The Balitsky-Kovchegov equation and dipole orientation

Matěj Vaculčiak, 19. 9. 2024

https://doi.org/10.1016/j.physletb.2023.138360

CTU in Prague

- low-x hadron structure, gluon saturation
- probing hadron (target) with photon (projectile)
 - ep (HERA), el (EIC), pp, pPb, PbPb (LHC)
- Balitsky-Kovchegov equation \bullet
 - gluon evolution ~ dipole evolution large Nc

- low-x hadron structure, gluon saturation
- probing hadron (target) with photon (projectile)
 - ep (HERA), el (EIC), pp, pPb, PbPb (LHC)
- Balitsky-Kovchegov equation \bullet
 - gluon evolution ~ dipole evolution large Nc

- low-x hadron structure, gluon saturation
- probing hadron (target) with photon (projectile)
 - ep (HERA), el (EIC), pp, pPb, PbPb (LHC)
- Balitsky-Kovchegov equation \bullet
 - gluon evolution ~ dipole evolution large Nc

- low-x hadron structure, gluon saturation
- probing hadron (target) with photon (projectile)
 - ep (HERA), el (EIC), pp, pPb, PbPb (LHC)
- Balitsky-Kovchegov equation \bullet
 - gluon evolution ~ dipole evolution large Nc

- low-x hadron structure, gluon saturation
- probing hadron (target) with photon (projectile)
 - ep (HERA), el (EIC), pp, pPb, PbPb (LHC)
- **Balitsky-Kovchegov equation** \bullet
 - gluon evolution ~ dipole evolution large Nc

- low-x hadron structure, gluon saturation
- probing hadron (target) with photon (projectile)
 - ep (HERA), el (EIC), pp, pPb, PbPb (LHC)
- **Balitsky-Kovchegov equation** \bullet
 - gluon evolution ~ dipole evolution large Nc

- dipole amplitude $N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, \varphi)$
- collinearly improved kernel

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + N(\eta_2, \underline{r}_2) \right]^{\pm \bar{\alpha}_s A_1}$$

 $N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, \varphi)$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + N(\eta_2, \underline{r}_2) \right]^{\pm \bar{\alpha}_s A_1}$$

 $N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, \varphi)$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + N(\eta_2, \underline{r}_2, \underline{r}_2) \right]$$

 $N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, \varphi)$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + N(\eta_2, \underline{r}_2) \right]^{\pm \bar{\alpha}_s A_1}$$

 $N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, \varphi)$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + \frac{1}{2} \right]$$

$$N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, q)$$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + \frac{\partial N(\eta_1, \underline{r}_1, \underline{b}_1)}{\partial \eta} \right]$$

 $N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, \varphi)$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + N(\eta_2, \underline{r}_2) \right]^{\pm \bar{\alpha}_s A_1}$$

$$N(\eta, \underline{x}, \underline{y}) \to N(\eta, r, b, \theta, q)$$

$$K = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]$$
$$\frac{\partial N(\eta, \underline{r}, \underline{b})}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\eta_1, \underline{r}_1, \underline{b}_1) + \frac{\partial N(\eta_1, \underline{r}_1, \underline{b}_1)}{\partial \eta} \right]$$

infinite target approximation

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx \sigma_0 N(\eta,r)$$

MV initial condition

$$N(\eta \le 0, r) = 1 - e^{-\frac{1}{4}(r^2 Q_{s0}^2)^{\gamma} \ln(\frac{1}{r\Lambda} + e)}$$
$$N(x > 0, r) = 0$$

1DBK - amplitude

[McLerran, Venugopalan, 1998]

infinite target approximation

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx \sigma_0 N(\eta,r)$$

• MV initial condition

$$N(\eta \le 0, r) = 1 - e^{-\frac{1}{4}(r^2 Q_{s0}^2)^{\gamma} \ln(\frac{1}{r\Lambda} + e)}$$
$$N(x > 0, r) = 0$$

1DBK - amplitude

proton structure functions

 $F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{orc}} \left(\sigma_L^{\gamma^* p} \left(x, Q^2 \right) + \sigma_T^{\gamma^* p} \left(x, Q^2 \right) \right)$

 $\sigma_{L,T}^{\gamma^* p}(x,Q^2) = \sum_{f} \int \mathrm{d}^2 \underline{r} \int_0^1 \mathrm{d}z \, |\psi_{T,L}^{(f)}(\underline{r},Q^2,z)|^2 2 \int \mathrm{d}^2 \underline{b} N(x_f,\underline{r},\underline{b})$

[Golec-Biernat, Wüsthoff, 1998]

• HERA data described

• impact parameter dependence

$$2\int d\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int dbN(\eta,r,b)$$

- initial condition
 - GBW (*r*)
 - Gaussian target profile (b) $N(\eta \le 0, r, b) = 1 - e^{-\frac{Q_s^2}{4}r^2e^{-\frac{b^2}{2B}-\frac{r^2}{8B}}}$ N(x > 1, r, b) = 0

2D BK - amplitude

[Cepila, Contreras, Matas, 2018]

• impact parameter dependence

$$2\int d\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int dbN(\eta,r,b)$$

- initial condition
 - GBW (r)
 - Gaussian target profile (b) $N(\eta \le 0, r, b) = 1 - e^{-\frac{Q_s^2}{4}r^2e^{-\frac{b^2}{2B}-\frac{r^2}{8B}}}$ N(x > 1, r, b) = 0

2D BK - amplitude

• impact parameter dependence

$$2\int d\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int dbN(\eta,r,b)$$

- initial condition
 - GBW (r)
 - Gaussian target profile (b) $N(\eta \le 0, r, b) = 1 - e^{-\frac{Q_s^2}{4}r^2e^{-\frac{b^2}{2B}-\frac{r^2}{8B}}}$ N(x > 1, r, b) = 0

2D BK - amplitude

• HERA data still described

coherent vector meson production

$$\frac{\mathrm{d}\sigma_{\mathrm{T,L}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \int \mathrm{d}\underline{r} \int \frac{\mathrm{d}z}{4\pi} \int \mathrm{d}^2\underline{b} \left(\Psi_E^{\dagger} \right) \right|_{0}$$

 $\stackrel{i}{_{E}}\Psi \Big)_{T,L} (Q^2, z, r) e^{-i[\underline{b} - (\frac{1}{2} - z)\underline{r}]\underline{\Delta}} 2N(\eta, r, \underline{b})$

- HERA data described
- J/ψ, W=100 GeV

dipole orientation dependence

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int \mathrm{d}b\mathrm{d}\theta N(\eta,r,b,\theta)$$

- initial condition
 - GBW, Gaussian profile target
 - $1 + c \cos(2\theta)$ modulation

 $N(\eta = 0) = 1 - e^{-\frac{1}{4}(Q_s^2 r^2)^{\gamma}} e^{-\frac{b^2}{2B} - \frac{r^2}{8B}(1 + c\cos(2\theta))}$ $N(\eta < 0) = 0$

3D BK - amplitude

9)

dipole orientation dependence

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int \mathrm{d}b\mathrm{d}\theta N(\eta,r,b,\theta)$$

- initial condition
 - GBW, Gaussian profile target
 - $1 + c \cos(2\theta)$ modulation

 $N(\eta = 0) = 1 - e^{-\frac{1}{4}(Q_s^2 r^2)^{\gamma}} e^{-\frac{b^2}{2B} - \frac{r^2}{8B}(1 + c\cos(2\theta))}$ $N(\eta < 0) = 0$

3D BK - amplitude

η

• dipole orientation dependence

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int \mathrm{d}b\mathrm{d}\theta N(\eta,r,b,\theta)$$

- initial condition
 - GBW, Gaussian profile target
 - $1 + c \cos(2\theta)$ modulation

 $N(\eta = 0) = 1 - e^{-\frac{1}{4}(Q_s^2 r^2)^{\gamma}} e^{-\frac{b^2}{2B} - \frac{r^2}{8B}(1 + c\cos(2\theta))}$ $N(\eta < 0) = 0$

3D BK - amplitude

dipole orientation dependence

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int \mathrm{d}b\mathrm{d}\theta N(\eta,r,b,\theta)$$

- initial condition
 - GBW, Gaussian profile target
 - $1 + c \cos(2\theta)$ modulation

 $N(\eta = 0) = 1 - e^{-\frac{1}{4}(Q_s^2 r^2)^{\gamma}} e^{-\frac{b^2}{2B} - \frac{r^2}{8B}(1 + c\cos(2\theta))}$ $N(\eta < 0) = 0$

3D BK - amplitude

dipole orientation dependence

$$2\int \mathrm{d}\underline{b}N(\eta,\underline{r},\underline{b}) \approx 4\pi \int \mathrm{d}b\mathrm{d}\theta N(\eta,r,b,\theta)$$

- initial condition
 - GBW, Gaussian profile target
 - $1 + c \cos(2\theta)$ modulation

 $N(\eta = 0) = 1 - e^{-\frac{1}{4}(Q_s^2 r^2)^{\gamma}} e^{-\frac{b^2}{2B} - \frac{r^2}{8B}(1 + c\cos(2\theta))}$ $N(\eta < 0) = 0$

3D BK - amplitude

θ

Χ

- EIC predictions
- coherent nuclear J/ψ production
- nuclear initial condition
 - Gaussian to Woods-Saxon

- successfull reconstruction of former data description
- EIC predictions for vector meson production
- tool ready for potential
 - modeling TMDs, GTMDs, ...
 - calculating DVCS, dijets, ...

3D BK - summary

thank you

hadron structure & saturation

- open question of modern physics
- QCD
 - complex \rightarrow effective theories
 - rich hadron structure evolution
 - saturation → Balitsky-Kovchegov equation

hadron structure & saturation

- open question of modern physics
- QCD \bullet
 - complex \rightarrow effective theories
 - rich hadron structure evolution
 - saturation → Balitsky-Kovchegov equation

hadron structure & experiment

- colliding proton with a projectile at high E
 - typically electron-proton DIS
- interest in photon-proton cross section

hadron structure & experiment

- colliding proton with a projectile at high E
 - typically electron-proton DIS
- interest in photon-proton cross section

- replace γ^* with the colour dipole
 - probability ~ light cone wave function $|\psi_{T,L}^{(f)}(\vec{r}, Q^2, z)|^2$
- shockwave approximation

the colour dipole model

- replace γ^* with the colour dipole
 - probability ~ light cone wave function $|\psi_{TL}^{(f)}(\vec{r}, Q^2, z)|^2$
- shockwave approximation

the colour dipole model *212>+ *22122>+ *222123>+ *222123>+...

- replace γ^* with the colour dipole
 - probability ~ light cone wave function $|\psi_{TL}^{(f)}(\vec{r}, Q^2, z)|^2$
- shockwave approximation

the colour dipole model 43/3>+ 422/22>+ 422/22>+ 422/22/+ ...

$\sigma_{L,T}^{\gamma^* p}(x, Q^2) = \sum_{f} \int d^2 \vec{r} \int_0^1 dz \, |\psi_{T,L}^{(f)}(\vec{r}, Q^2, z)|^2 2 \int d^2 \vec{b} N(\vec{r}, \vec{b}, \tilde{x}_f(x))$

the colour dipole model

dipole-hadron scattering

 $\frac{1}{\sqrt{2p^{-}}} \frac{1}{\sqrt{2(p^{-}+k^{-})}} \bar{u}(p+k) ig\gamma_{\mu}$

$$g\gamma_{\mu}A^{\mu}(k) u(p) \approx igA^{+}(k)$$

dipole-hadron scattering p

 $\frac{1}{\sqrt{2p^{-}}} \frac{1}{\sqrt{2(p^{-}+k^{-})}} \bar{u}(p+k) ig\gamma_{\mu} A$

$$g\gamma_{\mu}A^{\mu}(k) u(p) \approx igA^{+}(k)$$

 $\rightarrow \int dx^{-}igA^{+}(\vec{x})$

dipole-hadron scattering

 $N(\underline{x}_0, \underline{x}_1) = 1 - \left\langle \frac{1}{N_C} \operatorname{tr} \left[V_1 V_0^{\dagger} \right] \right\rangle$

dipole-hadron scattering

$$\frac{\partial N(\underline{r},\underline{b},\eta)}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r},\underline{r}_1,\underline{r}_2) \left[N(\underline{r}_1,\underline{b}_1,\eta_1) + \mathbf{1} - \mathbf{1$$

 $+ N(\underline{r}_2, \underline{b}_2, \eta_2) - N(\underline{r}, b, \eta) - N(\underline{r}_1, \underline{b}_1, \eta_1)N(\underline{r}_2, \underline{b}_2, \eta_2)$

dipole-hadron scattering

 $K_{lo} = \frac{\alpha_s N_C}{2\pi} \frac{r^2}{r_r^2 r_r^2}$

 $K_{ci} = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$ $\frac{\partial N(\underline{r}, \underline{b}, \eta)}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\underline{r}_1, \underline{b}_1, \eta_1) + N(\underline{r}_2, \underline{b}_2, \eta_2) - N(\underline{r}, b, \eta) - N(\underline{r}_1, \underline{b}_1, \eta_1) N(\underline{r}_2, \underline{b}_2, \eta_2) \right]$

$$\frac{r^2}{\min\{r_1^2, r_2^2\}} = \frac{1}{2} \pm \bar{\alpha}_s A_1$$

dipole-hadron scattering

$$K_{lo} = \frac{\alpha_s N_C}{2\pi} \frac{r^2}{r_1^2 r_2^2}$$

 $K_{ci} = \frac{\bar{\alpha}_s}{2\pi} \frac{r^2}{r_1^2 r_2^2} \left[\frac{r^2}{\min\{r_1^2, r_2^2\}} \right]^{\pm \bar{\alpha}_s A_1}$ $\frac{\partial N(\underline{r}, \underline{b}, \eta)}{\partial \eta} = \int d^2 \underline{r}_1 K(\underline{r}, \underline{r}_1, \underline{r}_2) \left[N(\underline{r}_1, \underline{b}_1, \eta_1) + N(\underline{r}_2, \underline{b}_2, \eta_2) - N(\underline{r}, b, \eta) - N(\underline{r}_1, \underline{b}_1, \eta_1) N(\underline{r}_2, \underline{b}_2, \eta_2) \right]$

$$\frac{r^2}{\min\{r_1^2, r_2^2\}} \bigg] \pm \bar{\alpha}_s A_1$$

numerical solutions - 1D

$2\int d\underline{b}N(\underline{r},\underline{b},Y) \approx \sigma_0 N(r,Y)$

numerical solutions - 1D

numerical solutions - 2D

×

 $2\left[\underline{\mathrm{d}bN(\underline{r},\underline{b},Y)\approx 4\pi}\right]\mathrm{d}bN(r,b,Y)$

numerical solutions - 2D detour: Y vs ŋ $Y = m + lm \frac{G^2}{G_2}$ $\frac{\partial N(\underline{r},\underline{b},\underline{Y})}{\partial V} = \left[d^2 \underline{r}_1 K(\underline{r},\underline{r}_1,\underline{r}_2) \left[N(\underline{r}_1,\underline{b}_1,Y) + N(\underline{r}_2,\underline{b}_2,Y) - N(\underline{r},b,Y) - N(\underline{r}_1,\underline{b}_1,Y)N(\underline{r}_2,\underline{b}_2,Y) \right]$

 $\frac{\partial N(\underline{r},\underline{b},\eta)}{\partial n} = \left[d^2 \underline{r}_1 K(\underline{r},\underline{r}_1,\underline{r}_2) \left[N(\underline{r}_1,\underline{b}_1,\underline{\eta}_1) + N(\underline{r}_2,\underline{b}_2,\underline{\eta}_2) - N(\underline{r},b,\eta) - N(\underline{r}_1,\underline{b}_1,\underline{\eta}_1) N(\underline{r}_2,\underline{b}_2,\underline{\eta}_2) \right]$

 $\eta_{i} = \eta - \max\{0, 2 \ln \frac{\pi}{n_{i}}\}$

numerical solutions - 2D

numerical solutions - 3D

×.↑

 $2 \int d\underline{b}N(\underline{r},\underline{b},\eta) \approx 2 \int dbN(r,b,\theta,\eta)$

numerical solutions - 3D

38

further steps

- 4D solution
- observables sensitive to 3D and 4D
 - dijet production
- analytical prescription
- nuclear target calculations
- higher order corrections

thank you

backup

 $N(r, b, \theta, x) = 1 - e^{-(\frac{x_0}{x})^{\lambda}Q_{s0}^2 \frac{r^2}{4}T(b, r)(1 + c\cos(2\theta))}$

$$N(r, b, \theta) = \left(1 - e^{-Q_{s0}^2 \frac{r^2}{4}}\right) T(b, r) \left(1 + (1 - e^{-\left(\frac{rb}{2B}\right)^2}) \cos(2\theta)\right)$$

 $N(r, b, \theta) = 1 - e^{-Q_{s0}^2 \frac{r^2}{4}T(b, r)\left(1 + \frac{c}{2}\cos(2\theta)\right)}$

 $N(r, b, \theta) = 1 - e^{-Q_{s0}^2 \frac{r^2}{4} \left[\ln\left(\frac{1}{r^2 m^2} + e\right) + \frac{r^4}{6m} \right]}$

 $N(r, b, \theta) = 1 - e^{-Q_{s0}^2 \frac{r^2}{4}T(b, r)(1 + c\cos(2\theta))}$

$$\frac{b^2}{m^2 R^4} \cos(2\theta) \bigg] T(b,r)$$

 $T(r,b) = e^{-\frac{b^2 + (r/2)^2}{2B}}$

41