Coherent photoproduction of ρ in oxygen–oxygen collisions

Jakub Juračka

feat. Guillermo Contreras, Tomáš Herman

DUCD2023 15. 9. 2023

Ultra-peripheral collisions

- collisions with $b > R_1 + R_2$
 - short range interactions suppressed, long range interactions (EM) may occur
- Lorentz contracted EM fields of particles treated as fluxes of photons
 - mediate photon-photon and photonuclear interactions

Coherent vector meson photoproduction

 cross section sensitive to nuclear gluon distributions => probe into low-x phenomena (nuclear shadowing, gluon saturation, ...)

A-dependence of coherent ρ^0 production

- distance from coherent limit signals pronounced QCD dynamical effects
 - seemingly well reproduced by models
- black disk limit not yet reached
- n.b. closeness to incoherent limit purely coincidental

A-dependence of coherent ρ^0 production

 γO data may provide a constraint for A-dependence at lower values of A

LHC O-O run

- intermediate collision system between pp and heavy-ion systems
- oxygen ions readily available in the ion source, candidate for potential future lighter-ion Runs
- proposal for a 1 week run¹ at 6.37–7.00 TeV yielding $0.5-1.0 \text{ nb}^{-1}$
 - currently scheduled² for 2024
 - n.b. p–O running also considered (LHCb and astroparticle research)

¹Bruce et al.: Proc. IPAC'21, 53-56 (2021)

²Bruce: lons – outlook for 2023 and beyond (2023)

STARlight model and program

 model¹ based on generalised vector dominance, relies on experimental data from HERA as input

$$\sigma(\gamma p \rightarrow Vp) \implies \left\{ egin{array}{c} {
m GVDM} \\ {
m eikonalisation} \\ {
m optical theorem} \\ {
m Glauber calculation} \end{array}
ight\} =$$

$$\implies \sigma(\mathsf{AA} \rightarrow \mathsf{AAV})$$

- implemented in the STARlight MC generator²
- user-defined parameters used in the calculation of cross sections and subsequent generation of MC events

¹Klein, Nystrand: Phys. Rev. C 60, 014903 (1999)

²Klein et al.: Comput. Phys. Commun. 212, 258-268 (2017)

Dataset setup

- STARlight interfaced with the ${\rm O}^2$ framework with a GEANT 4 simulation of the ALICE detector
 - n.b. detector model imperfect, knowledge is improving
- 2500 $ho^0
 ightarrow \pi^+\pi^-$ events from ${}^{16}_{8}{
 m O}$ collisions
 - generated locally \implies limited number of events
 - clean setup (fully coherent sample, no requirement on ion breakup, no interference, etc.), decay products covering $-4.0 < \eta < 1.5$
- 10000 $ho^0
 ightarrow \pi^+\pi^-$ events from $^{208}_{82}{
 m Pb}$ collisions
 - setup largely similar to O–O dataset, decay product η adjusted to $|\eta| < 1.5$
 - newer dataset \implies possibly introduced effects not present in the O–O dataset

Analysis

- analysis served largely a preparatory function
- main objective was the determination of acceptance times efficiency corrections for m, $p_{\rm T}$, and y distributions
 - describe the influence of detector properties and the analysis procedure on collected data
 - determined from MC data

$$A imes E = rac{N_{ ext{reconstructed}}(ext{full event selection})}{N_{ ext{generated}}(ext{rapidity selection})}$$

explored two methods of statistical uncertainty calculation

Event selection criteria

- two tracks of opposite charge
- $|n\sigma_{\pi^{\pm}}| < 5$ TPC PID
- track quality data studied but not used for further track selection
- pion pair |y| < 0.8, $p_{\rm T} < 0.17$ GeV/c, $m \in (0.6, 1.2)$ GeV/ c^2
 - $p_{\rm T}$ selection adjusted to 0.12 GeV/*c* for Pb dataset (accounts for lower $\langle p_{\rm T} \rangle$)

dataset	produced in $ y < 0.8$	events passing selections
0	858	73
Pb	7153	368

Mass spectra A×E

• A×E relatively flat around the $\rho^0(770)$ pole mass at just under 10% for O–O and approximately 5% for Pb–Pb, tails affected by large statistical uncertainties

Transverse momentum spectra A×E

• A×E for O–O difficult to interpret due to large uncertainties (overall values around 10%), Pb–Pb response relatively flat around the peak maximum, just under 5%

Rapidity spectra $A \times E$

- current event selection yields a relatively flat rapidity $A\times E$ with similar values of 10 and 5%, respectively

Results summary and outlook

- limited sample size led to large statistical uncertainties (especially for O–O)
- \bullet computed A×E values overall lower than expected
 - exact cause not certain, suspected are software issues (ITS-TPC track matching problems, ambiguities in assignment of tracks to collisions)
- apparent discrepancy between the two studied datasets
 - $\bullet\,$ possibly caused by the improvements in the detector description for the simulated Pb–Pb sample
- outlook
 - refinement of analysis
 - further testing on real Pb–Pb data or larger simulated O–O datasets
 - pre-prepared framework will (hopefully) facilitate implementation on real data

Thank you for your attention!

Predicted ρ^0 photoproduction yield

- full parameter setup and fill scheme not yet finalised
- STARlight predictions¹ for a $L_{int} = 1 \text{ nb}^{-1}$ run at $\sqrt{s_{NN}} = 6.37$ TeV (detector acceptance taken as 7%)
 - $\sigma_{
 m coherent} = 9.2 \ {
 m mb} \implies pprox 650,000$ coherent events
 - $\sigma_{\rm incoherent} = 6.8 \ {\rm mb} \implies \approx 470,000$ incoherent events
- great potential for studies of incoherent photoproduction

¹ALICE: ALICE-PUBLIC-2021-004 (2021)

O–O dataset setup

parameter	value	parameter	value
BEAM_1_Z	8	PT_MAX	3
BEAM_1_A	16	CUT_ETA	1
$BEAM_2Z$	8	ETA_MIN	-4
BEAM_2_A	16	ETA_MAX	1.5
BEAM_1_GAMMA	3864.32	PROD_MODE	3
BEAM_2_GAMMA	3864.32	N_EVENTS	2500
W_MAX	-1	PROD_PID	113
W_MIN	-1	BREAKUP_MODE	5
W_N_BINS	50	INTERFERENCE	0
RAP_MAX	10	IF_STRENGTH	1
RAP_N_BINS	200	INT_PT_MAX	0.24
CUT_PT	0	INT_PT_N_BINS	120
PT_MIN	1	XSEC_METHOD	1

O-O generator-level data

6 φ(π⁺) [rad]

O–O events track selection data

Pb–Pb dataset setup

parameter	value	parameter	value
BEAM_1_Z	82	PT_MAX	3
BEAM_1_A	208	CUT_ETA	1
$BEAM_2_Z$	82	ETA_MIN	-1.5
BEAM_2_A	208	ETA_MAX	1.5
BEAM_1_GAMMA	2705.37	PROD_MODE	3
BEAM_2_GAMMA	2705.37	N_EVENTS	10000
W_MAX	-1	PROD_PID	113
W_MIN	-1	BREAKUP_MODE	5
W_N_BINS	50	INTERFERENCE	0
RAP_MAX	1.5	IF_STRENGTH	0.05
RAP_N_BINS	200	INT_PT_MAX	0.24
CUT_PT	0	INT_PT_N_BINS	120
PT_MIN	0.01	XSEC_METHOD	1

Pb–Pb generator-level data

Pb–Pb events track selection data

