. Here flow has no vorticity and no viscosity and thus can

be regarded as potential flow. Unlike a real fluid, this solution indicates no net drag

force on the cylinder, a result known as d’Alembert’s paradox.

Besides calculating the velocity directly from the Laplace’s equation for the flow

potential, flow around a circular cylinder can be obtained by combining uniform flow

with a doublet flow, as shown in Fig. 1.7. A doublet flow is a superposition of a sink

and a source with the same strength.
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Figure 1.8: Comparison between Experimentaland Theoretical Cp (Gramoll, 2017),
where Cp is the dimensionless pressure coefficient.

Cp “
ps ´ po
1
2
ρU2

“ 1´ 4 sin2 θ, (1.4)

where Cp is the dimensionless pressure coefficient, ps is the pressure on the cylinder

surface, po is the pressure in the free-stream flow, U is the free-stream flow velocity,

ρ is the density of the free-stream flow, θ is the angle between the corresponding

radius of the surface point and the free-stream flow’s opposite direction. This Cp is

called theoretical value of the dimensionless pressure coefficient. Also, experiments

can give this empirical value of the dimensionless pressure coefficient.

The discrepancy between the experimental and theoretical Cp is shown in the

Fig. 1.8 (Gramoll, 2017). This difference is due to the viscous effects.

Low Reynolds number flow around a circular cylinder

The problem of determining the steady flow past fixed bodies in a slow uniform

stream of viscous incompressible fluid was first considered by Stokes (1851), and

has been discussed subsequently by many authors like Oseen (1910). (Stokes, 1851;
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Oseen, 1910)

With very few exceptions, however, these authors have been concerned with find-

ing the flow past various shapes of body in the limit of zero Reynolds number. Yet

many of the effects that arise when the Reynolds number is not negligibly small are

also of considerable physical and mathematical interest.

The flow around a circular cylinder in steady cross-flow is extensively studied

and Zdravkovich (Zdravkovich, 1997)presents a thorough review of this work. The

governing parameter for viscous flows is the Reynolds number, expressing the ratio

of inertia to viscous forces. The Reynolds number is defined as: Re “ UD
ν

. Here U is

the free-stream flow velocity, D is the diameter of the cylinder and ν is the kinematic

viscosity.

The flow around cylinder is characterized by the formation of a wake depending

on Re. Fig.1.9 (a)-(f)(Sumer and Fredse, 1997) depicts the flow around a circular

cylinder in uniform cross-flow for different Re below 162. For circular cylinders at

Re ą 47 (Norberg, 2003), the wake is characterized by the eddies which are shed at

a frequency.

For our dynamic pull-out experiments, the granular particles flow is a low Reynolds

number case, with similar flow folder as the fluid flow folder with Re=32. The flow

folder will be shown clearly in the unpolarized videos taken during the dynamic

experiments.
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Figure 1.9: (a)-(f) Flow around a circular cylinder for different Reynolds number.
(Sumer and Fredse, 1997)
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2

Experiment Design

The idea behind this pull-out experimental design is to provide a way to understand

the dynamics of the circular object pulled out from a granular material and the re-

sponse of the granular system during the pulling process. For a complete description

of the pull-out experiment, it is desirable to have information on the intruder tra-

jectory as well as the particle flow fields and stresses. For this reason, we designed

and built the granular system with small quasi-2D photoelastic disks placed inside

the walls made of two big transparent glass plates. The glass plates are fixed to

aluminum frames.

The other problem that needs to be solved is how to provide a pulling force.

The idea is to provide a constant pulling force statically. So we connect the circular

object through a string above two pulleys with a bottle of water, whose weight can

be continuously changed and measured before the experiment. Now the question

is how much water should be added to the bottle to pull the buried object out

from the granular materials. So we designed a pre-failure experiment during which

we keep adding small quantized weights on the bottle side until the critical pulling

force that breaks the granular system and pulls the object out is reached. Those
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quantized weights are made of plastic bags with certain numbers of small steel balls

inside, whose total weight is 44 grams. The static pre-pull experiment is captured

with ordinary camera video, which shows the evolution of the force networks in the

granular system when the pulling force on the buried object is gradually increased

to the critical point.

After we know the value of the critical pulling force, we use a corresponding weight

of water as the pulling force to conduct the pull-out experiment. For the pull-out

experiment, we capture this 2-second process with a fast camera, Photron FASTCAM

SA5, by taking from 1000 to 7000 images per second. The two-dimensional nature of

this pull-out process allows us to visualize and quantify the entire system using high-

speed video. We can obtain the trajectory of the intruder by tracking its position at

each frame. The photoelasticity of granular quasi-2D disks allows us to quantify the

stresses on grains at each frame. Although a two-dimensional experiment is simple

in terms of data collecting and processing, it is unclear if the two-dimensional results

are similar to three-dimensional systems. So a three-dimensional version of the pull-

out experiments with sand and glass bead have also been done by Payman Jalani

and Yuchen Zhao in our group.The material discussed in this chapter is primarily

the basic techniques used to gather and process the data from videos.

2.1 Experimental Apparatus

The Fig. 2.1 shows the basic schematic for the pull-out experimental apparatus.

The intruder is pulled out from the quasi-2D photoelastic particles by the thread

connected with a bottle. The initial depth of the intruder, the mass of the bottle

and the boundary width of the granular system can be tuned. During the pull-

out process, the photoelastic response from the particles above the intruder can be

visualized, which indicates the internal stress in those particles.

The photograph (Fig. 2.2) shows the main apparatus used in this experiment.

16



Figure 2.1: Schematic of the experimental apparatus for pull-out experiments in
quasi-2D granular materials. Photoelastic particles are sandwiched between the two
sheets of the glass, and the circular intruder positioned inside the particles can be
pulled out from different initial depth(h) by the thread connected to a bottle, whose
weight can be changed continuously. The width(w) of the granular system can also
be changed with two parallel aluminum bars.

A bidisperse mixture of about 10,000 photoelastic particles (with density about 1.20

g{cm3, thickness about 0.32 cm, diameters about 0.89 cm and 0.56 cm, masses about

0.24 g and 0.09 g, with similar numbers of each size) are sandwiched between two

sheets of transparent annealed glass. The particular photoelastic particles used in

the pull-out experiment are made from sheets of polyurethane manufactured by

Precision Urethane. The particles have a hardness rating of 60, measured on the

Shore Durometer scale, type A, corresponding to an elastic modulus of 1 MPa (Qi

et al., 2003; Clark et al., 2015).

No tempered glass can be used in this experiment because the tempered glass has

internal stress which produces unexpected fringes under polarized light, which can

be seen in our first unsuccessful trial. The distance between the two glass sheets is

0.41 cm so that the particles can move smoothly while loosely constrained by glass

sheets. Each annealed glass sheet is 0.95 cm thick, 122 cm wide and 92cm high. The
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Figure 2.2: Picture of the experimental apparatus for pull-out experiments in
quasi-2D granular materials. Two pieces of glass plates are fixed to the aluminum
frame, photoelastic particles are sandwiched between the two sheets of the glass,
while the boundary width of the granular system can be changed with two parallel
aluminum bars whose distance can be tuned. The circular intruder positioned inside
the particles can be pulled out by the thread connected to a bottle, whose weight
can be changed continuously. The thread is made from stiff fish line and constrained
in the particles plane by two pulleys on top of the aluminum frame.

granular layers are with depth about 60 cm and with width ranging from 31 cm to

112 cm.

The reason for using bidisperse particles instead of monodisperse particles is to

avoid crystallization in this granular system. The small particle diameter is inten-

tionally chosen bigger than the distance between the two glass sheets in order to

keep all particles arranged in the same direction, which is quite important for the

quasi-2D assumption for the granular system.
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Figure 2.3: Cartoon of the experimental apparatus side view for pull-out exper-
iments in quasi-2D granular materials. From left to right subsequently are a cam-
era(fast camera or normal camera), a circular polarizer, an annealed glass sheet,
quasi-2D photoelastic granular materials with an intruder embedded, another an-
nealed glass sheet, another circular polarizer, a light source. This arrangement of
polarizers and light source provides a way to visualize the internal stress in the gran-
ular system while pulling the intruder out. The camera is used to record the pull-out
process.

Circular intruders used in the pull-out experiment are machined from bronze

sheet (with bulk density of 8.91 g{cm3, thickness of 2.3 mm) into various sizes, with

diameters 20.4 cm, 12.8 cm, 10.0 cm and 6.4 cm (with masses 671 g, 260 g, 166 g and

63 g). They are buried in the granular assembly and are attached to a long thread

which connects to the bottle on the other side containing water inside. The thread

made from stiff fish line is constrained in one plane by two pulley grooves. The total

frictional forces between the thread and pulley grooves are less than 0.5 N.

The recording techniques used in a pull-out experiment are almost the same as

in an impact experiment, which also can visualize the force structures inside the
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granular system. As is shown in the carton schematic of side view for the pull-

out experiments(Fig. 2.3), the natural light comes out from the light source, and

goes through a circular polarizer and becomes polarized light and goes through the

granular system, then goes through another circular polarizer and is recorded by the

camera. These images of the granular system with bright and dark fringes give us

the information on the internal stress during the pull-out process.

Light from 62 parallel fixed LED strips (each strip has 63 bulbs) passes through

the first circular polarizer, one annealed glass sheet, one layer photoelastic particles,

the other annealed glass sheet and the second circular polarizer before it arrives at a

camera. The reason for using these LED strips instead of several bright bulbs is that

distributed light is more uniform and light source is rectangle with a similar size as

the glass sheet in the pull-out experiment.

Pre-pull static experiments are recorded with a normal digital camera, a Nikon

D7100. Movies recorded with the Nikon D7100 is taken at 30 frames per second

(fps), with a resolution of about 1920 ˆ 1080 pixels. Images taken with the Nikon

D7100 have a resolution of about 6000ˆ 4000 pixels.

Dynamical pull-out experiments are recorded with a high-speed camera, Photron

FASTCAM SA5, because the whole process of the pull out happens in seconds.

This fast camera has a maximum output of 7000 megapixels per second, which

means the maximum frame rate is 7000 frames per second (fps) at the full frame

resolution of 1024ˆ1024pixels (or one megapixel). Higher frame rates (up to 775,000

fps) can be achieved by reducing image resolution or the field of view. For dynamical

pull-out videos, the camera is typically set at 2500 fps because the light source

composed of thousands of small LED bulbs is not bright enough for faster speed,

and because otherwise the camera memory is not enough to capture the whole pull-

out process.The pixel resolution and the aspect ratio of the videos varies for each

experiment depending on the desired field of view.
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2.2 Experiment Techniques

Several experimental techniques have been used to extract physical information from

the images taken during the pull-out experiments. First, there is an empirical quan-

tity called G-square, which can be used as measure of the internal stress inside the

granular material. Second, there is an effective algorithm for position detection of the

circular object in images, which tracks the trajectories of the intruder while pulling

it out from a granular material. Third, there is an established method called Particle

Image Velocimetry (PIV), which yields a macroscopic velocity field in the granular

system.

2.2.1 Photoelasticity

Before introducing the G-square method, we need to first understand photoelastic-

ity. Photoelasticity is stress-induced birefringence, exhibited by many transparent

materials under polarized light condition. The refractive indices at any point in a

photoelastic material depend on the local eigenvalues of the stress tensor. As a result,

light polarized along the different principle stress directions have different velocities.

Consequently, light polarized along different principle stress directions emerge from

the material with phase differences.

On one side of my experiment, the photoelastic system has a light source and a

circular polarizer(the polarizer), while on the other side is another circular polarizer

( the analyzer)and a camera as in Fig. 2.4. Both circular polarizers consist of a linear

polarizer and a quarter-wave plate whose fast axis is at 45 degrees relative to the

linear polarizer. The only difference between two circular polarizers is that the linear

polarizer in the analyzer is oriented at 90 degrees relative to the linear polarizer in

the polarizer. Polarized light coming from the polarizer that does not go through

the photoelastic material, e.g. above the particles, will be blocked by the analyzer.
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Figure 2.4: Graph of the apparatus to produce photoelasticity

The stresses inside the sampled photoelastic material causes the polarized light has

a phase retardation, which cause phase shifts, which cause dark and bright fringes.

The relation between the stress inside the sample and the light intensity has been

shown to follow:

I “ I0 sin2
rpσ2 ´ σ1qCT {λls, (2.1)

where I is the light intensity coming through the sample, I0 is the light intensity

going into the sample, C is the stress-optic coefficient, T is the thickness of the

sample, λl is the wavelength of the light source, and σ1, σ2 are the two principal

stresses.(Majmudar and Behringer, 2005)

The particular photoelastic material used in the pull-out experiment is made

from sheets of polyurethane manufactured by Precision Urethane. The particles

have a hardness rating of 60, measured on the Shore Durometer scale, type A, cor-

responding to an elastic modulus of 1 MPa (Qi et al., 2003). This material consists

of approximately 12,000 disks with diameter 9 mm and 6 mm, with similar num-
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bers of each size.(Clark et al., 2015) Although we have two stiffer particles sets, the

pulling-induced internal stress is not big enough for available photoelastic effect.

Roughly, stressed regions in photoelastic images appear bright while stress-free ar-

eas appear dark. The photoelastic response needs to be calibrated through a method

known as the G-square method, which is basically the gradient of the intensity in

pixels, as is shown by the Eq. 2.2:

G2
px, yq “

1

4
trIpx` 1, yq ´ Ipx´ 1, yqs2 ` rIpx, y ` 1q ´ Ipx, y ´ 1qs2

`rIpx` 1, y ` 1q ´ Ipx´ 1, y ´ 1qs2{2

`rIpx` 1, y ´ 1q ´ Ipx´ 1, y ` 1qs2{2u,

(2.2)

where I(x,y) is the intensity value of the pixel positioned at (x, y) in a photoelastic

image. There is a linear relationship between G2 and stress in the photoelastic

material for moderate stresses, which is quite useful in the analysis of the granular

system.

2.2.2 Tracking

To obtain the dynamics of the circular object pulled out from a granular material,

we need to know the position of the object at every moment. In order to capture the

position of the intruder, we make use of its shape by the Hough Transform (Ballard,

1981). There is a function, imfindcircles, in MATLAB, which uses Circle Hough

Transform (CHT) in its algorithm. The input of the imfindcircles function includes

an image, radius range (in pixels) of the circle and the sensitivity ( from 0 to 1) of

the detection.

The CHT is a map from position space{(x, y)} to parameter space {(a, b, r)}, and

then picking out the most frequently appeared (a, b, r). Here (x,y) is the position of

one pixel point on the edge of circles that need to be detected. Then the returned
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(a, b) is the center position coordinate and r is the radius of circle region in the

image. All the (x, y) and (a, b, r) should all be in pixels unit. What the map inside

CHT does is plotting new circles with centers at (x, y)s and with radius of r, then

all theses circles will have many points of intersection. The intersection point of

most such circles in the parameter space would be corresponding to the center point

of the original circle. In practice, the “supposed-to-be-dark” regions in the granular

material allow some small amount of light to pass, which allows the contrast adjusting

and intruder’s edge sharping possible. The typical error for finding the center of the

intruder varies, but is theoretically smaller than a single pixel. The radii of circular

intruders are ranging from 3.2cm to 10.2cm and all are about hundreds of pixels in

images. All these can be done with the help of MATLAB Image Processing Toolbox.

With the data of the intruder trajectories, we obtain the intruder’s velocities

and accelerations. Naively, we can calculate the velocity from the displacement by

doing the time derivative. The velocity at each frame is calculated as the difference

in position between the current frame and the previous, divided by the sampling

time. However, this simple method amplifies the experimental noise in the intruder’s

position, so a low-pass filter must be applied before doing the derivative. Clark et

al. use a simple low-pass filter, to calculate the slope of a linear fit of N points

of the intruder position versus time, centered at the frame of interest. Velocity

data are processed similarly to obtain accelerations. The numbers of data points of

acceleration are N points fewer than the velocity data points, and is 2N points fewer

than the position data points. Clearly the value of N should be chosen properly. If

N is too small, then the experimental error still has a huge effect on the calculation

of the velocity and the acceleration. If N is too big, then the physical fluctuations

in the dynamics, which will be shown in a later chapter, will be eliminated. Usually,

for 2500 fps sample rate, I use N “ 299 to achieve a balance between eliminating

experimental noise and keeping physical fluctuations. This empirical value of N is
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different for different sample rates in different experiment runs.

2.2.3 Particle image velocimetry (PIV)

Particle image velocimetry (PIV) is a powerful and widely used tool in fluid mechan-

ics(Tropea et al., 2007) for measuring the full velocity field and is beginning to find

application more generally in soft matter physics.

Unlike the techniques for tracking every particle used in some other quasi-2D

experiments of our group, I use unpolarized images to do PIV analysis in order to

obtain a sense of the average motion of particle groups within the same subregion.

The assumption implicit here is that particles in an interrogation area move similarly,

and the difffereces between those particles’ behaviors can be treated as noise instead

of dynamical effects.

Single images can only provide position information, and without time-resolved

measurements, PIV analysis is not possible. The canonical PIV method records two

images separated by a short time lag, δt. Measurement of the displacement of all

image subregions, e.g. every 32ˆ32 pixels window, tells us the approximate velocity

field when scaled by δt.(Adrian, 1991) The time lag must be kept small for two

reasons: first, the quality of the finite-difference derivatives increases as the time lag

between the image decreases; second, the uncertainties due to out-of-region motion

of tracers can be minimized.

We would like to calculate a single displacement vector for each subregion of the

image. To find the vector, we compute the cross-correlation function:

R12pxq “

ż

W1pxqI1pxqW2px` sqI2px` sqds, (2.3)

where I1and I2 are the spatially intensities of two images, and W1 and W2 are

corresponding window functions that specify the subregion in each image. The R12

gives a peak if the conditions for the PIV calculation are met. Using Gaussian profile
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gives an estimation of the center of the peak, which is the displacement vector for

the subregion in the image.(Westerweel, 1997) The accuracy of the PIV method can

reach sub-pixel unit.(Cowen and Monismith, 1997)

In the pull-out experiment, the use of PIV can give us a reliable quantitative

velocity field when choosing a proper window size and time lag. For the pull-out

experiment in a granular system, the velocity measurement tell us directly the evo-

lution of the relative positions of various particle groups. However, at the edge of

the intruder and the particles, the velocity field has many errors that are produced

by intensity fluctuations, which is reasonable because the homogeneous assumption

for PIV is broken near the interface. The software OpenPIV is an open source code

for solving PIV problems. The software has a convenient GUI and is generally user-

friendly. I have used this PIV package in the data analysis for unpolarized images.

2.3 Experiment Steps

In the pull-out experimental set up, the quasi-2D granular system is arranged in

a vertical direction. Then it is very difficult to insert the object into the granular

material. So we designed a rotatable glass box, which is helpful when preparing the

system. The vertical annealed glass box can be turned around for 90 degrees to a

horizontal direction, which makes it much easier for the circular object to be inserted

into the granular material.

We prepare the buried intruder in each run by tipping the glass sheets, placing

the intruder in a predetermined marked position and letting particles rain back.

As a result, the particles are randomly packed. The intruder is pulled by a thread

connected to a bottle whose weight can be changed to provide different pulling forces.

We have two separate sets of experiments, a static pre-pull experiment and a dynamic

pull-out experiment. The static pre-pull experiment finds the minimum force that

can break the granular system and pull the intruder out. Then we conduct the
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dynamic pull-out experiment with this minimum force to determine the dynamics of

the circular object and response of the granular system.

2.3.1 Steps for static pre-pull experiment

In the static pre-pull experiment, we gradually increase the pulling force by repeat-

edly adding small increments of weight on the bottle side, until the object is pulled

out.

The whole process is captured by Nikon D7100 at 30 frames per second (fps).

A hand-made flag was waved at front of the object each time right before adding

weight, to inform me of the change in pulling force when processing images. The

movies taken by the Nikon D7100 are separated into images with ffmpeg, an open

source software, before image processing. Also, each second in a movie is separated

into 30 frames of images.

2.3.2 Steps for dynamic pull-out experiment

In the dynamic pull-out experiment, the minimum pulling force found in static ex-

periment is exerted on the object after we trigger the fast camera to take a video.

We use the fast camera to capture this process, which takes only about 2 seconds.

The most important thing is to choose the right time to release the bottle, as the

video has a limited length because of the storage limitations.
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3

Data and analysis for static pre-pull experiment

This chapter will mainly describe the results from static pre-pull experiments. As

introduced in the second chapter, these pre-pull experiments are designed to find

the minimum pulling force to pull the intruder out and break the granular system.

However, more than what we have expected was found in these pre-pull experiments,

including the small “jump” of the intruder before the final failure, the change in

the force structure when adding pulling force step by step, and the minimum pull-

out force’s dependance on frictional boundary widths but not frictionless boundary

widths.

3.1 Intruder motion

The pre-pull experiments are conducted with the intruder still inside the granular

material. At the end of each such experiment, the intruder is finally pulled out. In

this section, the movement of the intruder before being pulled out will be investigated.
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Figure 3.1: Depth of intruder vs. time. For each initial depth we have three runs.
The experiment is done with the width=75.5 cm frictional boundary. During the
experiment, the weights (each with mass of 44g) are added step by step until the
intruder goes out. For the initial depth from deep to shallow, the weights are totally
added 14˘1 times, 12˘1 times, 10˘1 times, 9˘1 times, 5 times.

During the experiment, we add a given amount (about 0.44N) of pulling force

on the intruder at each step. Although the total pulling force is not big enough to

break the granular system and pull the intruder out, the intruder still exhibits some

small motion each time after the addition of an incremental (0.44N) pulling force.

As shown in Fig. 3.1, the depth of the intruder remained almost unchanged, after

each increment of pulling force. This continued until at certain times the intruder

had a small jump, just after I added 0.44N of pulling force. The displacement of

the intruder was very small at first, but when the pulling force was close to the
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critical failure force, the displacement of the intruder became much larger with each

additional weight. Although these displacements of the intruder cannot be ignored,

the intruder still remains inside the granular system. Necessarily, at each step, some

small stick-slips happened in the pre-failure process, with reorganization of particles

above the intruder during stick-slips. The structural response of the granular system

under an increasing pulling force will be shown in the next section.

Figure 3.2: Displacement of intruder vs. pulling force on the intruder. The ex-
periment is done with width=75.5 cm frictional boundaries and with the intruder’s
initial depth set to 31.8cm. The intruder has a radius of 10.2 cm. Different colors
represent different independent runs. The intruder was pulled out after adding an-
other 0.44N to the pulling force of the last data point, which ends each curve. In the
upper left small figure, the displacement and the pulling force are plotted in log-log
scale indicating a power law.

Fig. 3.2 shows the details for displacements of the intruder after adding incre-

ments of pulling force of 0.44N. In this example, the intruder is initially positioned
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at a depth of about 31.8 cm in a granular system with frictional boundary of width

75.5cm; the initial weight of the bottle is the same as the weight of intruder. Then

at each step we add 44 grams to the bottle side, which provides an extra pulling

force. In Fig. 3.2, we see that bigger displacements of the intruder happen near the

critical failure force. The intruder was pulled out after adding the last increment of

0.44N to the pulling force after the last data point. The intruder displacement vs.

extra pulling force obeys a power law: DpFpullingq “ 4.31 ˚ 10´4 ˚ pFpullingq
1.61. The

statistical error for the exponent 1.61 is 0.21.Here, the intruder displacement is in

units of meters and the pulling force is in units of newtons.

Figure 3.3: Intensity from photoelastic image vs. pulling force on the intruder.
The experiment is done with width=75.5 cm frictional boundaries and with the
intruder’s initial depth set to 31.8cm. The intruder has radius 10.2 cm. Different
colors represent different independent runs. The intruder was pulled out after adding
another 0.44N to the pulling force of the last data point, which ends each curve. In
the upper left small figure, the averaged intensity and the pulling force are plotted
on log-log scales suggesting a power law.
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Similarly, the stress response (photoelastic response in images) in the granu-

lar material vs. extra pulling force on the intruder roughly obeys a power law:

IntensitypFpullingq “ 1.72 ˚ 105 ˚ pFpullingq
1.71, as shown in Fig. 3.3. The statistical

error for the exponent 1.71 is 0.33. The photoelastic response is calculated by adding

up the total intensity of each pixel in the image after removing the very first image

when the extra pulling force is zero. Here, the intensity has arbitrary units and the

pulling force is in units of newtons. These two results above is reminiscent of the

Ramberg-Osgood equation, which describes a power law relation between strain and

stress for strain hardening of solid materials around a yield point. The power law is

also found in the uniaxial compression of the granular materials.

Additionally, we find that the final displacement of the intruder before the system

failure, depends on the initial depth of the intruder. The final displacement of the

intruder is defined as the distance between the initial position and the final position

before the intruder is pulled all the way out. As shown by Fig. 3.4, the final

displacement increases with initial depth linearly, which is fitted to a straight line

with the slope 0.035˘0.014 and the intercept (-0.00487˘0.00497)m. In Fig. 3.4, the

frictional boundary width is 75.5 cm. The increase of the intruder’s final displacement

is monotonous for this wide boundary. Error bars in Fig. 3.4 are standard errors

calculated from standard deviation for 3 independent runs. The standard error of

the final displacement, as shown in Fig. 3.4, increases with the initial depth, i. e. as

the initial depth of intruder increases, the final displacement of intruder varies more

for several independent repeat runs.
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Figure 3.4: Final displacement of intruder vs. intruder’s initial depth. The intruder
moves the final displacement accumulatively at the last step before the system fails
during the pre-failure experiments. The experiments are done with width=75.5 cm
frictional boundary and with various initial depths of the intruder. The intruder
has radius 10.2 cm. Bars are standard errors calculated from standard deviation for
several independent repeated runs. Red line represents the linear fit with the slope
0.035˘0.014 and the intercept (-0.00487˘0.00497)m.

However, if we decrease the boundary width, the situation is different. As shown

in Fig. 3.5, a monotonous increase of the final displacement is no longer valid for

cases with boundaries of width=34.5cm and 38cm. For smaller widths, the boundary

plays an important role in keeping the intruder inside the granular system. Error

bars in Fig. 3.5 are standard errors calculated from the standard deviations for

several independent runs.
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Figure 3.5: Final displacement of intruder vs. intruder’s initial depth for various
boundary widths. The experiments are done with width=31, 34.5, 38, 50, 75.5 cm
frictional boundaries, represented with different colors. Intruder is with radius 10.2
cm. Error bars are standard errors calculated from standard deviation for several
independent repeat runs.

To better understand the different behavior of the intruder for various boundary

widths, we can compare the stress response of grains above the intruder when the

initial depth of intruder is 47.8 cm, as shown in Fig. 3.6. For the images with

boundary widths less than 75.5cm, the force networks are much denser and the force

networks connect to the boundary with an angle less than 90˝. Both the stronger

force networks and the smaller angles formed between the force networks and the

frictional boundaries, result in those distinguishable behaviors of the intruder.
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Figure 3.6: Final photoelastic image before failure for various boundary widths.
The experiments are done with width=31, 34.5, 38, 50, 75.5 cm frictional boundaries.
Intruder is with radius 10.2 cm and with initial depth about 47.8 cm.

Both the trend of the final displacement vs. initial depth and the minimum

breaking force’s relation with initial depth show complex behavior.

35



3.2 Minimum breaking force

Here, the minimum breaking force is defined as the difference between the smallest

pulling force that is essential to pull the intruder out of the granular system and the

weight of the intruder. In this section, we will discuss related factors that affect the

minimum breaking force, e. g. the initial depth of the buried intruder, the friction of

the granular system’s boundary, and the width of the granular system’s boundary.

The circular intruder used in this section has a radius of 10.2 cm, and a weight of

671 grams.
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Figure 3.7: Minimum breaking force vs. frictional boundary’s width. Different
colors represent different initial depths of the intruder. For each initial depth, the
minimum breaking force fluctuates with frictional boundary widths.

Fig. 3.7 shows that the minimum pulling force to break the granular system

depends not only on the buried depth of the intruder, but also depends on the

frictional boundary width of the granular system. When the granular system has a
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boundary width of 31cm and 75.5cm, with intruder radius 10.2cm, the breaking force

monotonously increases with initial depth of the intruder. However, for boundary

width of 34.5cm, 38cm and 50cm, the breaking force is even bigger for some shallower

cases.

Surprisingly, for frictional boundaries with width 38 cm and 50 cm, when the

intruder’s initial depth increases from 31.8 cm to 39.8 cm, the increase in minimum

breaking force with initial depth is much smaller than the cases when intruder’s initial

depth increases from 23.8 cm to 31.8 cm and from 39.8 cm to 47.8 cm, although these

three comparisons have the same initial depth’s increase, which is 8 cm.
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Figure 3.8: Minimum breaking force vs. intruder’s initial buried depth. Triangle or
square symbols represent frictional boundaries, while different colors represent differ-
ent boundary widths. The circle symbol represent the frictionless boundaries, while
different colors also represent different boundary widths. For frictionless boundaries,
the minimum breaking force smoothly increases with the initial depth of the intruder.
For frictional boundaries with widths of 31cm and 75.5cm, the minimum breaking
force also smoothly increases with the initial depth of the intruder, while for other
three frictional boundaries with widths of 34.5cm, 38cm and 50cm, some fluctuations
appear in the minimum breaking force vs. initial depth relation.

The bump found in the case of frictional boundaries with width= 38cm and 50cm

at intruder’s initial depth=31.8cm, as shown in Fig. 3.8, indicates there is an unusual

“force structure” formed in the granular system. This structure presumably does not

form for smooth boundaries ( e. g. nofriction, w=49cm ). That “structure” does

not seem to form with too narrow frictional boundaries (width=31cm) or too wide

frictional boundaries (width=75.5cm), because the bumps are absent in data with

frictional boundaries of widths 31cm or 75.5cm. The “structure” is the force arch

located in the 25˝ region, which will be described in the next section.
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Additionally, if the initial depth of the intruder is deep enough, the differences

in the curves in Fig. 3.8 between frictional and smooth boundaries is quite clear.

All the experiment runs with the smooth boundaries of various widths have almost

the same minimum breaking force even at the deepest data point, while the runs in

frictional boundaries with different widths show minimum breaking forces that are

all bigger than the smooth case.

3.3 Photoelastic response and explanation for “bump”

In this subsection, we consider the photoelastic response to increments of weight.

As shown in Fig.3.9, the force chains above the intruder build up step by step,

forming a fan shape in the granular system. If we change the boundary width of the

granular system from 75.5cm to 31cm, we obtain the images in Fig. 3.10, showing

that the force chains grow until they touch the boundary, spreading throughout the

whole granular system. One of most interesting things we want to get from the

photoelastic images is an explanation for different critical pulling forces for different

boundaries and widths.
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Figure 3.9: The build-up process of force structures in the 2D granular system
while incrementally increasing the pulling force on the intruder during the pre-failure
experiments with frictional boundary width of 75.5cm and intruder initial depth of
47.8cm. The six selected images show the typical change in the granular system
while increasing the pulling force acting on the intruder(radius of 10.2 cm).

Figure 3.10: The build-up process of force structures in the granular system while
incrementally increasing the pulling force on the intruder during the pre-failure exper-
iments with frictional boundary width of 31cm and intruder initial depth of 47.8cm.
From left to right, the five selected images show the typical change in the granular
system while increasing the pulling force acting on the intruder(radius of 10.2 cm).

One possibility is that the boundary width changes the angular preference of gran-
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ular response, which will determine how much force from the intruder the boundary

friction can bear. As shown in Fig. 3.11, we calculate the average intensity in each

angular region above the intruder. We cut the left 15.5cm region in photoelastic im-

age above the intruder into 9 regions (each region with 10 degree angular span). For

each run, we choose the last few images which correspond to the maximum pulling

force the system can bear. Keeping only the middle 31cm part, we divide the left

half into 9 angular regions. (For images of granular system with boundaries wider

than 31cm, we only keep the corresponding middle 31cm part. )

Figure 3.11: Graph for calculating the angular response of granular system. For
each run, we choose the last few images, which correspond to the maximum pulling
force the system can bear. Then we keep the middle 31cm region and divide the left
15.5cm part into 9 angular regions, which means the φ is 0, 10, 20, 30, 40, 50, 60, 70
and 80 degrees in this analysis.

The results in Fig.3.12 show that the maximum photoelastic response in an an-

gular region for the width=34.5cm, 38 cm and 50cm cases are at φ “ 25˝, while for
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width=31cm and 75.5cm, the maxima are both at φ “ 45˝. The friction coefficient of

the boundary is around 0.6, which means that a larger force coming from a direction

of 25˝ can be more readily balanced than a force coming from direction of 45˝. This

suggests a reason for the bump found at initial depth 31.8cm for widths of 34.5cm,

38cm and 50cm in the Fig. 3.8.
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Figure 3.12: Graph for angular photoelastic response: Intensity vs. angle. Differ-
ent colors represent different boundary widths. All the boundaries are with friction.
The initial depth of intruder is 31.8cm. For the boundaries with widths of 31cm
and 75.5cm, the maximum intensity response (stress) appears in the 45˝ region.
However, for the boundaries with widths of 34.5cm, 38cm and 50cm, the maximum
intensity response (stress) comes in the 25˝ region.

Now, we need to know why the difference occurs. What is inside the 25˝ region

around the intruder at an initial depth of 31.8cm when the boundary width is 34.5cm,

38cm or 50cm? The simple way is to check the original photoelastic image, as shown

in Fig. 3.13. The arch near the 25˝ and 155˝ regions provide the strong resistance

to the upward loading of the intruder. To form a stable arch, the length of the arch
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should be proper and the other side of the arch has to be fixed by the frictional

boundary.

Figure 3.13: Arches ( formed with bright force chains ) inside the 25˝ and 155˝

regions (marked by red triangle) of the photoelastic image. The force chain arches
formed between the intruder and the two vertical boundaries result in the increase
of the maximum pulling force the granular system can bear. The initial depth of
intruder is 31.8cm. The boundary width is 34.5cm.
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4

Data and analysis for dynamic pull-out experiment

This chapter will mainly present experimental data and analysis for the dynamic

pull-out experiments. There are at least three questions to be asked about this

experiment:

• What is the dynamics of the circular intruder in this pull-out process?

• How does the granular system respond during the pull-out process?

• What is the relationship between the intruder dynamics and the granular par-

ticle response?

Additionally, several parameters can be tuned to check their effects on the pull-out

process, e. g. the radius of intruder, the depth of the intruder’s initial buried position

and the width of the boundary for the granular system among others.

I will discuss the corresponding results in the following sections.

44



4.1 Intruder’s size effect

After the static pre-pull experiment, we know the minimum force that is needed to

pull the intruder out of the granular material. Now we conduct dynamic pull-out

experiments with the smallest pulling force to achieve failure. High speed video

visualizes the fast pull-out process once the intruder begins to move. At first, the

intruder is stuck, but then it accelerates and escapes quickly from the bed.

We track the intruder to obtain the relation between intruder’s position and

time, as shown in Fig. 4.1. The intruder used here has a radius of 6.4cm and the

net pulling force is 3.41N after eliminating the intruder weight of 260g. Several runs

are repeated with different initial configurations of photoelastic particles, but all the

curves of position-time relation collapse together. The t=0s point is chosen when

intruder’s velocity equals 0.15m/s, in order to collapse different runs with various

initial imaging times.

After we get the position-time relation, we can obtain velocity vs. time curves,

as shown in Fig. 4.2. For the dynamic pull-out experiment, a fast camera taking

images with a speed of 1000fps is used to capture the dynamic pull-out process which

lasts about 1 second.

As is shown in Fig. 4.2, the main part of the v vs. t curves can be fitted with

exponential functions v “ a ˚ exp pbtq ` p0.15 ´ aq, indicating a linear relationship

between velocity and acceleration as in Fig. 4.3. Here the t=0 point is chosen when

the velocity equals 0.15m/s.

The slope in Fig. 4.3 is the reciprocal of b in the exponential fitting function of

the velocity. Loops can be found in Fig. 4.3, because the grains reorganize during

the process, creating renewed resistance to the intruder. During that time, the

acceleration drops significantly. This is related to stick-slip processes, which will be

shown in detail later. Intruders of radius 3.2cm, 6.4cm and 10.2cm have been used
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Figure 4.1: The graph of R=6.4cm intruder’s displacement vs. time. Different
colors stand for different runs with the same circular intruder R=6.4cm. The time
zero point (t=0s) is chosen when intruder’s velocity equals 0.15m/s.

in the experiments. After repeating the pull-out experiment with different circular

intruders from the same initial position, we find b, the reciprocal of the slope in the

velocity vs. acceleration graph, which decreases as the radius increases, as shown in

4.4. This means it takes a longer time for a bigger intruder to be pulled out with the

critical pulling force. The resistance faced by a bigger intruder is relatively larger

than a smaller intruder during the pull-out process. However, parameters a in the

fitting function of velocity are independent of the intruder radius.

In order to understand what is happening inside the granular system, we also

extract the force chains (bright parts) from high speed photoelastic images, as shown

in Fig. 4.5.

Force chains are components of the granular system that are under a pressure

bigger than some threshold, as visualized by photoelasticity. We have chosen a

46



Figure 4.2: The graph of R=6.4cm intruder’s velocity vs. time. Different colors
stand for different runs with the same circular intruder with radius R=6.4cm. Wig-
gles for some runs are a result of stick-slip processes. The velocity-time curves can
be fitted on average with an exponential function: v “ 1.11 ˚ expp1.80tq ´ 0.96.

particular threshold which helps with converting grey images to black and white

images that highlight the force chains as white components. The Matlab function

graythresh is used in choosing the threshold using Otsu’s method(Otsu, 1979),

which searches for the threshold that minimizes the intra-class variance of intensity.

If I manually tune the threshold to a value that is not too far away from this threshold,

the force chains do not change much. Because the force chains are connected with

each other forming a network with hot spots, I separated single chains by cutting at

the “hot spot”, where multiple chains meet. Then I can pick out each single chain

and calculate a geometric quantity, namely the curvature. The curvature is defined

here as the reciprocal of the radius for the circle fitted best into the single force chain.

Then I calculate each force chain’s curvature, and obtain the distribution of

curvatures. The force chain curvature distributions in the first and last half of the
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Figure 4.3: The graph of velocity vs. acceleration for intruder with radius
R=6.4cm. Different colors stand for different runs with the same intruder. The
velocity increases linearly with acceleration except that loops are found in some runs
as a result of stick-slip processes.

runs follow the same distribution for different intruder sizes, as shown in Fig. 4.6.

Separating a complete run into two different parts is intended to show that the

curvature distribution in the force network of granular particles is independent of

time, once the intruder starts to move. Different colors stand for different intruder

sizes, while triangle ”5” and square ”l” represent first and last half run, respectively.

The y-axis is the normalized frequency (calculated by dividing the total number of

force chains) and the x-axis is the curvature. After normalization, the distributions

can be collapsed into a single fitting function: y “ s1˚expp´s2˚|logpxq´s3|
s4q, where

s1 “ 0.033˘ 0.002, s2 “ 1.49˘ 0.06, s3 “ 2.88˘ 0.02 and s4 “ 1.66˘ 0.09.Before this

self-defined fitting, I have fitted the curvature distribution with Weibull distribution:

y “ k
λ
px
λ
qpk´1q ˚ expp´px

λ
qkq, where k=1.97˘0.05 and λ=29.88˘0.77. However, the
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Figure 4.4: Fitting parameters (a and b) in velocity-time relation vs. radius
of intruder. Intruders of radius 3.2cm, 6.4cm and 10.2cm were used starting from
the same initial position. The velocity vs. time relations are fitted with the same
exponential form,v “ a ˚ exp pbtq` 0.15´a, except that values of fitting parameters
vary. The fitting parameter b decreases with intruder radius, while the parameter a
does not decrease monotonously with intruder size, and may be constant within the
error bars.

problem is that the peak value in the data is much higher than the peak value

calculated from the Weibull fitting function.
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Figure 4.5: Extraction of single force chain: the left image is an original image
from the dynamic pull-out experiments, the upper right image shows the force chains
in a chosen box area above the intruder, and the lower right image shows one of those
force chains in that box area.(Zhang and Behringer, 2017)
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Figure 4.6: Force chains curvature distribution for 4 different circular intruders,
with radii of 3.2cm, 5.0cm, 6.4cm and 10.2cm. Different colors stand for different
intruder sizes, while triangle “5” and square “l” represent first and last half run,
respectively. In the upper part, the curvature distribution is fitted with a self-defined
function(red line): y “ s1 ˚ expp´s2 ˚ |logpxq ´ s3|

s4q, where s1 “ 0.033˘ 0.002, s2 “
1.49 ˘ 0.06, s3 “ 2.88 ˘ 0.02 and s4 “ 1.66 ˘ 0.09. In the lower part, the curvature
distribution is fitted with the Weibull distribution(magenta line): y “ k

λ
px
λ
qpk´1q ˚

expp´px
λ
qkq, where k=1.97˘0.05 and λ=29.88˘0.77 .
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4.2 PIV field for particle flow

As discussed in experimental techniques, particle image velocimetry (PIV) is a pow-

erful tool for measuring the full velocity field, that I have applied to the dynamic

pull-out experiments. In this procedure, unpolarized images are taken at frame rates

around 5000fps with the fast camera. The software OpenPIV is used for image

analysis, and the window size is chosen as 32pixels ˆ 32pixels for the convolution

calculation. (On average, there are about 9 particles in one window.) As shown

in left Fig. 4.7, the red arrows represent the average velocity of particles in a small

window. The direction of each arrow represents the local flow direction, the length of

the arrow represents the relative local magnitude. The granular system acts some-

what like a fluid flow around a cylinder during pull-out. Specifically, the particle

flow field looks like a magnetic doublet field superposed on a constant field, which

starts from the top of the intruder, and bends and goes back to the other side of the

intruder. However, a hole without granular particles inside is formed below the in-

truder, which is quite different from the fluid flow around an infinite cylinder, which

is shown in right Fig. 4.7. The amount of noise in the images makes quantitative

analysis difficult. But the flow field gives a general sense of granular particle motion

in the pull-out process.
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Figure 4.7: Left: Velocity field at the 7000th frame in a quasi-2D granular system
in a pull-out experiment with a frame rate about 5000 fps. Here red arrows represent
local velocity. Right: Velocity field around an infinite cylinder for a constant ideal
fluid flow in the reference frame with fluid at rest at infinity. (In the lab reference
frame, the constant fluid flow is from top to bottom at infinity point.) Here arrows
represent the local velocity and circle represents a cross section of an infinite (into
the plane) cylinder.

4.3 Stick-slip phenomenon

Here, I characterize stick-slip in the pull-out experiment, and compare it to other

stick-slip phenomena. In a block-plane spring system, stick-slip is caused by the

difference between larger static friction coefficient and smaller dynamic friction co-

efficient for the same contact surface(Braun et al., 2009). Specifically, as shown in

the Fig.4.8, when the block on the table is pulled by a spring, the block will stay

still when the spring is not stretched enough, which is the “stick” process. Once the

spring has a large enough deformation to provide a pulling force at least as great as
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the static friction force on the block from the surface, the block will start to move

until the block comes to rest and the spring is relaxed so that pulling force is smaller

than the static friction on the block from the surface. This is the “slip” part.

Stick-slip phenomenon can also be found in granular materials under certain

loading. In granular medium system, similar stick-slip behavior is mainly caused by

the friction between grains and interlocking of grains.(Albert et al., 2001) However,

as the particles’ dilatancy varies, the friction threshold for the granular medium is

not constant as in block-plane system for each shift.

Figure 4.8: Stick-slip for block on the table(Kligerman and Varenberg, 2014). The
block (M) on the table is pulled to the left with a spring (R). The block will stay
still when the spring is not stretched enough, which is the “stick” process. Once the
spring has a large enough deformation to provide a pulling force at least as great as
the static friction force on the block from the surface, the block will start to move
until the block comes to rest and the spring is relaxed so that pulling force is smaller
than the static friction on the block from the surface. This is the “slip” part.

A related stick-slip phenomenon can be found in my pull-out experiment. The

intruder starts in a “stuck” state when a constant load is added. Then the intruder

starts to move out. Intuitively, the resistance on the intruder comes from the gran-

ular materials above the intruder, and it should decrease monotonously because the

particle number above the intruder decreases monotonously. However, the accelera-

tion of the intruder does not monotonously increase. Some loops can be found in Fig.

4.3, because the grains reorganize during the process, creating renewed resistance to

the intruder. During that time, the acceleration drops significantly. This is another
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example of stick-slip in granular materials.

Figure 4.9: Space-time graph and its physical meaning. I average the intensity on
an arc with width of 1 pixel between 45˝ and 135˝ , which gives us one point in the
space time graph. The color bar shows the magnitude range of the averaged intensity
on the arc after removing the background intensity. Local stresses in the granular
system are proportional to local averaged intensities of images.

To visualize what is happening during the fluctuations of the acceleration, we plot

space-time graphs of the image intensity. As shown in the left graph of Fig. 4.9 , the

x-axis is time with units of frames, and the y-axis is the distance above the intruder

in units of pixels. The right graph of Fig. 4.9 is part of a typical experimental

image. I average the intensity on an arc with width of 1 pixel between 45˝ and 135˝,

which gives us one point in the space-time graph. Brighter colors in the space-time

graph represent higher pressure inside the arc area at that particular time during

the pull-out dynamic process. The failure event in this run is marked by the vertical

blue band at frame 400. The horizontal striations in intensity before that time are

grain scale effect due to inhomogeneities in the stresses on single grains.

Vertical gaps in the intensities in Fig. 4.10 represent moments the force network

has broken and the intruder is accelerating more rapidly. This local fluctuation in
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Figure 4.10: Discontinuities in space-time graph corresponding to fluctuations in
acceleration. In the upper left space-time graph, the yellow (bright) vertical strips
correspond to strong force networks above the intruder at a particular moment, as
pictured around Frame=630, while the blue (dark) vertical strips correspond to weak
force chains above the intruder, as pictured around Frame=550 or 730. During the
pull-out process, force chains build up (from frame=550 to 630) and break down
(from frame=630 to 730), giving rise to the fluctuation in the acceleration. The
image on right shows the fluctuation in the smooth acceleration calculated from the
slope of a linear fit of 199 points in the velocity vs. time curve.

acceleration corresponds to the stick-slip process in the pull-out experiment.
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4.4 Effect from intruder’s initial depth

In experiments described in this section, the intruder is buried originally at different

depths in the granular material, then pulled out with the same force, which is large

enough to achieve pull out of the deepest buried intruder. In this section, all of the

dynamic experiments are conducted with the same intruder whose radius is 10.2cm.

From the static result in chapter 3, we know the smallest force needed to pull the

intruder out increases with the initial depth of the intruder. So we can use the force,

which is just big enough for the deepest positioned intruder, to pull the intruder out

from different original positions. We obtain the position of the intruder over time, as

shown in Fig. 4.11. (The t=0 s point is chosen when intruder position has changed

by 0.02m.) To simplify the description, we define a quantity h “ Hp ´ d0 ´ rintruder,

which represents the initial position. In this equation, Hp “ 0.63m is the height of

granular bed, d0 is the initial depth of the intruder and rintruder “ 0.102m is the

radius of the circular intruder.

In the position vs. time figure (Fig. 4.11), there are data for three different initial

depths, h=0.1 m, 0.18 m and 0.26 m, corresponding to the three clusters of collapsed

curves in the figure. Different colors in each cluster are several independent runs

with the same initial depth. The shapes of those position vs. time curves are similar

for different initial depths.

Subtracting the initial position from the position of the intruder gives us the

displacement of the intruder. As shown in Fig. 4.12, the displacement of the intruder

can be fitted with an exponential function: Z “ az ˚ exp pbz ˚ tq ´ az, where az and

bz vary for different initial positions. As shown in Fig. 4.13, parameters az and

bz increase if we bury the intruder shallower. The physical meaning of bz is the

reciprocal of the characteristic time for the pull-out process. If the intruder is buried

shallower, it will take less time for the intruder to be pulled out. For a practical
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Figure 4.11: Relation between intruder position vs. time. The three bunches
of collapsed curves represent three different initial positions of the intruder, while
different colors in each bunch represent independent runs.

reason, time zero point is chosen when the intruder has moved 0.02m to collapse

all the independent runs. Additionally, the 0.02m position is set as the new initial

position, z(t=0)=0 m.

From the static experiments, we know that there is a dependence between the

depth of the intruder and the smallest pre-failure force. So there might exist a

dependence between the drag force on the intruder and the depth of the intruder

during the pull-out process. We can track the thickness of particles above the intruder

even in the dynamic pull-out process because of the transparent glass filled with

quasi-2D granular system. As the intruder moves up, the particle thickness above

the intruder also changes. We track the top edge of the particles, which is part of

the estimated calculation for the particle thickness above the intruder. This process

yields the evolution for thickness of the particles above the intruder throughout
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Figure 4.12: Fitting of intruder displacement vs. time with exponential functions.
The three bunches of collapsed curves with different colors represent three different
initial positions of the intruder. Pink circles represent 5 independent runs for the
initial depth of 0.43m. Blue circles represent 5 independent runs for the initial depth
of 0.35m. Green circles represent 5 independent runs for the initial depth of 0.27m.
Red curves show fitting functions.

an experiment. The thickness is defined as the distance between the particles’ top

edge and the intruder center. This thickness can also be fitted with an exponential

function: Tp “ ap ˚ pexp pbp ˚ tq´1q`T0, where T0 is the known thickness of particles

at t=0 s, and fitting parameters ap and bp vary for different initial positions. As

shown in Fig. 4.15, ap and bp also increase if we bury the intruder shallower. The

behavior of particles thickness and intruder’s displacement are quite similar in the

sense of the two fitting parameters’ relation with intruder’s initial depth.

Of the parameters in the intruder displacement and particles thickness fittings,

the most interesting ones are the parameters bz and bp, whose reciprocals are both

characteristic times. As shown in Fig.4.13 and Fig.4.15, the characteristic time for

the particle thickness evolution is shorter than that of the intruder displacement for
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Figure 4.13: Parameters az (m) and bz (Hz) in displacement fitting function vs.
intruder’s initial position h(m), where bigger h(m) means shallower intruder initially.

the same initial intruder position. I still do not quite understand why it works this

way. Both characteristic times decrease as the initial position gets shallower. This is

intuitively understandable as it takes a shorter time for a shallower intruder to come

out with the same pulling force.

We want to understand the physics behind the exponential form fitting in this

dynamics process. The first derivative of the displacement of the intruder gives us the

intruder’s velocity. The second derivative of the displacement of the intruder gives

us the intruder’s acceleration and the particle drag force acting on the intruder. Here

the drag force (Fd) is calculated from the formula:

Fd “ pW ´Mq ˚ g ´ pW `Mq ˚ aintruder, (4.1)

where W is the mass of the bottle pulling the intruder, M is the mass of intruder,

g is the gravitational acceleration, aintruder is the acceleration calculated from the

second derivative of the displacement of the intruder. As shown in Fig. 4.16, we
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Figure 4.14: Particle thickness above the intruder vs. time. Curves with different
colors represent runs with different initial positions of the intruder. Here, pink circles
represent 5 independent runs for the initial depth of 0.43m, blue circles represent
5 independent runs for the initial depth of 0.35m, and green circles represent 5
independent runs for the initial depth of 0.27m. Red curves show fitting functions.

find that the acceleration changes linearly with velocity, ignoring the fluctuations

caused by the stick-slip process associated with force chains. In the acceleration vs.

velocity graph (Fig.4.16), the starting point is neither with zero velocity nor with

zero acceleration, because the t=0s point is chosen when position has changed 0.02m

to align different runs. Curves with different colors stand for runs with different

initial positions of the intruder. Also, the granular drag force decreases during the

dynamic process, which is shown in Fig. 4.17. Additionally, the drag force has a

linear relationship with particles thickness above the intruder (in Fig.4.18). Here the

particles thickness is calculated as the distance between the granular particles top

edge and the intruder center.

As is shown in Fig. 4.18, the linear relationship aside from large stick-slip events

between the drag force and the particle thickness suggests that the origin of drag force
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Figure 4.15: Parameters ap (m) and bp (Hz) in the particles thickness fitting func-
tion vs. intruder’s initial position h(m), where bigger h(m) means shallower intruder
initially.

is the weight of particles involved in the force network above the intruder. Also we can

plot the ratio (α) between the drag force and particle layer thickness vs. the particle

thickness, as in the Fig. 4.19. The value of α is around 10 N/m although it decreases a

little during the pulling process. The density of the 2D granular particles is estimated

to be about 2.77kg{m2, and a straightforward calculation indicates that the width of

the particles involved is about 0.36m. This value for the width of “active” particles

is reasonable, because the brightest force networks in the photoelastic images have a

similar width range. Note that the intruder we use is about 0.204m in diameter, and

from the subtracted photoelastic image data, the strong network’s width is between

one and two intruder diameters. When the intruder moves to the position close to

the particle surface, the force chains widths become smaller.

The drag force from particles above the intruder also shows large fluctuations.
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Figure 4.16: Intruder’s acceleration vs. velocity during the pull-out process.
Curves in different colors stand for runs with different initial positions of the in-
truder. Here, green curves stand for initial depth of 27cm, blue curves stand for
initial depth of 35cm and red curves stand for initial depth of 43cm.

These fluctuations are stronger for deeper buried intruders, shown by comparing the

red curves with the blue or green curves in the Fig. 4.17.

Without considering the fluctuations (or by just taking the average and eliminat-

ing the fluctuations), we can find a more mathematical way to describe the dynamics.

As shown in the free body diagram Fig. 4.20, the intruder has three external forces,

including the thread tension T , the gravitational force Mg, and the granular drag

force Fd. The bottle has two external forces, including the thread tension T and the

bottle gravity Wg.

The granular drag force Fd comes primarily from the weight of the grains above

the intruder and also includes the collective effect of frictional forces between granular

particles. The data in Fig. 4.18 indicates that Fd is proportional to the thickness

of the layer of particles above the intruder. We made a crude assumption that this
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Figure 4.17: Drag force (N) from the particles acting on the intruder during the
pull-out process vs. time (s). Curves in different colors stand for runs with different
initial positions of intruder. Here, green curves stand for initial depth of 27cm, blue
curves stand for initial depth of 35cm and red curves stand for initial depth of 43cm.

drag force term can be written as βd, where d “ d0 ´ Z.

Then the ODEs corresponding to the depth of the intruder (d) that describe the

dynamic process are as follows:

Wg ´ T “ ´W :d (4.2a)

T ´Mg ´ βd “ ´M :d, (4.2b)

where W is the mass of the bottle pulling the thread, T is the thread tension, M

is the intruder mass, g is the acceleration of gravity, β is a ratio between the drag

force and depth of intruder, d is the depth of intruder. The initial condition is:

dpt “ 0q “ d0 (4.3)

Additionally, there is a constraint requiring that the exponent inside the expo-
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Figure 4.18: Drag force (N) from the particles acting on the intruder during the
pull-out process vs. particles thickness above the intruder (m). Curves in different
colors stand for runs with different initial positions of intruder. Here, green curves
stand for initial depth of 27cm, blue curves stand for initial depth of 35cm and red
curves stand for initial depth of 43cm.

nential function should be positive. (No negative exponents inside the exponential

function is allowed in the solution.) Then we can solve these two ODEs by adding

them together to eliminate the tension T. Finally, the solution to the ODEs ((4.2))

with initial condition (4.3) is

dptq “ pd0 ´
pW ´Mqg

β
q ˚ expp

c

β

W `M
tq `

pW ´Mqg

β
(4.4)

This formula matches quite well with experimental data, as shown in Fig.4.21.

(Note that the fitted points extend to negative values of d, where the justification

for the drag force approximation is not clear.) The thick blue curves are plotted

with intruder depth data and the thin red curves are from the formula (4.4) with

only one tuned parameter, β. The graph shows that the model can well describe the
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Figure 4.19: Ratio alpha (N/m) (between drag force and particle layer thickness)
vs. particles thickness(m) above the intruder during the pull-out process. Curves in
different colors stand for runs with different initial positions of intruder. Here green
curves stand for initial depth of 27cm, blue curves stand for initial depth of 35cm
and red curves stand for initial depth of 43cm.

dynamics of the intruder. But the fitting parameter β decreases with intruder initial

depth. The value of β becomes closer to the value of α, if the intruder is buried

deeper initially. The reason is that the thickness of particles is closer to the value to

the intruder depth if the surface shape change during most of the pull-out process

can be ignored.

To understand the dynamics of the intruder from another perspective, we consider

the photoelastic response of the particles. First, we plot the space-time graph (Fig.

4.22) by mapping the intensity in arc lines of width one pixel above the intruder

in each image vs. the image number. The x-axis is the image number, with a

frame rate of 2500Hz. The y-axis is the pixel position of the arc with width 1 pixel

and angle between 45˝ and 135˝ above the intruder. Yellow means stronger stress
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Figure 4.20: The free body diagram for the pull-out experiment. The intruder
is connected through a thread with the bottle providing the load. The system can
be separated into two objects, the intruder and the bottle. The intruder has three
external forces: its own gravity Mg, the thread tension T and the granular drag
force Fdrag. The bottle has two external forces: its own gravity Wg and the thread
tension T .

(larger intensity) while blue represents weaker stress (smaller intensity). The gaps,

e.g. the blue strips between adjacent yellow regions from the 1400th frame to the

1600th frame in this space-time graph, correspond to the stick events, which are also

revealed in the fluctuations in Fig. 4.16.

Also, if we focus on the time evolution of the average intensity in an arc of width 5

pixels at the position about 50th pixels above the intruder, we can calculate the Fast

Fourier Transform (FFT) of the force evolution during the dynamic process of the

pull out. We show the FFT on a log-log scale spectrum in Fig. 4.23. Red represents

the deepest intruder case and green represent the shallowest intruder case. The data

indicate an approximate power law with an exponent that varies weakly with depth
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Figure 4.21: Intruder depth vs. time(s) curves and model matching curves with
different intruder initial depths. Curves in blue stand for data plotted from trajec-
tories of the intruder. Different starting points at t=0s stand for runs with different
initial positions of the intruder. Curves in red represent the model (4.4) fitting curves,
which end at the point when the intruder depth is 0.1 m ( same as the intruder’s
radius). The only fitting parameter used is β, which decreases with initial depth of
the intruder, as shown in right.
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Figure 4.22: Space (in unit of pixel) vs. time (in unit of frame) graph. Y axis
represents distance from the intruder and x axis represents time in the pull-out
process. Video is taken with 2500 fps.
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as shown in Fig. 4.24.

Figure 4.23: FFT power spectrum of intensity in the arc 50th pixel away from the
intruder in log-log scale

Fig. 4.24 shows that, the shallower the initial depth, the larger the exponent of

the power law of FFT power spectrum is. The exponent changes from -2.389˘0.071

to -2.113˘0.096, when initial depth changes from 0.53m to 0.37m. But the difference

in the exponent for different initial depths is not large. The average of the slopes for

all depths and runs is -2.268˘0.056. Similar spectra can be obtained if we choose

a different portion of the image in the intensity calculation. Many phenomena in

nature have similar power laws for the spectrum, which is sometimes called Black

noise.

The stress’s relation with the local depth of the arc area chosen for the stress

calculation is exponential during the pulling process, as shown in Fig. 4.25. The y-

axis is the average intensity in an arc line (representing stress in that arc line) above

the intruder on a log scale. The x-axis is the height of particles above the arc line
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Figure 4.24: Slope in the FFT fitting vs. initial position h(m)

on a linear scale. Different colors represent different times (image numbers) during

the pulling process. The blue curve is from the start of the experiment and the dark

red curve is from the end of the pulling process. The movement of the intruder does

not change the vertical distribution of stress during the pull out process. This result

is quite striking.

Additionally, there are two methods used to calculate the drag force on the in-

truder, one is from the trajectory of the intruder and the other is from the pho-

toelastic response of the granular disks above the intruder. When we average the

intensity in the arc region above the intruder (as shown by Fig. 4.26) and normalize

appropriately, we can match the drag force calculated from the intruder’s position

information (blue curve) and the photoelastic signal (red curves) in the Fig.4.27.

Even the fluctuation in the drag force can be roughly matched. This graph supports

the hypothesis that the drag force acting on the intruder mainly comes from the

particles in an arc above the intruder (the 3rd term in ODE (4.2b)).
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Figure 4.25: Stress (Intensity) in the particles for an arc of width 1 pixel between
angle 45˝ and 135˝above the intruder vs. distance from the arc top to the surface of
granular system. The figure is plotted on a log-linear scale, indicating an exponential
increase for the arc stress vs. thickness of particles above the arc. Different colors
represent different times (with frame rate 2500 fps)during the pull-out process. For
this run, the intruder had an initial depth of 43cm.
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Figure 4.26: Arc region inside red boundary is used in calculation of drag force

Figure 4.27: Drag force calculated by two different methods vs. time (for one run
with initial position h=0.1m)
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4.5 The boundary widths’ effect

In this section, we use two aluminum bars to change the width of the granular

system, and pull the circular intruder (r=10.2 cm) out of the granular material with

the smallest critical pulling force found in the static pre-pull experiments. With the

fast camera, we can capture the position of the intruder by taking 2500 frames per

second. Using the position information, we can calculate the velocity and acceleration

by differentiation.

Unlike the “peak ” found for the medium boundary widths in the graph of the

smallest critical pulling force vs. the initial depth of the intruder in pre-pull ex-

periments, the dynamic pull-out experiments with different boundary widths do not

show much variation. For every boundary width, we also have experiments with

five different initial depths of the intruder, pulling with the critical forces found in

corresponding pre-pull experiments. This is different from what was done in the last

section where the pulling force is the same for different initial positions. We choose

the time when the intruder displacement is 0.02m as t=0 for the same practical

reason as former chapters. Then we reset the displacement to zero at t=0.

As shown by Fig. 4.28, the dynamics of the intruder pulled from the same

initial depth 47.8 cm but with various boundary widths, are similar. Different colors

represent different boundary widths. As mentioned before, we calculate the velocity

and acceleration of the intruder by differentiating displacement data. Fig. 4.29

shows a roughly linear relation between the velocity and acceleration for different

boundaries here. Specifically the boundary width of the granular system does not

have much effect on the dynamic process of the intruder for the case where initial

depth is 47.8 cm.

Given that there is a “peak” for an initial depth of 31.8 cm (h=18 cm, depthintruder “

60cm ´ h ´ r in this section) in the static pre-pull experiments for various widths,
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Figure 4.28: Displacement vs. time for motion of intruder (r=10.2 cm) pulled from
granular system with different boundary widths from initial depth equals 47.8cm.
Different colors represent different boundary widths and for each width there are
three independent runs. There was one run of boundary width 34.5 cm with a delayed
starting point because the intruder was stuck at first. But the delayed movement
did not affect the dynamics of the intruder once it started to move.

we ask whether something unusual happens for that initial depth vs. the boundary

width? The answer is no. For h ranging from 2cm to 26cm, and widths ranging

from 31cm to 78cm, all runs have similar dynamics as long as the intruder is pulled

with the critical pulling force, which varies for different initial depths and boundary

widths. Specifically, we can fit the depth of intruder vs. time curves with the pa-

rameter β in model (4.4). For example, as shown in the Fig.4.30, intruder depth vs.

time curves are fitted well with the parameter β when the system boundary width

is 38cm and the intruder has five different initial depths.

In these experiments, we use the average minimum breaking force found in the

static experiments for a given width and depth. (Sometimes the intruder cannot

be pulled out for this force, so I ignored those and redid the pull out experiment.)

The quantity β used to fit the dynamic curves of intruder depth is a characteristic
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Figure 4.29: Velocity vs. acceleration for motion of intruder (r=10.2 cm) pulled
from granular system with different boundary widths from initial depth equals
47.8cm. Different colors represent different boundary widths and for each width
there are three independent runs.

quantity that can be used to describe the pull-out process. It is shown in Fig. 4.31,

Fig. 4.32 and Fig.4.33 that the quantity β depends on the depth of intruder and

pulling force on the intruder, but not on the width of the granular system. This

means the boundary effect is limited for the pull-out dynamic process.

These data show that the frictional boundaries widths play a more important

role in stabilizing the static granular system, but once the intruder starts to move,

the effect from the boundary can be ignored.
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Figure 4.30: Depth vs. time for motion of an intruder (r=10.2 cm) pulled from the
granular system of boundary width 38 cm with different initial depths (here black
curves stand for depth of 23.8cm, yellow curves stand for depth of 31.8cm, magenta
curves stand for depth of 35.8cm, blue curves stand for depth of 39.8cm, green curves
stand for depth of 47.8cm). Each depth case has three independent runs. The thin
red lines above those data curves are model fitting curves with β.
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Figure 4.31: Beta vs. intruder initial depth for various boundary widths. Here β
is the fitting parameter used in the model (4.4). Here green curves stand for width
of 31cm, blue curves stand for width of 34.5cm, black curves stand for width of
38cm, cyan curves stand for width of 50cm, magenta curves stand for width of 78cm.
Each data point has three independent runs and the error bars are calculated from
standard deviations. β does not vary much for different boundary widths. However,
the smallest β (around 10N/m) appears for the shallowest intruder regardless of the
boundary width. All other runs with deeper buried intruders have a beta value
around 12N/m.
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Figure 4.32: Beta vs. boundary widths for various intruder initial depths. Here
magenta curves stand for depth of 23.8cm, cyen curves stand for depth of 31.8cm,
black curves stand for depth of 35.8cm, blue curves stand for depth of 39.8cm, green
curves stand for depth of 47.8cm). Each data point has three independent runs
and the error bar are calculated from standard deviation. β does not vary much
for different boundary widths. However, the smallest β appears for the shallowest
buried intruder regardless of the boundary width.
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Figure 4.33: Beta vs. Bottle weight(pulling on the intruder) for various intruder
initial depths and boundary widths. Each data point has three independent runs,
with the standard error plotted as the error bar. This figure has two copies to
indicate the intruder initial position and boundary width for each data point. This
result indicates that β increases with the loading weight of bottle.
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5

Force chain behavior in static pre-failure
experiments

As shown in the chapter 3, when the loading on the intruder is increased incre-

mentally in the static pre-failure experiments, the photoelastic response above the

intruder becomes stronger and stronger until the whole granular system fails. The

response of the granular system near the critical breaking point will be character-

ized with a pattern of force chains in this chapter. A continuous model (Blumenfeld,

2004) for an isostatic system can be applied to this critical state. For this chapter, no

side boundaries will be considered as in the continuous model the system is treated

as infinitely large.

5.1 Patterns of force chains near the critical breaking point

One typical polarized image taken near the critical breaking point is shown below in

Fig. 5.1. With a loading close to the critical breaking point, most of the strongest

force chains are found above the intruder. In the image, the dark circle in the middle

is the intruder and the brighter chains are stronger. The most interesting part of the
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image is marked out with the red rectangle.

Figure 5.1: One typical polarized image in a pre-failure experiment near the
critical breaking point. Brighter regions correspond to stronger stresses inside the
granular system.

After a proper threshold is chosen and the force chain components inside the

rectangle are extracted, the coordinates of force chain positions are transformed from

Cartesian coordinates to polar coordinates. The threshold effect will be explained in

the third section of this chapter. All positions of force chains are recorded in units of

pixels. There are certain patterns in the positions and shapes for those force chains,

as shown in Fig. 5.2. The trajectories of the force chains satisfy a linear relationship

between θ and lnprq. The linear relation (with slope called λ) between θ and lnprq

for force paths is consistent with the characteristic paths found in Blumenfeld and
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Ma’s continuum model(Blumenfeld, 2004; Blumenfeld and Ma, 2017), which will be

discussed in the next section. Also I plot the relation between the slopes λ and the

original angles of the force chains θ0, as shown in Fig. 5.3. Here the original angle

of a force chain is defined as the angular coordinate of the point with the smallest

r-coordinate. The origin of polar coordinate is set at the center of the intruder. θ

ranges between 0 and π, and only the upper part of image above the intruder center

is considered.
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Figure 5.2: Force chain patterns found near the critical breaking point. The
intruder used is with radius 10.2cm and the initial depth is 48.8cm. The force chains
inside the rectangle with intensity above a certain threshold(50) are detected and
mapped in the polar coordinate. Then all the force chain trajectories (different
colored curves) are fitted linearly between θ and lnprq with red thin lines. λ is the
slope in the linear fitting, θ ´ θ0 “ λlnpr{r0q.
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Figure 5.3: Linear fit between the slope λ and θ0: λ “ 0.94 ˚ θ0 ´ 1.41, near the
critical breaking point.

However, for a smaller load case, e.g., far below the breaking critical point, the

pattern of force chains is different. Here, I process one typical image as shown in

Fig. 5.4. After I extract the force chains with the same threshold and transform

the Cartesian coordinates to polar coordinates, the coordinates θ vs. lnprq of force

chains can no longer be well fitted with straight lines (with slope called λ), as shown

in the Fig. 5.5. The pattern of force chains is apparently different from the one close

to critical breaking point. Also, we can plot out the relation between the fitting slope

λ and θ0, and the data can not be fitted with linear line, as shown in Fig. 5.6.
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Figure 5.4: One typical polarized image in pre-failure experiment far below the
critical breaking point. Brighter part means stronger stress inside the granular sys-
tem.
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Figure 5.5: Force chains patterns found far below the critical breaking point. The
force chains inside the rectangle area with intensity above a certain threshold(50)
are detected and mapped in polar coordinates. Then all the force chain trajectories
(different colored curves) are fitted linearly between θ and lnprq, shown by red thin
lines. As shown in the graph, the fittings do not collapse well with mapped force
chains. The slope in the linear fitting is also called λ, although the λ is not well
defined.
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Figure 5.6: The slope λ vs. the original angle θ0 far below the critical breaking
point. No linear fit makes sense for λ vs. θ0 calculated with the image taken far
below the critical breaking point.

5.2 A continuous model near the critical breaking point

The granular material in the pre-failure pull experiment are close to an isostatic

state when the loading is close to the critical breaking point. Here the isostatic state

means a marginal stable state with average contact number of each particle close

to 3 for this quasi-2D frictional system. For isostatic and spatial uniform system, a

continuous model can well describe the stress distribution inside the granular system,

as shown by R. Blumenfeld et al. (Blumenfeld, 2004; Blumenfeld and Ma, 2017).

The force balance equation is as follows:

∇σ “ g (5.1)

σ is the stress tensor in the isostatic granular system and the g is the body force

in the granular system. In the pull system, the only body force that needs to be

considered is the gravity, which is a constant in the equation. In polar coordinates,

the equations of stress balance can be rewritten as two PDEs:
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Brprσrrq ` Bθσrθ ´ σθθ “ rgr (5.2a)

Brprσrθq ` Bθσθθ ` σrθ “ rgθ. (5.2b)

There are only three instead of four unknown components in the stress tensor,

because torque balance requires σrθ “ σθr. Now we need another equation together

with the above two PDEs to calculate the stress tensor. In the model of Blumenfeld

et al., particles form a network that are connected through force loops, and the fabric

tensors (π) can be calculated from the force network. (Blumenfeld, 2004) The fabric

tensor (π) is correlated with the stress tensor, which gives a stress-structure relation.

More specifically, the fabric tensor (π) gives an equation that effectively removes one

unknown stress tensor component:

πrrσθθ ´ 2πrθσrθ ` πθθσrr “ 0 (5.3)

The boundary conditions are also very important for the solutions of the PDEs

(5.2). In our pulling system, the top semicircular surface of the intruder acts as part

of the boundary, on which there are several point forces. For numerical simplification,

we use several narrow Gaussian functions to represent those point forces. The system

is assumed to be infinite in the horizontal directions, and the force on the horizontal

line: θ=0 and θ “ π is set to zero. For simplicity, we also take πrθ “ 0 everywhere.

Blumenfeld’s theory predicts characteristic paths in the isostatic system that satisfy:

θ´ θ0 “ λ lnpr{r0q with λ “ Ăqrθ ˘

b

Ăqrθ
2
´ Ăqθθ, where Ăqij ”

πij
πrr

.(Blumenfeld and Ma,

2017) In the region 3
8
π ď θ ď 5

8
π, we use the fits to λ from our stress measurements,

which yield λ “ 0.94˚θ´1.41. Outside this region, we take λ to be constant matching

the values on the θ “ 3
8
π and θ “ 5

8
π rays. Given πrθ “ 0, we have πθθ{πrr “ ´λ

2.

Thus our expression for πθθ{πrr is:
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πθθ{πrr “

$

&

%

´p0.94 ˚ 3
8
π ´ 1.41q2 0 ă θ ă 3

8
π

´p0.94 ˚ θ ´ 1.41q2 3
8
π ď θ ď 5

8
π

´p0.94 ˚ 5
8
π ´ 1.41q2 5

8
π ă θ ă π

(5.4a)

Solving Eqs. 5.2 and 5.3 using the Matlab function pdex4, we obtained the results

for the stress tensor components σrr and σrθ shown in Fig. 5.7 and Fig. 5.8.
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Figure 5.7: The distribution of the stress tensor component σrr in Cartesian coor-
dinates from numerical solutions of the Blumenfeld model. Different colors represent
different stress magnitudes. The white semicircle with radius 1 represents the up-
per half part of the intruder. The graph is not symmetric about line x=0, which is
reasonable as the fabric tensor I choose is not symmetric.
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Figure 5.8: The distribution of the stress tensor component σrθ in Cartesian co-
ordinate from numerical solution of continuous model. Different colors represent
different stress magnitude. The white semicircle with radius 1 represents the upper
half part of the intruder. Note the different color scale from Fig. 5.7.

Because σrr is an order of magnitude larger than σrθ and σθθ, the light intensity

in the experimental images is expected to be primarily determined by σrr, and we

do observe a qualitative match: firstly, the bending of the force chains appear near

the θ “ π{4 and θ “ 3π{4; secondly, there are strong, straight vertical force chains

above the intruder. I do not calculate the fabric tensor from its original definition

(Blumenfeld, 2004) because the experimental image resolution is not good enough.

5.3 Threshold effects on the analysis

The images taken in the pre-failure experiments are RGB images. In order to identify

and extract force chains from the image data, we need to manually set a threshold.

Only those image components with intensity above the threshold are identified as

force chains, which provide the most important part for the stress field in the granular

system. As there is not a principle in determining which value between 1 and 255
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should be used as the threshold, we can try a few values to check their effect on the

force chain calculations, as shown in Fig. 5.9.

Figure 5.9: Force chains extracted near the critical breaking point with various
different thresholds. The force chains inside the rectangle area with intensity above
a certain threshold(40 or 50 or 60) are detected.

In the first section, I use the value 50 as the threshold for the image processing.

If the threshold is 40 or 60, the results are not very different. As shown in the Fig.

5.10 and Fig. 5.11, most trajectories of force chains vary linearly between θ and

lnprq. More and longer force chains are detected with a lower threshold.
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Figure 5.10: Force chains patterns found near the critical breaking point with
threshold 40. The force chains inside the rectangle area with intensity above a certain
threshold(40) are detected and mapped in polar coordinates. Then all the force chain
trajectories (different colored curves) are fitted linearly, θ ´ θ0 “ λlnpr{r0q, shown
by red thin lines.
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Figure 5.11: Force chains patterns found near the critical breaking point with
high threshold 60. The force chains inside the rectangle with intensity above a
certain threshold(60) are mapped in the polar coordinate. Then all the force chain
trajectories (different colored curves) are fitted linearly, θ ´ θ0 “ λlnpr{r0q, shown
by red thin lines.

Also as shown in the Fig. 5.12 and Fig. 5.13, the relations between λ and θ0

are similar for both threshold cases. When threshold is 40, the relation is λ “

0.75 ˚ θ0´ 1.04. And when threshold is 60, the relation is λ “ 0.86 ˚ θ0´ 1.35. These

indicate that the λ is not sensitive about the threshold value. The pattern of the

force chains for the isostatic system in the first section of this chapter is valid.
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Figure 5.12: Linear fitting between the slope λ and θ0: λ “ 0.75 ˚ θ0 ´ 1.04, near
the critical breaking point, with a low threshold of 40.
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Figure 5.13: Linear fitting between the slope λ and θ0: λ “ 0.86 ˚ θ0 ´ 1.35, near
the critical breaking point, with a high threshold of 60.
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6

Conclusions

This thesis describes experiments on pulling a circular object out of a granular sys-

tem. Two types of experiments were performed with a bronze intruder embedded

in a quasi-2D layer of photoelastic disks: the quasistatic pre-failure and the rapid

dynamic pull-out. For the quasistatic pre-failure experiments, a Nikon D7100 cam-

era is used to take videos at 30 frames per second as the pulling force applied to the

circular intruder is steadily increased in small increments. For the dynamic pull-out

experiments, a pulling force is applied that is bigger than or close to the critical

pulling force found in the pre-failure experiment to get the intruder out. The dy-

namic process only lasts for about 2 seconds, a fast camera is used, operating at 2500

frames per second or 1000 frames per second.

6.1 Conclusions for static pre-failure experiments

There are several conclusions that can be reached from the data collected in the

pre-failure experiment.

1) For sufficiently wide systems, the minimum force that is needed to pull the
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intruder out increases monotonically with the intruder’s initial depth. Addi-

tionally, if the boundary has no friction, the width of the system has little

effect on the critical pulling force for the intruder. For frictional boundary

walls, however, the width of the system matters. The increase of the critical

pulling force with the initial depth of the intruder will no longer be monotonic

but will fluctuate with depth for widths in the range [34.5cm, 50cm] for circu-

lar intruder size of 20.4 cm in diameter. The particles used in the system are

of diameters 0.9cm and 0.6cm. With these geometric parameters, arches form

that can create interactions with the boundary when the walls are sufficiently

rough on the grain scale.

2) The intruder does not stay still when I add the pulling force step by step. The

displacement of the intruder in each step becomes bigger and bigger when the

total pulling force is increased up to the critical value, while the intruder still

stays inside the granular system. During a complete pre-failure process, the

total displacement of the intruder can reach up to about 2-3 particle diameters

for the deepest (depth about 48cm) buried intruder (with radius of 10.2cm).

If we increase the initial depth of intruder, the displacement that intruder can

reach before the final failure of granular system will also increase monotonically,

when the system is sufficiently wide. For narrower systems, the intruder’s

displacement will no longer monotonically increase with the initial depth.

3) The response of the granular system to the pulling force near the critical break-

ing point is characterized by a pattern of force chains. A continuous model

(Blumenfeld, 2004) for an isostatic system can qualitatively describe this crit-

ical state, as the model can account for the bending of force chains shown

in the photoelastic image. In the continuous model the system is treated as

infinitely large. The model’s prediction is qualitatively consistent with force
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chain patterns observed in my sufficiently wide systems near the critical state.

6.2 Conclusions for dynamic pull-out experiments

There are also several conclusions that can be reached from the data I have collected

in the dynamic pull-out experiment.

1) The intruder size has little effect on the form of the intruder’s dynamics or

the response forces in the granular system. The displacement of the intruder

increases exponentially with time for various circular intruders with radii of

between 3.2 and 10.2 cm. Additionally, the curvature distributions of the

individual strong force chains that make up the full elastic network are the

same for various intruder sizes. However, the intruder size does affect the

characteristic time and prefactor of the exponential.

2) Once the intruder starts to move, the granular flow around the intruder shown

by the PIV technique indicates a velocity field similar to an ideal fluid flowing

around an infinite cylinder, though the PIV technique is not accurate enough to

provide a quantitative description of the granular flow. However, the granular

system is not a real fluid, as shown by the stick-slip phenomenon observed in the

space-time plot of the average stresses in the granular material. Additionally,

a hole is formed below the intruder, which represents another difference from

the ideal fluid case.

3) Data from pull-out experiments done with different initial depths helped estab-

lish a model to describe the dynamics of the intruder. The success of the model

in fitting the data suggests that the force exerted by the granular material on

the intruder can be estimated as a constant β times the depth of intruder dur-

ing the pull-out process. The model matches quite well the data I got in the
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experiments, though we do not have a good understanding of the factors in-

fluencing the value of β, e.g. particles weight and interactional frictions etc. I

found that β is independent of the initial depth of the intruder for deep enough

buried intruder.

4) From the photoelastic response, the drag force calculated from the acceleration

can be compared with the stress inside the granular material, and I find that

the two are proportional. Also the Fourier spectrum of the photoelastic sig-

nal indicates “Black” noise, whose origin remains unknown to us. (The term

“Black” noise refers to signals with a power law spectrum with slope less than

´2.)

5) Although for rough boundaries in a certain range of system widths there is

an enlargement of the critical pulling force that is needed to pull the intruder

out, once the intruder starts to move under a close-to-critical pulling force,

the dynamics are independent of the system width. The exponential relations

between the displacement of intruder and time remain the same for runs with

different initial depths and boundary widths.

6.3 Future outlook

There are many other research projects that can be done to extend the pull-out

experiment results and find more applications in industry. Perhaps the priority ones

that I have thought about are listed below:

1) The microscopic basis for the collective model I have used to describe the drag

force here is worth exploring, as my rough model only shows that the drag force

can be written as βd, where d is the depth of the intruder. There should be

a more accurate and precise explanation relating the dynamics of the granular

particles to the drag force.
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2) Payman Jalali and Yuchen Zhao have already started work on a 3D version of

pull-out experiments involving a sphere submerged in sands and glass beads.

The preliminary result matches with what 2D experiments have shown: the

intruder displacement follows an exponential relation with time for the dynamic

pull-out experiment and the system width shows a complex effect on the critical

force. Maybe a model that can universally explain the intruder’s behavior in

this complex granular system could be established.

3) In the 2D pull-out experiments, we use a constant weight on the thread to

provide the pulling force, which changes the velocity of intruder during the

pull-out process. We can also try to impose a constant intruder velocity, which

will give a clue to how the velocity affects the drag force in the granular system,

which may be compared to Reynolds number effects in fluids.
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