Strange particle production in jets produced in Pb-Pb collisions

Ekaterina Grecká

NPI CAS FNSPE CTU in Prague

DUCD23 Workshop

Baryon-to-meson ratio in bulk

ALICE, PRL 111 (2013) 222301

• Inclusive production of light and charm-flavor particles at intermediate $p_{\rm T} (2-6 \ {\rm GeV}/c)$ in heavy-ion collisions is enhanced with respect to the ratio in pp collisions

ALICE, Phys.Lett.B 839 (2023) 137796

Hadronization in medium

- QGP can modify the hadronization: parton recombination and coalescence model
- Recombination dominates at intermediate $p_{\rm T}=2-6~{\rm GeV}/c$
- Fragmentation at $p_{\mathrm{T}} > 6~\mathrm{GeV}/c$
- Jets are assumed to be produced exclusively by fragmentation of partons created in hard scattering
- Is hadronization in jets influenced by the medium?

Fries, Müller, Nonaka, Bass: PRL 90 (2003) 202303 Greco, Ko, Lévai: PRL 90 (2003) 202302

$\Lambda/\mathrm{K}^0_\mathrm{s}$ ratios in Pb-Pb collisions

- First preliminary measurement in ALICE from Pb-Pb Run 1 data at 2.76 TeV
- $\Lambda/K_{\rm s}^0$ ratio in jets resembles that in pp collisions
- Run 1 data had limited statistics
 - Pb-Pb run 2 data at 5.02 TeV analysis ongoing

V.Kučera, CERN-THESIS-2016-206 A.Zimmermann, CERN-THESIS-2016-183

ALICE detector

- Inner Tracking System (ITS) tracking of charged particles in the central barrel
- Time-Projection Chamber (TPC) momentum measurement in the range 100 MeV/ $c \le p_{\rm T} \le 100$ GeV/c
- ALICE has great PID capabilities

Strange particle reconstruction

- $K^0_s
 ightarrow \pi^+\pi^-$ (b.r. 69.2%),
- $\Lambda
 ightarrow p\pi^-$, $\overline{\Lambda}
 ightarrow p^-\pi^+$ (b.r. 63.9%)
- Reconstruction from daughter tracks
- Tracks that do not originate from the primary vertex

 \rightarrow positive and negative tracks pairing and extrapolation to the primary vertex \rightarrow DCA cut

 \rightarrow parent momentum calculation

Strange particle reconstruction

- $\Xi^- \rightarrow \pi^- \Lambda$, $\Xi^+ \rightarrow \pi^+ \bar{\Lambda}$ (b.r. 99.9%),
- $\Omega^- \to \mathrm{K}^- \Lambda$, $\Omega^+ \to \mathrm{K}^+ \overline{\Lambda}$ (b.r. 67.8%).
- Reconstruction from V^0 decay daughter tracks + bachelor track

Signal extraction

- Background estimation and signal extraction from invariant mass distribution for each p_T bin
- Side bands polynomial fit

Jet analysis

- Jet algorithm takes particle-like objects and groups them into jets
- anti-k_t algorithm for signal jet
- k_t for the background estimation
- Tracks of primary charged particles with $p_T \geq 150~{\rm MeV}/c$ and $|\eta_{\rm track}| < 0.9$
- Resolution parameter R = 0.2
- Association of strange particles with jets:
 - ▶ *d* < *D*
 - ► d angular distance between V⁰_s momentum vector and the jet axis; D matching distance

Corrections

- Reconstruction efficiency correction:
 - MC reconstructed with the same procedure as data
 - $\epsilon = \frac{\text{Reconstructed particles}}{\text{Generated particles}}$
- Underlying event subtraction:
 - ► V⁰_s in regions with negligible jet production
 - \rightarrow ${\rm V}_{s}^{0}$ are produced by background
 - Different methods:
 - ★ No-Jet events
 - ★ Outside Cones
 - ★ Perpendicular Cones
 - ★ Random Cones
- Feed-down correction

•
$$N^{\text{jet}} = \left(\frac{N^{\text{JC}}}{N^{\text{JC}}\epsilon^{\text{JC}}} - \frac{N^{\text{UE}}}{N^{\text{UE}}\epsilon^{\text{UE}}}\right)\left(1 - f^{\text{FD,jet}}\right)$$

Corrected p_T inclusive and in jets spectra

Baryon-to-meson ratio

 $\bullet~\Lambda/{\rm K}_{\rm S}^0$ ratio in jets is much lower than inclusive one and resembles that in pp collisions.

Ekaterina Grecká (ALICE Collaboration)

Ξ^{\pm} and Ω^{\pm} feasibility study: invariant mass distributions

Examples of invariant mass distributions of multistrange baryons with $p_{\rm T}=0-15~{\rm GeV}/c.$

Ξ^{\pm} and Ω^{\pm} feasibility study: inclusive p_{T} spectra

Ξ^{\pm} and Ω^{\pm} feasibility study: p_{T} spectra in jets

Ξ^\pm and Ω^\pm in jets - closer look

• Ξ^{\pm} in jets - probably feasible, Ω^{\pm} seems combinatorial

Ω, in JC, c. 0-10 %, pT: 2.0-4.0 GeV/c, step 2

Conclusion and outlook

Conclusion:

- $\Lambda/{\rm K}_{\rm S}^0$ ratio in jets is smaller than inclusive, better statistical precision with Run 2 data
- Study of Ξ^\pm in jets feasible with Run 2 data, but Ω^\pm in jets at the moment statistics limited

Outlook:

- Addition of the strange particle directly into the jet reconstruction
- Evaluation of feed-down contribution for Λ baryons from Ξ
- Evaluation of systematic uncertainties