# Study of the J/ $\Psi$ photoproduction at the STAR experiment 

Author: Bc. Michaela Svěráková<br>Supervisor: doc. Mgr. Jaroslav Bielčík, Ph.D.<br>Consultants: Ing. Jaroslav Adam, Ph.D. and Ing. Tomáš Truhlář

- c and anti-c
- vector meson - spin 1 and odd parity
- $\mathrm{m}_{\text {PDG }}=3.096 \pm 0.006 \mathrm{GeV} / \mathrm{C}^{2}{ }_{\text {(Taken from Ref. [1]) }}$
- studied decay channel
- J/ $\psi \rightarrow$ gamma $\rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
- BR: (5.97 $\pm 0.03$ )\% (Taken from Ref. [1].)


## PHOTOPRODUCTION OF J/ $\psi$



- UPC of protons at $\mathrm{V}=510 \mathrm{GeV}$
- Proton electromagnetic fields collide
$\rightarrow$ Flux of photons (dipole model)
$\rightarrow$ Fluctuate to a virtual hadronic state (dipole)
- Virtual qव̄ pair scatters off proton
$\rightarrow$ Emerges as real vector meson


## DIFFRACTIVE PROCESS

## TWO WAY OF PHOTON INTERACTIONS



- Hadronic processes - target disintegrates into new particles
- Diffractive interactions
- Experimentally: the presence of the LRG and the presence of one or both incoming particles that remain intact after a collision and are detected by special forward detectors
- Good and Walker (1960): Collision at high energy in which no quantum numbers are exchanged between the colliding particles
- Bjorken (1994): Diffractive reaction is characterized by a large, nonexponentially suppressed, rapidity gap in the final state


## GOALS OF THE ANALYSIS

- J/ $\Psi$ photoproduction in proton-proton collisions at $\mathrm{V} s=510 \mathrm{GeV}$


## A) CROSS SECTION

- Working towards the cross-section of J/ $\psi$ photoproduction as a function of transferred momentum |-t|



## B) VIRTUAL PHOTON $P_{T}$

- The first analysis of this type with the possibility of measuring forward protons in Roman Pots
- Exclusive photoproduction process
- $p_{T}$ of virtual photon: $-p_{2, T}=\left(p_{J / \psi}+p_{1}\right)_{T}$


## WHAT AND HOW DO WE MEASURE

- J/ $\psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$in central barrel

- One proton (high $p_{T}$ ) from Pomeron vertex in Roman Pots
- The other proton (low $p_{T}$ ) from photon vertex scatters at a small angle, not measured in Roman Pots
- STAR (the Solenoidal Tracker at RHIC)
- One of two experiments at RHIC at the Brookhaven National Laboratory
- Used subdetectors: TCP, BEMC, BBC, RP


## STAR DETECTORS

## ELECTRON AND POSITRON PAIRS

- Time Projection Chamber
- Detection and tracking
- Barrel Electromagnetic Calorimeter
- Energy measurement


Cross-section of the STAR detector showing its beamline and subdetectors TPC, BEMC BBC. Taken from Ref [3].

## STAR DETECTORS

## ELECTRON AND POSITRON PAIRS

- Time Projection Chamber
- Detection and tracking
- Barrel Electromagnetic Calorimeter
- Energy measurement


Cross-section of the STAR detector showing its beamline and subdetectors TPC, BEMC BBC. Taken from Ref [3].

## STAR DETECTORS

## ELECTRON AND POSITRON PAIRS

- Time Projection Chamber
- Detection and tracking
- Barrel Electromagnetic Calorimeter
- Energy measurement


Cross-section of the STAR detector showing its beamline and subdetectors TPC, BEMC BBC. Taken from Ref [3].

## STAR DETECTORS

## PROTONS

- Beam-Beam Counter
- Measure the interaction vertex
- MBT in pp collisions, LRG control
- Roman Pots
- Detection, momentum reconstruction


Cross-section of the STAR detector showing its beamline and subdetectors TPC, BEMC BBC. Taken from Ref [3].

## STAR DETECTORS

## PROTONS

- Beam-Beam Counter
- Measure the interaction vertex
- MBT in pp collisions, the LRG control
- Roman Pots
- Detection, momentum reconstruction


Cross-section of the STAR detector showing its beamline and subdetectors TPC, BEMC BBC. Taken from Ref [3].

## STAR DETECTORS

## PROTONS

- Beam-Beam Counter



A Roman Pot vessel. Taken from Ref [6].

- Measure the interaction vertex
- MBT in pp collisions, LRG control
- Roman Pots
- Detection, momentum reconstruction



## EVENT SELECTION

- JPsi* HTTP trigger (100.22 mil events)
- Exactly 1 vertex
- Vertex |z| position < 100 cm
- Track selection
- $\left|\eta_{\text {bemc }}\right|$ of primary tracks <1
- $|\operatorname{DCA}(z)|<1 \mathrm{~cm}$ \& DCA $(x y)<1.5 \mathrm{~cm}$
- nHitsFit > 15
- ndE/dx > 15
- Exactly 2 tracks from the primary vertex with BEMC hits

Data from pp collisions at $\mathrm{V} s=510 \mathrm{GeV}, 2017$ After all cuts - 1904 events

- Back-to-back tracks in BEMC
- $\Delta \Phi_{\text {BEMC }}$ of segment numbers $=3$
- The 2 tracks are $\mathrm{e}^{+}, \mathrm{e}^{-}$
- Cut $\chi^{2}{ }_{\mathrm{ee}}=n \sigma_{\mathrm{e}+}{ }^{2}+n \sigma_{\mathrm{e}-}{ }^{2}<3^{2}$
- Additional cut $\chi^{2}{ }_{K K}>10, \chi^{2}{ }_{\pi \pi}>10$ and $\chi_{p p}^{2}>10$ to remove background
- $\mathrm{Q}_{\text {tot }}=0$ (un/like sign division)
- Exactly 1 good track in RP
- Tracks in RP in fiducial region

$$
\begin{aligned}
& \left(p_{x}+0.6 \mathrm{GeV} / \mathrm{c}\right)^{2}+p_{\mathrm{y}}{ }^{2}<1.25 \mathrm{GeV}^{2} / \mathrm{c}^{2} \\
& 0.4 \mathrm{GeV} / \mathrm{c}<\left|p_{\mathrm{y}}\right|<0.8 \mathrm{GeV} / \mathrm{c} \\
& \mathrm{p}_{\mathrm{x}}>-0.27 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

## UNCORRECTED INVARIANT MASS



Before the RP cuts

- Unlike-sign combinations
- Like-sign combinations


After the RP cuts

- Unlike-sign combinations
- Like-sign combinations


## UNCORRECTED INVARIANT MASS


$\mathrm{m}=3.085 \pm 0.006 \mathrm{GeV} / \mathrm{c}^{2}$
$\sigma=0.059 \pm 0.005 \mathrm{GeV} / \mathrm{c}^{2}$
Raw yield $=137 \mathrm{~J} / \Psi$
$\sqrt{S}=510 \mathrm{GeV}, 2017$
This work
After RP cuts
$\mathrm{m}_{\mathrm{e}^{+} \mathrm{e}}^{3.8}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

$$
\begin{aligned}
& \mathrm{m}=3.08 \pm 0.05 \mathrm{GeV} / \mathrm{c}^{2} \\
& \sigma=0.055 \pm 0.005 \mathrm{GeV} / \mathrm{c}^{2}
\end{aligned}
$$

Raw yield $=1528 \mathrm{~J} / \psi$
$p+p \rightarrow p+J / \psi+p$
$\sqrt{s}=510 \mathrm{GeV}, 2017$
This work
Before RP cuts

## MISSING $P_{T}$



- Momentum conserved

$$
\left(p_{1}+p_{2}+p_{J / \psi}\right)_{T}=0
$$



- J/ $\psi$ and proton measured
- $p_{T}$ of virtual photon is the missing $p_{T}$
- $-p_{2, T}=\left(p_{1}+p_{J / \psi}\right)_{T}$

A: Peak at zero consistent with the exclusive process
B: Broad structure from 0.3 GeV is consistent with non-exclusive processes

## MISSING $P_{T}$




Distribution shape comparable with measurement of central exclusive production at the STAR experiment in $p p$ collisions at $\sqrt{ } s=200 \mathrm{GeV}$ in 2015 despite smaller statistics (Taken from Ref. [8].)

## Thank you for your attention!

## SUMMARY

- Analysis of pp collisions at $\mathrm{V}=510 \mathrm{GeV}$
- J/ $\psi$ photoproduction with tagged forward proton
- Applied cuts for background suppression
- J/ $\psi$ meson identified in the uncorrected invariant mass distribution
- Background consisting of like-sign pairs subtracted
- Raw yield of J/ $\psi$ calculated for data before and after RP cut
- First look at the $p_{T}$ distribution of virtual photon, shape compared


## BIBLIOGRAPHY

1. PARTICLE DATA GROUP. Review of particle physics. PTEP. 2020, vol. 2020, no. 8, p. $083 C 01$.
2. Brookhaven National Laboratory website. Available also from: https://www.bnl.gov/.
3. RHIC accelerator website. Available also from: https://www.bnl.gov/rhic/.
4. STAR COLLABORATION. The Large-Area Time-Of-Flight (TOF) Upgrade for the STAR Detector. In: AIP Conference Proceedings. American Institute of Physics, 2009, vol. 1099, pp. 778-781. No. 1.
5. GURYN, W.; PAWLIK, B. Results on Total and Elastic Cross Sections in Proton-Proton Collisions at $V s=200 \mathrm{GeV}$ Obtained with the STAR Detector at RHIC. 2020. Available from arXiv: 2005.00776 [hep-ex].
6. BÜLTMANN, S. et al. The PP2PP experiment at RHIC: silicon detectors installed in Roman Pots for forward proton detection close to the beam. Nucl. Instrum. Methods. Phys. Res. A:: Accelerators, Spectrometers, Detectors and Associated Equipment. 2004, vol. 535, no. 1-2, pp. 415-420.
7. ADAMCZYK, L. et al. Single spin asymmetry AN in polarized proton-proton elastic scattering a $\sqrt{ } s=200 \mathrm{GeV}$. Phys. Lett. B. 2013, vol. 719, no. 1-3, pp. 62-69.
8. SIKORA, R. Central exclusive production in the STAR experiment at RHIC. In: AIP Conference Proceedings. AIP Publishing LLC, 2017, vol. 1819, p. 040012 . No. 1.

## EVENT SELECTION BACKUP

- JPsi*HTTP trigger ( 100.22 mil events)
- Exactly 1 vertex
- Vertex |z| position < 100 cm
- Track selection
- $\left|\eta_{\text {bemc }}\right|$ of primary tracks <1
- $|\operatorname{DCA}(z)|<1 \mathrm{~cm}$ \& DCA $(x y)<1.5 \mathrm{~cm}$
- nHitsFit > 15
- ndEdx > 15
- Exactly 2 tracks from the primary vertex with BEMC hits
- Back-to-back tracks in BEMC
- $\Delta \phi_{\text {BEMC }}$ of segment numbers $=3$
- The 2 tracks are $\mathrm{e}^{+}, \mathrm{e}^{-}$
- Cut $\chi^{2}{ }_{\mathrm{ee}}=n \sigma_{\mathrm{e}+}^{2}+n \sigma_{\mathrm{e}-}^{2}<3^{2}$
- Additional cut $\chi^{2}{ }_{K K}>10, \chi^{2}{ }_{\pi \pi}>10$ and $\chi_{p p}^{2}>10$ to remove background
- $\mathrm{Q}_{\text {tot }}=0$ (divide un/like sign)
- Exactly 1 good track in RP
- Tracks in RP in fiducial region

$$
\begin{aligned}
& \left(p_{x}+0.6 \mathrm{GeV} / \mathrm{c}\right)^{2}+p_{y}{ }^{2}<1.25 \mathrm{GeV}^{2} / \mathrm{c}^{2} \\
& 0.4 \mathrm{GeV} / \mathrm{c}<\left|\mathrm{p}_{\mathrm{y}}\right|<0.8 \mathrm{GeV} / \mathrm{c} \\
& \mathrm{p}_{\mathrm{x}}>-0.27 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

## EVENT SELECTION BACKUP

- JPsi* HTTP trigger (100.22 mil events)
- Exactly 1 vertex
- Vertex |z| position < 100 cm

- Track selection
- $\left|\eta_{\text {Bemc }}\right|$ of primary tracks $<1$
- $\mid$ DCA(z)| $<1 \mathrm{~cm}$ \& DCA $(x y)<1.5 \mathrm{~cm}$
- nHitsFit > 15
- $n d E d x>15$
- Exactly 2 tracks from the primary vertex with BEMC hits



## EVENT SELECTION BACKUP

- JPsi* HTTP trigger (100.22 mil events)
- Exactly 1 vertex
- Vertex |z| position < 100 cm

- Track selection
- $\left|\eta_{\text {BEMC }}\right|$ of primary tracks $<1$
- $|\operatorname{DCA}(z)|<1 \mathrm{~cm} \& \operatorname{DCA}(x y)<1.5 \mathrm{~cm}$
- nHitsFit > 15
- ndEdx > 15
- Exactly 2 tracks from the primary vertex with BEMC hits



## EVENT SELECTION BACKUP

- JPsi* HTTP trigger (100.22 mil events)
- Exactly 1 vertex
- Vertex |z| position < 100 cm

- Track selection
- $\left|\eta_{\text {bemc }}\right|$ of primary tracks <1
- $\mid$ DCA(z) $\mid<1 \mathrm{~cm} \& \operatorname{DCA}(x y)<1.5 \mathrm{~cm}$
- nHitsFit > 15
- ndEdx > 15
- Exactly 2 tracks from the primary vertex with BEMC hits



## EVENT SELECTION BACKUP

- Back-to-back tracks in BEMC
- $\Delta \phi_{\text {BEMC }}$ of segment numbers $=3$
- The 2 tracks are $\mathrm{e}^{+}, \mathrm{e}^{-}$
- Cut $\chi^{2}{ }_{\text {ee }}=n \sigma_{\mathrm{e}+}{ }^{2}+n \sigma_{\mathrm{e}-}{ }^{2}<3^{2}$


- Additional cut $\chi^{2}{ }_{k K}>10, \chi^{2}{ }_{\pi \pi}>10$ and $\chi^{2}{ }_{p p}>10$ to remove background
- $\mathrm{Q}_{\text {tot }}=0$ (divide un/like sign)
- Exactly 1 good track in RP
- Tracks in RP in fiducial region

$$
\begin{aligned}
& \left(p_{x}+0.6 \mathrm{GeV} / \mathrm{c}\right)^{2}+p_{y}{ }^{2}<1.25 \mathrm{GeV}^{2} / \mathrm{c}^{2} \\
& 0.4 \mathrm{GeV} / \mathrm{c}<\left|p_{y}\right|<0.8 \mathrm{GeV} / \mathrm{c} \\
& \mathrm{p}_{\mathrm{x}}>-0.27 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$



## EVENT SELECTION BACKUP

- Back-to-back tracks in BEMC
- $\Delta \phi_{\text {bemc }}$ of segment numbers $=3$
- The 2 tracks are $\mathrm{e}^{+}, \mathrm{e}^{-}$
- Cut $\chi^{2}{ }_{\mathrm{ee}}=n \sigma_{\mathrm{e}+}{ }^{2}+n \sigma_{\mathrm{e}-}{ }^{2}<3^{2}$
- Additional cut $\chi^{2}{ }_{K K}>10, \chi_{\pi \pi}^{2}>10$ and $\chi^{2}{ }_{p \mathrm{p}}>10$ to remove background
- $\mathrm{Q}_{\text {tot }}=0$ (divide un/like sign)
- Exactly 1 good track in RP
- Tracks in RP in fiducial region $\left(p_{x}+0.6 \mathrm{GeV} / \mathrm{c}\right)^{2}+\mathrm{p}_{\mathrm{y}}{ }^{2}<1.25 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ $0.4 \mathrm{GeV} / \mathrm{c}<\left|p_{y}\right|<0.8 \mathrm{GeV} / \mathrm{c}$ $p_{x}>-0.27 \mathrm{GeV} / \mathrm{c}$



## CHECK FOR J/ $\psi$-RP proton balance

- Interest of this analysis to check the balance between the forward proton and the reconstructed $\mathrm{J} / \psi$ in the central barrel
- We look for the balance in the azimuthal angle and transverse momentum
- All plots in this section
- after RP cuts, only for mass-candidates reconstructed J/ $\Psi$ ( $\pm 3 \sigma$ region based on fit result)


## $J / \psi-R P$ proton balance: azimuthal angle




- Detected proton and reconstructed J/ $\psi$ should be back-to-back
- Based on the kinematics of the collision


## $J / \psi-R P$ proton balance: $\mathrm{p}_{\mathrm{T}}$




- From the conservation of transverse momentum $\left(p_{1}+p_{2}+p_{J / \psi}\right)_{T}=0$
- Small- $p_{T}$ proton scatters at a small angle -> $p_{T}$ of the virtual photon is small
- We take $p_{1, \mathrm{~T}} \sim 0$ which gives $p_{2, T}=-p_{J / \psi}$

