Application of machine learning methods for the identification of proton decay in liquid argon detector

A. Guľa Gartman¹ Supervised by J. Franc¹ and V. Pěč²

¹ Department of Mathematics at FNSPE, Czech Technical University in Prague ² Institute of Physics of the Czech Academy of Sciences 1. The Deep Underground Neutrino Experiment

2. Data acquisition and interpretation

3. Essential machine learning techniques

4. Recent results

- What was the universe like back then?
- Why is there more matter than antimatter in the universe?
- How many forces are present in the nature?
- Is the Standard model enough?

The Deep Underground Neutrino Experiment

DUNE

The Deep Underground Neutrino Experiment (*DUNE*) is a neutrino experiment under construction hosted by U.S. Department of Energy's *Fermilab*.

Main goals:

- \cdot exploration of neutruno oscillations
- \cdot studies of supernovae and the formation of neutron stars and black holes
- search for proton decay

DUNE detectors

The far detector: 4 \times 10 kt LArTPC¹ modules & cryogenics The near detector: LArTPC ArgonCube & HPgTPC

Figure 1: The general operating principle of the SP LArTPC. Negatively charged ionization electrons from the neutrino interaction drift horizontally opposite to the **E** field in the LAr and are collected on the anode, which is made up of the *U*, *V* and *X* sense wires. The right-hand side represents the time projections in two dimensions as the event occurs.

¹Liquid Argon Time Projection Chamber

Figure 2: Illustration of the DUNE APA wire wrapping scheme showing small portions of the wires from three signal planes (*U*, *V*, *X*). The TPC electronics, shown in blue no the right, mount directly to the frame and process signals from both the collection and induction channels.

Data Acquisition and Interpretation

Figure 3: Illustration of the signal time projections to induction planes *U* and *V* and the collection plane *X*, from left to right respectively.

decay mode	expected fraction	observed fraction
$K \to \mu_+ \nu$	63,6 %	61,77 %
$K \to \pi_+ \pi_0$	20,7 %	19,3 %
$K \rightarrow 2\pi_+ 1\pi$	5,58 %	4,16 %
$K ightarrow \pi_0 e u$	5,1 %	7,2 %
$K \to \pi_0 \mu \nu$	3,3 %	3,04 %
$K \rightarrow 1\pi_+ 2\pi_0$	1,76 %	0 %

Table 1: Main modes of K decay.

- ROI extraction and centering
- \cdot image production
- categorizing images based on decay mode
- \cdot transforms and standardization

Essential Machine Learning Techniques

Artificial neural networks

$$y_j = f\left(\sum_{k=0}^n w_{jk} x_k\right)$$

 y_j ... the *j*-th output, w_{jk} ... the *k*-th component of the *j*-th weight vector, x_k ... the *k*-th input

Figure 4: Illustration of an artificial neuron function as compared to neuron in a biological brain.

Neural network is a sequence of layers made of neurons, where:

- neurons of one layer connect only to neurons of the immediately preceding and immediately following layers
- input layer receives external data and output layer produces the ultimate result
- hidden layers in between
- layers can be fully connected or pooling

EfficientNet and ransfer learning

Figure 4: Architecture of EfficientNet B0 neural network.

Recent Results

Figure 5: Receiver operating characteristics and area under ROC curve for models trained on signal and background time projections.

Problems and conclusions

12

Questions?