

Incoherent production of J/ψ at midrapidities

David Grund

6. miniworkshop difrakce a ultraperiferních srážek ČVUT Děčín

September 15, 2023

Physical motivation

- What do we know about the nuclear structure at high energies (low Bjorken-x)?
 - Gluon contribution is dominant and raising
 - At some point, gluon production should be balanced by annihilation \Rightarrow saturation
 - For heavy nuclei, saturation expected at lower energies (than for nucleons)
- Various aspects of the target structure can be studied to determine the onset of saturation:
 - The average gluon density
 - Event-by-event fluctuations
- Ideal probes? Photons!

Sep 15, 2023

Photoproduction

- At hadron colliders, the tool at hand are **ultra-peripheral collisions** (UPCs):
 - $b > 2R \Rightarrow$ pure hadronic interactions suppressed
- The emitted photon fluctuates into a color dipole
- Exchange of gluons \Rightarrow photonuclear interaction
- $\gamma \mathsf{Pb}$ at the LHC
 - E.g. diffractive J/ψ photoproduction:

For incoherent J/ ψ : $|t| = p_{T}^{2}$

Process	γ interacts with	$\sigma_{\gamma ext{Pb}}$ sensitive to (Good-Walker) [1]	$\langle t angle$ [GeV ²]
Coherent	The whole nucleus	The average	$\lesssim 0.01$
Incoherent	A single nucleon	The variance	~ 0.1
Dissociative	Sub-nucleon structure	The variance	~ 1

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP-2023-080 04 May 2023

First measurement of the |t|-dependence of incoherent J/ ψ photonuclear production

ALICE Collaboration

Abstract

The first measurement of the cross section for incoherent photonuclear production of J/ψ vector mesons as a function of the Mandelstam |t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, |y| < 0.8, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair of $\sqrt{5}$ Mm = 5.02 TeV. This rapidity interval corresponds to a Bjorken-x range (0.3–1.4) × 10⁻³. Cross sections are given in five |t| intervals in the range 0.04 < |t| < 1 GeV² and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a |t|-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.

Analysis overview

First measurement of the |t|-dependence of incoherent J/ ψ photonuclear production

- Paper approved by ALICE: arXiv:2305.06169
- Submitted to Physical Review Letters (PRL)
 - Now waiting for the second round of comments from the referees
- The analysis carried out with ALICE using Pb–Pb UPCs at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$
- J/ ψ reconstructed at midrapidity, |y| < 0.8, from the decay into $\mu^+\mu^-$
 - Sensitive to $x \in (0.3, 1.4) \times 10^{-3}$
- Five |t| intervals in the range $0.04 < |t| < 1 \text{ GeV}^2$

$$x = \frac{M_{\rm J/\psi}}{\sqrt{s_{\rm NN}}} e^{-y}$$

Analysis motivation

Mandelstam $t \xleftarrow{\text{Fourier tr.}}$ matter distribution in the transverse plane

- Incoherent photonuclear cross section
 → geometrical fluctuations of the
 target gluon density
- Fluctuations at sub-nucleon scale would enhance the cross section at $|t| \sim 1 \ {\rm GeV^2}$

Participating ALICE detectors

- Event selection: central UPC trigger → inputs from the SPD, TOF, AD and V0
- Forward scintillation detectors AD and V0 operated as vetoes against hadronic activity
- **Tracking**: the ITS and TPC in a large solenoid magnet (0.5 T)
- Particle ID: ionization energy loss measured in the TPC compared to the muon hypothesis

Looking at events with two oppositely-charged tracks, $|\eta|<$ 0.8

$\frac{\mathrm{d}\sigma_{\gamma \mathrm{Pb}}}{\mathrm{d}|t|} = \frac{1}{2n_{\gamma \mathrm{Pb}}} \frac{N_{\mathrm{J/\psi}}^{\mathrm{inc}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{J/\psi}}^{\mathrm{inc}} \times \mathrm{BR}(\mathrm{J/\psi} \to \mu^{+}\mu^{-}) \times \mathcal{L} \times \Delta y \times \Delta |t|}$

Signal extraction

²5 220 200 We ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV $J/\psi \rightarrow \mu^+ \mu^-$ ର୍ଷ 180 UPC, $L_{int} = 232 \pm 7 \ \mu b^{-1}$ b 160 • J/ψ yields: extended likelihood fits to $0.2 < p_{_{T}} < 1.0 \text{ GeV/}c$ |y| < 0.8stuno 120 unbinned invariant-mass distribution of $N_{1/w} = 512 \pm 26$ muon pairs (Crystal Ball + 100 exponential) 80 • Total yield $(0.04 < |t| < 1 \text{ GeV}^2)$: 60 521 \pm 26, about 100 per a |t| interval

40 20

2.5

3.0

3.5

4.0

 $m_{\rm HII}$ (GeV/ c^2)

4.5

Coherent and feed-down contamination

- Contamination from coherent J/ψ production + feed-down from ψ' $(\psi' \rightarrow J/\psi + X)$
- Extended likelihood fit to transverse momentum ditribution of muon pairs with $3.0 < m_{\mu\mu} < 3.2 \text{ GeV}/c^2$
- Templates obtained with the STARlight MC generator: reweighted to reproduce the peak at low $p_{\rm T}$ dominated by coherent ${\rm J}/\psi$
- Nucleon dissociation: H1 parametrization [3]

Results & comparison with phenomenological models

MS [4]: "The IPsat model":

- **MS-p**: elastic interaction with a full nucleon
- **MS-hs**: event-by-event changes of the transverse proton structure (three hot *spots*) + fluctuating saturation scale

Incoherent production of $1/\psi$ at midrapidities

Results & comparison with phenomenological models

- MSS: full nucleon
- **MSS-fl**: hot spots included

Incoherent production of $1/\psi$ at midrapidities

Results & comparison with phenomenological models

GSZ [6]: HERA data + Glauber-Gribov and shadowing

- **GSZ-el**: full nucleon
- GSZ-el+diss: extra dissociative component (sub-nucleon d.o.f.)

Incoherent production of $1/\psi$ at midrapidities

Discussion of the results

Two aspects of the data-model comparison:

- **The normalization**: mainly linked to the scaling from proton to nuclear targets
- **2 The** |*t*|**-slope**: driven by the size of the scattering object

- Models ignoring quantum fluctuations at sub-nucleon scale predict a |t|-dependence much steeper than in the data
- Inclusion of such fluctuations in the same models provides a better description of the data

Complementary measurement of coherent production

- This analysis complements the ALICE measurement of coherent J/ψ photoproduction at $|t| < 0.012 \text{ GeV}^2$ [7]:
 - @Roman Lavička, 2021
- Together, three orders of magnitude in |t| covered
- HERA-like accuracy

Conclusions

- The first measurement of the |t|-dependence of incoherent J/ ψ photoproduction is presented
- Analysis performed at midrapidity using Pb–Pb UPCs measured with ALICE
- From the comparison with phenomenological models, the data favor sub-nucleon fluctuations!

Thank you for listening!

References

- M. L. Good and W. D. Walker. "Diffraction dissociation of beam particles". In: *Phys. Rev.* 120 (1960), pp. 1857–1860.
- 2 S. R. Klein et al. "STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions". In: *Comput. Phys. Commun.* 212 (2017), pp. 258–268.
- 3 C. Alexa et al. "Elastic and Proton-Dissociative Photoproduction of J/ψ Mesons at HERA". In: *Eur. Phys. J. C* 73.6 (2013), p. 2466.
- 4 H. Mäntysaari and B. Schenke. "Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions". In: *Phys. Lett. B* 772 (2017), pp. 832–838.
- 5 H. Mäntysaari, F. Salazar, and B. Schenke. "Nuclear geometry at high energy from exclusive vector meson production". In: *Phys. Rev. D* 106 (2022) 7, 074019.
- **6** V. Guzey, M. Strikman, and M. Zhalov. "Nucleon dissociation and incoherent J/ψ photoproduction on nuclei in ion ultraperipheral collisions at the Large Hadron Collider". In: *Phys. Rev. C* 99.1 (2019), p. 015201.
- 7 S. Acharya et al. "First measurement of the |t|-dependence of coherent J/ ψ photonuclear production". In: *Phys. Lett. B* 817 (2021), p. 136280.

Back-up slides

t (GeV ²)	$N_{J/\psi}$	f _C (%)	f _D (%)	$({ m Acc} imes arepsilon)_{ m MC}$ (%)	$rac{\mathrm{d}\sigma_{\gammaPb}}{\mathrm{d} t }\;(\mub/GeV^2)$
(0.040, 0.080)	128 ± 12	9.4 ± 0.8	81.9 ± 11.7	3.39 ± 0.03	$21.8 \pm 2.1 \pm 0.3 \pm 2.1$
(0.080, 0.152)	127 ± 12	0.024 ± 0.002	36.0 ± 4.9	3.03 ± 0.02	$19.1 \pm 1.9 \pm 0.3 \pm 1.5$
(0.152, 0.258)	85 ± 10	0	9.3 ± 1.0	2.49 ± 0.02	$13.1 \pm 1.6 \pm 0.4 \pm 0.9$
(0.258, 0.477)	86 ± 11	0	4.9 ± 0.4	2.04 ± 0.02	$8.1 \pm 1.1 \pm 0.1 \pm 0.6$
(0.477, 1.000)	86 ± 11	0	2.7 ± 0.2	1.57 ± 0.02	$4.6 \pm 0.6 \pm 0.1 \pm 0.3$

The uncertainties on the cross section are (in this order): statistical, uncorrelated systematic, and correlated systematic

Systematic uncertainties

Source	Uncertainty (%)
Signal extraction	(1.0,2.9)
Selection on $ z_{vtx} $	(0.0,2.9)
f _C	(0.0,0.4)
f _D	(0.2,6.5)
Integrated luminosity	2.9
Veto inefficiency due to pile-up	3.0
Veto inefficiency due to dissociation	3.8
ITS-TPC tracking	2.8
Trigger efficiency	1.3
Branching ratio	0.6
Photon flux	2.0

PID: complete rejection of electrons

Reweighted STARlight templates

Need for unfolding?

Need for unfolding?

|t| vs $p_{\rm T}^2$: photon transverse momentum

