Incoherent photoproduction of J/ψ mesons in ultra-peripheral collisions at ALICE

DUCD 2023

Faculty of Nuclear Sciences and Physical Engineering **CTU in Prague**

Vendulka Fílová

September 15, 2023

Photoproduction of J/Ψ

Ultra-peripheral collisions

These processes are called **Ultra-peripheral collisions**.

Vendulka Fílová

• Electromagnetic field of Lorentz-contracted nuclei can be seen as a flux of quasi real

• The intensity of the photon flux is proportional to Z^2 .

• For an impact parameter larger than the sum of the radii of the nuclei:

• Strong interactions are strongly suppressed.

• Photon induced processes remain.

real

Photoproduction of J/ Ψ vector mesons

Photoproduction of J/ Ψ vector mesons

Incoherent photoproduction of J/ Ψ vector mesons

with one nucleon inside the target nucleus:

• Characterized by $p_T > 300 \text{ MeV/c}$ of the J/ Ψ

Vendulka Fílová

different rapidities (equivalently $W_{\gamma Pb}$).

Incoherent photoproduction of J/ Ψ vector mesons

• The cross section for incoherent production, in a Good-Walker approach, is proportional to the variance of the fluctuations of the gluon field.

$$\frac{d\sigma_{\gamma \text{Pb}}}{dt} \Big|_{T,L}^{\text{inc}} = \frac{(R_g^{T,L})^2}{16\pi} \left(\left\langle \left| A^j(x,Q^2,\vec{\Delta})_{T,L} \right|^2 \right\rangle_j - \left| \left\langle A^j(x,Q^2,\vec{\Delta})_{T,L} \right|^2 \right\rangle_j \right\rangle_j \right\}$$

where the amplitude A depends on the gluon distribution of the target.

Predictions including fluctuations at the sub-nucleon scale predict a different dependence on |t|

Incoherent (thin lines) diffractive J/Psi production cross section as a function of |t|, with (solid) and without (dashed) sub nucleonic fluctuation.

Can be found here: http://inspirehep.net/record/1519841

UPC cross section of photo produced J/ Ψ

• Either nucleus can serve as a photon emitter or as the target:

Disentangling low and high x contributions

- It was proposed to separate the large and small energy contributions to the cross section by tagging the production of neutrons at beam rapidities.
- Neutrons measured in Zero Degree Calorimeters

Vendulka Fílová

Separation into two break-up classes: (0nXn) and (Xn0n)

Proposed here: <u>http://inspirehep.net/record/1273593</u>

Disentangling low and high x contributions

- It was proposed to separate the large and small energy contributions to the cross section by tagging the production of neutrons at beam rapidities.
- Neutrons measured in Zero Degree Calorimeters

Vendulka Fílová

Separation into two break-up classes: (Xn0n) and (0nXn)

Proposed here: <u>http://inspirehep.net/record/1273593</u>

$$J/\Psi Pb(y) + N_{\gamma Pb}(-y) \cdot \sigma_{\gamma Pb \rightarrow J/\Psi Pb}(-y)$$

$$\frac{d\sigma_{PbPb \rightarrow J/\Psi X}^{Xn0n}(y)}{dy} = N_{\gamma Pb}^{Xn0n}(-y) \cdot \sigma_{\gamma Pb \rightarrow J/\Psi X}(-y)$$

$$\rightarrow low-x gluon$$

$$\rightarrow high energy photon$$

$$V^{(Xn0n)} Pb$$

$$V^{(Xn0n)} Pb$$

$$V^{(Yn0n)} Pb$$

Vendulka Fílová

Analyzed data

- Data sample: Muon Calo pass 3:PbPb 2018 MUON: periods q,r
- Trigger: CMUP6-NOPF-MUFAST = !0VBA & 0MUL
 - !OVBA: no signal in VOA detector with beam-beam timing
 - OMUL: low- p_T unlike sign muon trigger
- Used anchored MC LHC18q and LHC18r data periods, labeled as LHC18I7

Data selection

Cut
Preselection criteria
AOD events
Events selected in good runs
Trigger information found
At least one muon track
Two good muon tracks
Offline selection criteria
Selected with CMUP6 trigger
General kinematics selection
No SPD tracklets
ADA(C) decision
Empty V0A
Maximum 2 cells fired and matched to muons in V0C
Rapidity $-4.0 < y_{\mu^+\mu^-} < -2.5$
Mass cut $2.85 < M_{\mu^+\mu^-} < 3.35 \text{ GeV}/c^2$
Cut $p_T > 0.3 \text{ GeV/}c$

Vendulka Fílová

Sumber of survivors

92106524
91422936
85482
85482
85482

This part of the selection is done in LEGO trains.

- 85482
- 64889
- 49342
- 48861
- 10001
- 46801
- 40339
- 40339
- 23531
- 6622

- General kinematics:
 - $2.0 < m_{\mu^+\mu^-} < 6.0 \, {\rm GeV}/c^2$
 - -4.0 < y < -2.5
 - $p_T < 5.0 \, {\rm GeV}/c$

. IS

Cross section

Vendulka Fílová

Vendulka Fílová

Individual fits are in the backup.

bin (GeV/c)	-4.0 <y<-3.25< th=""><th>-3.25<y<-2.5< th=""></y<-2.5<></th></y<-3.25<>	-3.25 <y<-2.5< th=""></y<-2.5<>
(0.3; 0.5)	691±31	627±29
(0.5; 0.7)	533±26	476±25
(0.7; 0.9)	462±23	370±21
(0.9; 1.2)	540±24	427±22
(1.2; 1.5)	387±20	307±19

Vendulka Fílová

Coherent and feed-down contamination coefficients

Transverse momentum distribution

Transverse momentum fit is used to extract the contribution from coherent production and feed-down.

Coherent and feed-down contamination coefficients

$$f_{\rm C}^{\rm pTbin} = \frac{N_{\rm coh}^{\rm pTbin}}{N_{\rm incoh}^{\rm pTbin} + N_{\rm disoc}^{\rm pTbin}}$$

Coherent contamination coefficient	-4 <y<-3.25< th=""><th>-3.25<y<-2.5< th=""></y<-2.5<></th></y<-3.25<>	-3.25 <y<-2.5< th=""></y<-2.5<>
(0.3,0.5)	0.087±0.004	0.124±0.007
(0.5,0.7)	0.006±0.000	0.008±0.000
(0.7,0.9)	0.001 ± 0.000	0.002±0.000
(0.9,1.2)	0.001±0.000	0.001±0.000
(1.2,1.5)	0.000±0.000	0.000±0.000

$f_{\text{DCoh}}^{\text{pTbin}} = \frac{N_{\text{coh}\Psi'}^{\text{pTbin}}}{N_{\text{incohJ}/\Psi}^{\text{pTbin}} + N_{\text{disocJ}/\Psi}^{\text{pTbin}}}$	$f_{\rm DIncoh}^{\rm pTbin} =$	$\frac{N_{\rm incoh\Psi'}^{\rm pTbin}}{N_{\rm incohJ/\Psi}^{\rm pTbin} + N_{\rm disocJ/\Psi}^{\rm pTbin}}$
$f_{\rm D}^{\rm pTbin} =$	$f_{\rm DCoh}^{\rm pTbin} + f_{\rm I}^{\rm pTbin}$	pTbin DIncoh

Feed-down contamination coefficient	-4 <y<-3.25< th=""><th>-3.25<y<-2< th=""></y<-2<></th></y<-3.25<>	-3.25 <y<-2< th=""></y<-2<>
(0.3,0.5)	0.156±0.007	0.210±0.0
(0.5,0.7)	0.018±0.002	0.018±0.0
(0.7,0.9)	0.006±0.001	0.005±0.0
(0.9,1.2)	0.002±0.000	0.001±0.0
(1.2,1.5)	0.000±0.000	0.000±0.0

Efficiency of reconstructed events $(A \times \epsilon)_{MC}$

Vendulka Fílová

Vendulka Fílová

Cross section

UPC cross section

Vendulka Fílová

Separation into neutron classes (0nXn) and (Xn0n)

UPC cross section

Photon lead cross section

Goal: photon lead energy dependence (omXm)

Vendulka Fílová

Summary and outlook

- The UPC cross section for incoherent J/Ψ photoproduction in rapidity and p_T bins was reported.
- Separation into nuclear break-up classes and first results were shown.
- Still some work left: systematics, neutron migration,...

Stay tuned! And thank you for your attention!

Backup

Signal extraction

- J/ Ψ signal is extracted from a fit to the invariant mass distribution of the muon pair
- Fitting function: Double-sided crystal ball
 - MC incoherent J/ Ψ sample studied:
 - Parameters *n* are fixed to n = 10.
 - σ_L, σ_R fixed first, then α_L, α_R fixed.
- Background fitted with an exponential with polynomial tail in first two p_T bins
 - Some of the parameters were fixed.
- Background in last three bins was fitted with an exponential function.

Backup: Signal extraction: -4.0<y<-3.25

Vendulka Fílová

Background fitted with exponential

Backup: Signal extraction: -4.0<y<-3.25

Backup: Signal extraction: -3.25<y<-2.5

a4	1.000	0.432	-0.041	-0.134	0.130	-0.002	-
lambda	0.432	1.000	-0.116	-0.006	0.090	-0.292	
mjpsi	-0.041	-0.116	1.000	0.011	-0.031	0.071	-
nBkgd	-0.134	-0.006	0.011	1.000	-0.314	-0.361	-
nJPsi	0.130	0.090	-0.031	-0.314	1.000	0.090	-
nPsi2s	-0.002	-0.292	0.071	-0.361	0.090	1.000	
	a4	lambda	mjpsi	nBkgd	nJPsi	nPsi2s	-

1							
a4	1.000	0.637	-0.054	-0.237	0.192	0.021	
lambda	0.637	1.000	-0.105	-0.084	0.129	-0.207	
mjpsi	-0.054	-0.105	1.000	0.012	-0.018	0.031	
nBkgd	-0.237	-0.084	0.012	1.000	-0.298	-0.324	
nJPsi	0.192	0.129	-0.018	-0.298	1.000	0.079	
nPsi2s	0.021	-0.207	0.031	-0.324	0.079	1.000	
	a4	lambda	mjpsi	nBkgd	nJPsi	nPsi2s	

Backup: Signal extraction: -3.25<y<-2.5

Backup

Extraction of signal in small p_T bins for the fits of p_T distribution

Vendulka Fílová

Transverse momentum distribution

- Signal for p_T distribution obtained by fitting $\mu_+\mu_-$ invariant mass in range $2.85 < m_{\mu\mu} < 3.45 \text{ GeV/c}^2$ in small p_T bins
 - DSCB was used, parameters were fixed, except the mass.
 - Background fitted with exponential.

	Pt bin (GeV/c)	Pt step
1.	(0.,0.15)	0.01
2.	(0.15,0.2)	0.025
3.	(0.2,0.3)	0.05
4.	(0.3,1.0)	0.1
5.	(1.0,2.0)	0.2
6.	(2.0,3.5)	0.5
7.	(3.5,5.0)	1.5

-4.0<y<-3.25 Pt Bin1

Pt Bin1

Pt Bin2

Pt Bin4

Vendulka Fílová

Pt Bin3

Pt Bin4

Vendulka Fílová

Pt Bin5

Pt Bin6

-3.25<y<-2.5

Pt Bin1

Vendulka Fílová

Pt Bin2

 $3.3 \quad 3.4 \ m_{\mu^+\mu^-} \,({\rm GeV}/c^2)$

3.2

3.1

2.9

3

Vendulka Fílová

Pt Bin3

Pt Bin4

Vendulka Fílová

Pt Bin5

Pt Bin6

Backup

Acceptance and efficiency

Efficiency of reconstructed events $(A \times \epsilon)_{\rm MC}$

• Give with
$$(A \times \epsilon)_{\rm MC} = \frac{N_{\rm MC}^{\rm rec}}{N_{\rm MC}^{\rm gen}}$$

- The Monte Carlo data sample: kIncohJpsiToMu: incoherent $J/\Psi \rightarrow \mu_+\mu_-$
- $N_{\rm MC}^{\rm rec}$: number of events that fulfilled the same selection as the selection for the J/Ψ
- $N_{\rm MC}^{\rm gen}$: number of events within the rapidity range and p_T bin
- Plots are in the backup.

	-4 <y<-3.25< th=""><th>-3.25<y<-2.5< th=""></y<-2.5<></th></y<-3.25<>	-3.25 <y<-2.5< th=""></y<-2.5<>
(0.3,0.5)	0.1330	0.1014
(0.5,0.7)	0.1326	0.1005
(0.7,0.9)	0.1333	0.0987
(0.9,1.2)	0.1382	0.0983
(1.2,1.5)	0.1540	0.1018
Total (0.3,1.5)	0.1332	0.1006

