Understanding Deep Image Prior

Antonie Brožová

27.6.2023

イロト イヨト イヨト イヨト

æ

Inverse problems in imaging

$$\mathbf{x}_0 = d\left(\mathbf{x}_{gt}\right) + \mathbf{n}$$

- **x**₀ ... corrupted image
- *d*(.) ... degradation operator
- *x_{gt}* ... clear ground-truth image
- **n** . . . noise

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Denoising

■ *d*(.) is identity

э

Superresolution

• d(.) is a downsampling operator

< ロ > < 回 > < 回 > < 回 > < 回 >

Inpainting

• d(.) is Hadamard product with a binary mask of missing pixels

イロト イ団ト イヨト イヨト

Deblurring

• d(.) is a convolution with blur kernel

Minimize
$$E(\mathbf{x}; \mathbf{x}_0) = ||d(\mathbf{x}) - \mathbf{x}_0|| + \mathcal{R}(\mathbf{x})$$
 w.r.t. \mathbf{x}

where $\mathcal{R}(\mathbf{x})$ stands for regularization (like total variation)

・ロト ・四ト ・ヨト ・ヨト

æ

Deep image prior

A structure of a neural network is a prior itself. Specifically, for inverse problems in imaging, its ConvNets.

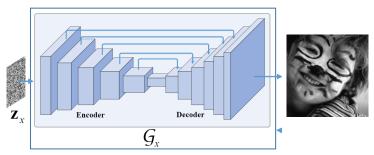
Ulyanov et al., Deep Image Prior, 2018.

- 4 同 6 4 日 6 4 日 6

Task

Minimize
$$E(f(\theta|\mathbf{z}); \mathbf{x}_0) = ||d(f(\theta|\mathbf{z})) - \mathbf{x}_0||$$
 w.r.t. θ ,

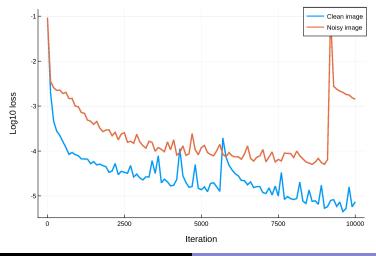
where $f(\theta|z)$ stands for a neural network with trainable parameters θ and input array z.


Solution is $\mathbf{x} = f(\boldsymbol{\theta}|\mathbf{z})$

・ロト ・回ト ・ヨト ・ヨト

э

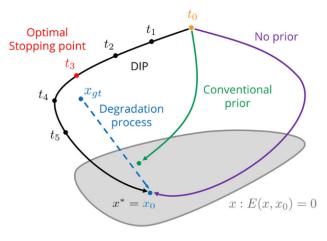
Overparametrization?


Commonly used U-net with 5 levels and skip connections contains 2mil trainable parameters

Ren et al., Neural Blind Deconvolution Using Deep Priors, 2020

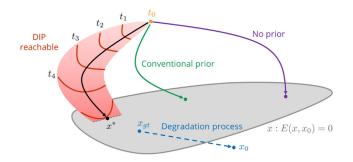
(日)

High impedance to noise



Power spectral density - clean image

《曰》《聞》《臣》《臣》。


Power spectral density - noisy image

Early-stopping for denoising

Ulyanov et al., Deep Image Prior, 2020. 🧹 🗆 🕨 ৰ 🚍 🕨 🤘 🛓 🛓

Other inverse problems

Ulyanov et al., Deep Image Prior, 2020.

æ

How to choose the architecture

- Problem dependent
- Image dependent
- Does not necessarily have to be overparametrized
- Convolutions
- Upsampling

→ < ∃ →

.⊒ →

- 4 目 ト - 日 ト - 4

Issues

- Initialization of the network
- Initialization of the noise array
- Probably still not universal
- Regularization