Ridziková Alexandra

Supervisor: doc. Ing. Jan Cepila, Ph.D. 11.09.2023 **FNSPE CTU**

RESEARCH THESIS Energy dependence of hadron structure within quantum chromodynamics

Motivation

- Evolution of parton densities
- At high momentum transfer and fixed x, an observation reveals the presence of a clusters of smaller partons. The vertical direction describes the evolution of the proton structure with increasing resolution scale Q^2 - DGLAP
- In the high-energy limit, which corresponds to small x, the density of partons increases significantly, and the partonic system is predominantly formed by gluons
 - Gluons may overlap and, eventually, interact
- Parton Saturation dynamical balance between the gluon recombination and the radiation
 - Below saturation scale $Q_s^2(x) \rightarrow \text{dilute regime, linear}$ gluon density evolution (BFKL)
 - Above $Q_s^2(x) \rightarrow$ dense regime, non-linear gluon density evolution (JIMWLK, BK)

Vector meson production

- Process sensitive to the proton structure
- W is the center-of-mass energy of the photon-proton system
- $t = (p' p)^2 = -\Delta^2$ square of the four-momentum transferred at the proton vertex
- Bjorken-x of the produced meson is $x = \frac{M_{VN}^2}{W^2}$
- M_{VM} is the mass of the vector meson and Q^2 is the virtuality of the incoming photon

Exclusive - target proton remains intact

$$\frac{Q^2}{Q^2} + Q^2$$

Dissociative - breakup of the target proton

Vector meson production

$$A_{T,L}^{\gamma^* p \to VMp}(x, Q^2, \Delta) = i \int \mathrm{d}\vec{r} \int_0^1 \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}\vec{b} |\Psi_{VM}^* \Psi_{\gamma^*}|_{T,L} e^{-i[\vec{b} - (1-z)\vec{r}]\vec{\Delta}} \frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}\vec{b}}$$

 $\left|\Psi_{VM}^{*}\Psi_{\gamma^{*}}\right|_{T,L}$ and the differential dipole cross section

• The scattering amplitude is given by the convolution of photon and vector meson wave functions $\frac{\mathrm{d}\sigma_{q\overline{q}}}{\mathrm{d}\vec{b}}$

Vector meson production

The differential dipole cross section

$$\frac{\mathrm{d}\sigma_{q\bar{q}}}{\mathrm{d}\vec{b}} = 2N(x,\vec{r},\vec{b}) \to \sigma_0 N(x,\vec{r},\vec{b})$$

• $\sigma_0 = 4\pi B_p$ is model dependent normalisation

Dipole amplitude $N(x, \vec{r}) \rightarrow \mathbf{GBW}$ parameterisation: •

$$N(x,r) = 1 - \exp\left(-\frac{r^2 Q_s^2(x)}{4}\right)$$
, where $Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$

- $T_p(b)$ describes the proton profile in transverse plane
 - **Gaussian distribution**
 - Hot-spot model lacksquare

$(\vec{r}, \vec{r})T_p(\vec{b})$

Total cross section of exclusive production of J/ψ meson using GBW parametrization.

Hot-spot model

spots

$$T_p(\vec{b}) = \frac{1}{N_{hs}} \sum_{j=1}^{N_{hs}} T_{hs}(\vec{b} - \vec{b}_j)$$

- average of the squared radius of the hot spot
- with the width B_p

$$T_{hs}(\vec{b}-\vec{b_j})$$

Poisson distribution with the mean value

$$\langle N_{hs}(x)\rangle = p_0 x^{p_1} \left(1 + p_2 \sqrt{x}\right)$$

• p_0, p_1, p_2 are free parameters, whose value depend on energy dependance of B_p and B_{hs}

The transverse profile of the proton is seen as a set of localized regions of high partonic density - hot

• Each hot spot follows a Gaussian distribution with the width B_{hs} , which can be interpreted as half of the

• Position of hot spot is sampled from a two-dimensional Gaussian distribution centered at the origin (0,0)

$$=\frac{1}{2\pi B_{hs}}e^{-\frac{(\vec{b}-\vec{b_j})^2}{2B_{hs}}}$$

• The number of hot spots grows with energy and N_{hs} is generated integer value from a zero-truncated

Hot-spot model

- Quantities $B_p = 4.7 \,\text{GeV}^{-2}$ and $B_{hs} = 0.8 \,\text{GeV}^{-2}$ are fixed.
- has logarithmic growth with energy

$$B_p(W) = 4.63 + 4\alpha' \ln\left(\frac{W}{90}\right)$$
, when

shrinking size of hot spots as the saturation scale increases

$$B_{hs}(x) = k \frac{1}{Q_s^2}$$
, where $k = \frac{1}{2}$

- which is achieved by modifying the parameters p_0, p_1 and p_2
- - Exclusive cross section \rightarrow average over geometrical configurations
 - Dissociative cross section \rightarrow variance over geometrical configurations

• Based on measurements from HERA, it is possible to assume that the radius of the proton $B_p(W)$

re $\alpha' = 0.164 \,\text{GeV}^{-2}$ (photoproduction)

• It is also possible to consider that B_{hs} is inversely related to the saturation scale, which implies a

• Change in size of the proton and sizes of hot spots, necessitates corresponding modification in N_{hs} ,

• The amplitude is calculated using $10\,000$ configurations of the proton profile function for each value of x

Shape of the transverse profile of the proton

fixed B_p and B_{hs} for different values of x

fixed value of B_p and energy dependent $B_{hs}(x)$

energy dependent $B_p(W)$ and fixed value of B_{hs}

energy dependent $B_p(W)$ and $B_{hs}(x)$

Fixed B_p and B_{hs}

total cross section of exclusive J/ψ production

• The results for the total cross section of exclusive and dissociative measurements from H1

total cross section of dissociative J/ψ production

production of the J/ψ vector mesons as functions of W, compared with

Energy-dependent $B_p(W)$ and fixed B_h

- Comparison of the model predictions for the total cross section of exclusive J/ψ photoproduction using fixed B_p (black line) and energydependent $B_p(W)$ (blue line) with H1 and ALICE data
- The energy-dependent $B_p(W)$ follows a logarithmic scaling with respect to W, indicating the growth of the proton size with energy \rightarrow modification of $p_0, p_1 \text{ and } p_2 \text{ in } N_{hs}$

Ratio of the exclusive and dissociative cross section

total cross section of exclusive and dissociative J/ψ photoproduction using fixed B_p and energy-dependent $B_p(W)$

Number of hot spots for energy-dependent and energy-independent slope parameter

Fixed B_p and energy-dependent $B_{hs}(x)$

Comparison of the model predictions for the total cross section of exclusive J/ψ photoproduction using fixed B_{hs} (black line) and energydependent $B_{hs}(x)$ (red line) with H1 and ALICE data

Ratio of the exclusive and dissociative cross section

total cross section of exclusive and dissociative J/ψ photoproduction using fixed B_{hs} and energy-dependent $B_{hs}(x)$

Number of hot spots for energy-dependent and energy-independent hot spot radius

Energy dependent $B_p(W)$ and $B_{hs}(x)$

Ratio of the exclusive and dissociative cross section

total cross section of exclusive and dissociative J/ψ photoproduction using energy-dependent and energy-independent B_p and B_{hs}

Number of hot spots for energy-dependent and energy-independent B_p and B_{hs}

Summary

- GBW model for the dipole cross section
 - → Gaussian distribution and Hot-spot model were used to describe the proton profile in transverse plane
- Four different Hot-spot model scenarios based on the energy dependence of the size of the proton and sizes of hot spots were used
 - \rightarrow logarithmic growth of radius of the proton with energy
 - \rightarrow shrinking size of hot spots with increasing saturation scale
 - \rightarrow correlation between energy dependent parameter and the number of hot spots
 - \rightarrow these models generally demonstrate a steeper evolution of the total cross section of exclusive J/ ψ production compared to models with fixed Bp and Bhs.

