Muon Identifier ALICE3

7th Workshop on Diffraction and Ultraperipheral Collisions in Děčín 19/09/2024 Timea Szöllösová Solangel Rojas Torres

We all know ALICE

It's a beautiful lady and we love her.

But do you know ALICE3?

ALICE3

Timeline

ALICE3 Physics

A Large Ion Collider Experiment

CERN COURIER: ALICE3 a heavy-ion detector of the 2030s (Jochen Klein & Marco van Leeuwen, 01/03/2023)

- time dependence of the temperature before hadronisation
 - more differential measurements
- chiral symmetry breaking
 - identification of electrons from heavy decays
- > azimuthal correlations of charm-hadron pairs
- > more QGP
- \succ ϱ resonances
- axion-like particles and dark photons

... and a whole lot more!

 but we are mostly talking about the precision measurements

ALICE3 detector remarks

- no TPC but lots of silicon
 - CMOS technology already explored for the ITS3
 - TOF
- ➤ adjustable ITS
 - 5 mm from the interaction point

ALICE3 MID

ALICE2 MID

Detector development

NuviaTech cast plastic scintillator sample preparation.

- > muons with low p_{τ} ≈1.5 GeV/c
 - resolution of $\Delta \phi \Delta \eta = 0.02 \times 0.02$
 - reconstruction of J/ψ with p_{τ} down to 0 GeV/c
- \succ coverage of 360 m²
 - \circ acceptance $|\eta|$ <1.24
- non-magnetic absorber
 - **70 cm**

Three options:

plastic scintillators + SiPMs

(Mexico, Prague, Chicago)

- MWPCs (Budapest)
- ➢ RPCs (India)

The first beamtest

June 2023

- scintillators & MWPCs \succ
- hadrons from 0.5 to 6 GeV/c \succ
- East area @CERN \succ

Photo from the beamtest with the scintillator samples, and the schematics of all modules placement.

7th DUCD | 18.-20.9.2024 | Děčín

Timea Szöllösová | Solangel Rojas Torres

... and publication JINST 19 (2024) T04006

Efficiencies of the plastic scintillator samples. 7th DUCD | 18.-20.9.2024 | Děčín

- several scintillator prototype bars tested
 - ELJEN, PROTVINO, FNAL
 - wavelength-shifting fiber
 - SiPMs
- MWPCs showed spatial resolution beyond requirements

Spatial resolution of the MWPCs.

Timea Szöllösová | Solangel Rojas Torres

The second beamtest

October 2024

- test with small plastic scintillator modules
 25x25 cm² instead of 100x100 cm²
- further exploration of plastic options
- electronics testing
- validation of the muon tagging algorithms
- pion suppression measurements
 - realistic absorber
- improved MWPCs modules

MID at FNSPE

Scintillator bar with the SiPM attached ready for testing.

- further scintillator samples testing
- > NuviaTech
 - Czech company
 - newly testing extrusion
 - competitiveness in price
- infrastructure for assembling and testing the modules in progress
 - CERN-CZ infrastructure project

Attenuation length measurements of the scintillator modules

Plastic scintillator samples: extruded Nuviatech (left) and FNAL (right).

FNAL + WLS fiber + 1 SiPM

- extruded sample
- NuviaTech w/o WLS + 1 SiPM
 - extruded sample
 - cast sample

FNAL sample with wavelength-shifting fiber.

Cosmic-ray setup

adjustable for different positions of the sample

- foam holders for the triggering modules T1 and T1 (scintillator + PMT) and the scintillator sample
- multiple layers of the dark cloth to shield the SiPM from light leaks

Work in progress

- initial measurements taking ratio from two positions
 - cast NuviaTech: μ = (260 ± 20) cm
- improvement of the method with more positions measured
 - exponential fits

Outlook and summary

 ALICE3 will replace the current ALICE after the LS4 (~2035)

- > MID will be a barrel covering the area of 360 m²
 - multiple detector options explored
 - plastic scintillators being cost-effective baseline
- prototype characterisation at FNSPE
 - NuviaTech

- successful beamtest in June 2023
 JINST 19 (2024)
- > next beamtest in October 2024

Backup

Budget

*Letter of Intent

Technology	Cost (MCHF)
MAPS	30.5
Monolithic LGADs	14.8
Hybrid LGADs ⁶	26.4
Aerogel and monolithic SiPMs	20.9
Aerogel, analogue SiPMs + readout ⁶	34.0
Pb-scintillator + PbWO ₄	17.0
Steel absorber, scintillator bars, SiPMs	7.0
MAPS (solenoid + separate magnet)	5.3
MAPS (solenoid + dipoles)	2.3
Superconducting solenoid + FCT magnet	25.0
Superconducting solenoid and dipoles	40.0
Data acquisition and processing	6.0
Beampipe, infrastructure, engineering	15.0
	141.5
	Technology MAPS Monolithic LGADs Hybrid LGADs Aerogel and monolithic SiPMs Aerogel, analogue SiPMs + readout ⁶ Pb-scintillator + PbWO ₄ Steel absorber, scintillator bars, SiPMs MAPS (solenoid + separate magnet) MAPS (solenoid + dipoles) Superconducting solenoid + FCT magnet Superconducting solenoid and dipoles Data acquisition and processing Beampipe, infrastructure, engineering

ITS3

- > 18 mm for the IP
- > pure silicon
 - 20 40 μm
 thickness
 - dimensions of the whole stave
- ➤ carbon foam
- > air cooling
- significant cost reduction

ITS ALICE 3

cute

Beamtests

Beamtest in October 2024:

- test with small modules
 - \circ 25x25 cm² instead of 100x100 cm²
- further exploration of plastic options
 - FNAL
 - PROTVINO
 - Mexican manufacture
 - NuviaTech
 - no ELJEN due to the price
- electronics testing
- validate the muon tagging algorithms
- MWPCs based chamber
 - Test the dead zone reduction
 - Test with optimized electronic design
- Combined measurement
 - Measure pion suppression with realistic absorber