Incoherent J/ ψ production at large |t| identifies the onset of saturation at the LHC

J. Cepila^a, J. G. Contreras^a, M. Matas^a, A. Ridzikova^a

^aFaculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic

Alexandra Ridziková

19.9.2024 Děčín

The work is based on

MOTIVATION

- ONSET OF SATURATION
 - lacksquareits sensitivity to the gluon distribution within hadrons

Due to the high density in small-x region, the radiated gluons overlap each other and start interacting:

The DIFFRACTIVE VECTOR MESON PRODUCTION serve as valuable tool for probing saturation effects due to

VECTOR MESON PRODUCTION

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

$$x = \frac{Q^2 + M^2}{Q^2 + W^2}$$

• Bjorken-x of the produced meson

W

• the centre-of-mass energy of the photon-target system

$$t = (p' - p)^2 = -\Delta^2$$

• the square of the momentum transferred in the interaction

ullet

$$\mathcal{A}_{\mathrm{T,L}}(x,Q^2,\vec{\Delta}) = i \int \mathrm{d}\vec{r} \int_{0}^{1} \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}\vec{b}$$

The targets that we consider are proton (p) and lead (Pb)

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

PROTON

$$\frac{\mathrm{d}\sigma_{\mathrm{p}}^{\mathrm{dip}}}{\mathrm{d}\vec{b}} = \sigma_0 N(x,r) T_{\mathrm{p}}(\vec{b})$$

$$T_{\rm p}(\vec{b}) = \frac{1}{N_{\rm hs}} \sum_{i=1}^{N_{\rm hs}} T_{\rm hs} \left(\vec{b} - \vec{b}_i\right)$$

$$T_{\rm hs}(\vec{b} - \vec{b}_i) = \frac{1}{2\pi B_{\rm hs}} \exp\left(-\frac{\left(\vec{b} - \vec{b}_i\right)^2}{2B_{\rm hs}}\right)$$

arXiv:1608.07559 [hep-ph]

$$N(x,r) = \left[1 - \exp\left(-\frac{r^2 Q_s^2(x)}{4}\right)\right]$$
$$\langle N_{hs}(x) \rangle = p_0 x^{p_1} (1 + p_2 \sqrt{x})$$

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

THE KEY FEATURE OF OUR MODEL IS THE EVOLUTION OF THE NUMBER OF HOT SPOTS WITH ENERGY IN ORDER TO REFLECT THE RAISE OF THE **GLUON DISTRIBUTION, AS BJORKEN-X DECREASES**

The position of hotspot, \vec{b}_i is randomly sampled from 2D Gaussian distribution of width $B_{\rm p}$ and centred at (0,0)

 $B_{\rm p}$ and $B_{\rm hs}$ represent one-half of the averaged squared radius of the proton and of the hot spot, respectively

• $\sigma_0 = 4\pi B_p$ is twice the transverse area of the proton

PROTON

$$\frac{\mathrm{d}\sigma_{\mathrm{p}}^{\mathrm{dip}}}{\mathrm{d}\vec{b}} = \sigma_0 N(x,r) T_{\mathrm{p}}(\vec{b})$$

$$T_{\rm p}(\vec{b}) = \frac{1}{N_{\rm hs}} \sum_{i=1}^{N_{\rm hs}} T_{\rm hs} \left(\vec{b} - \vec{b}_i\right)$$

$$T_{\rm hs}(\vec{b} - \vec{b}_i) = \frac{1}{2\pi B_{\rm hs}} \exp\left(-\frac{\left(\vec{b} - \vec{b}_i\right)^2}{2B_{\rm hs}}\right)$$

arXiv:1608.07559 [hep-ph]

$$N(x,r) = \left[1 - \exp\left(-\frac{r^2 Q_s^2(x)}{4}\right)\right]$$
$$\langle N_{hs}(x) \rangle = p_0 x^{p_1} (1 + p_2 \sqrt{x})$$

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

• the fact that the variance decreases signifies that the configurations start to resemble each other, which marks the onset of saturation

Diffractive photo-production of J/ ψ off protons for the coherent (blue) and incoherent (gold) processes.

LEAD

$$\frac{\mathrm{d}\sigma_{\mathrm{Pb}}^{\mathrm{dip}}}{\mathrm{d}\vec{b}} = 2\left[1 - \left(1 - \frac{1}{2A}\sigma_0 N(x,r)T_{\mathrm{Pb}}(\vec{b})\right)^A\right]$$
$$T_{\mathrm{hs}}(\vec{b} - \vec{b}_i) = \frac{1}{2\pi B_{\mathrm{hs}}}\sum_{i=1}^{A=208} \frac{1}{N_{\mathrm{hs}}}\sum_{j=1}^{N_{\mathrm{hs}}} \exp\left(-\frac{\left(\vec{b} - \vec{b}_i - \vec{b}_j\right)^2}{2B_{\mathrm{hs}}}\right)$$

$$N(x,r) = \left[1 - \exp\left(-\frac{r^2 Q_s^2(x)}{4}\right)\right]$$

$$\langle N_{hs}(x)\rangle = p_0 x^{p_1} (1 + p_2 \sqrt{x})$$

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

• Position of nucleons is chosen randomly from the Woods-Saxon distribution

NUCLEAR PROFILE

COHERENT AND INCOHERENT DIFFRACTIVE PRODUCTION OFF NUCLEAR TARGETS OFFERS THE ADVANTAGE THAT SATURATION SETS IN AT A LOWER ENERGY THAN FOR THE CASE OF PROTON

• It is expected that saturation is mainly linked to the hot-spot degrees of freedom

LEAD

$$\frac{\mathrm{d}\sigma_{\mathrm{Pb}}^{\mathrm{dip}}}{\mathrm{d}\vec{b}} = 2\left[1 - \left(1 - \frac{1}{2A}\sigma_0 N(x,r)T_{\mathrm{Pb}}(\vec{b})\right)^A\right]$$
$$T_{\mathrm{hs}}(\vec{b} - \vec{b}_i) = \frac{1}{2\pi B_{\mathrm{hs}}}\sum_{i=1}^{A=208} \frac{1}{N_{\mathrm{hs}}}\sum_{j=1}^{N_{\mathrm{hs}}} \exp\left(-\frac{\left(\vec{b} - \vec{b}_i - \vec{b}_j\right)^2}{2B_{\mathrm{hs}}}\right)$$

$$N(x,r) = \left[1 - \exp\left(-\frac{r^2 Q_s^2(x)}{4}\right)\right]$$
$$\langle N_{hs}(x) \rangle = p_0 x^{p_1} (1 + p_2 \sqrt{x})$$

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

Mandelstam-t dependence of coherent (blue) and incoherent (gold) J/ ψ photo-production off Pb.

LEAD

$$\frac{\mathrm{d}\sigma_{\mathrm{Pb}}^{\mathrm{dip}}}{\mathrm{d}\vec{b}} = 2\left[1 - \left(1 - \frac{1}{2A}\sigma_0 N(x,r)T_{\mathrm{Pb}}(\vec{b})\right)^A\right]$$
$$T_{\mathrm{hs}}(\vec{b} - \vec{b}_i) = \frac{1}{2\pi B_{\mathrm{hs}}}\sum_{i=1}^{A=208} \frac{1}{N_{\mathrm{hs}}}\sum_{j=1}^{N_{\mathrm{hs}}} \exp\left(-\frac{\left(\vec{b} - \vec{b}_i - \vec{b}_j\right)^2}{2B_{\mathrm{hs}}}\right)$$

$$N(x,r) = \left[1 - \exp\left(-\frac{r^2 Q_s^2(x)}{4}\right)\right]$$
$$\langle N_{hs}(x) \rangle = p_0 x^{p_1} (1 + p_2 \sqrt{x})$$

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

Energy dependence of coherent (blue) and incoherent (gold) J/ ψ photoproduction off Pb.

ONSET OF GLUON SATURATION

→

• Incoherent processes are sensitive to two different size scales, that of NUCLEONS (~ 1 fm) and that of HOT SPOTS (~ 0.1 fm)

MANDELSTAM -t ---- FOURIER TRANSFORM --

- set in
- lower values of |t| are dominated by the contribution of large size scales
- transverse size

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

MATTER DISTRIBUTION IN THE IMPACT-PARAMETER PLANE

• scanning the energy behaviour in specific |t| ranges samples fluctuations of different transverse sizes and allows for the isolation of the contribution of hot spots where one expects saturation effects to

• the cross section at large values of |t| is determined mainly by the variance of objects with a small

ONSET OF GLUON SATURATION

Prediction of the energy-dependent hot-spot model for the incoherent photo-production of J/ ψ vector mesons off Pb in diffractive interactions

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

For small Itl values the cross section raises with energy

At larger values of Itl, the rise of the cross section reaches a maximum and then decreases

The shape for the W dependence at a fixed value of ltl can be described by $f(W) = N (W/W_0)^{\delta} \exp \left(-(W/W_0)(\delta/W_{\max})\right)$

• Fitting this function to the prediction at $II = 1 \text{ GeV}^2$ we find W_{max} to be 297 \pm 6 GeV.

THE MAXIMUM MARKS THE ONSET OF SATURATION EFFECTS AND IT IS WELL WITHIN THE REACH OF THE LHC

• The model predicts that the energy dependence of the dissociative process increases from low energies up to $W \sim 500$ GeV and then decreases steeply. This energy range can be explored at LHC.

arXiv:1608.07559 [hep-ph]

ALEXANDRA RIDZIKOVÁ CTU PRAGUE

11