

Flow of heavy flavor hadrons in small systems in Run 3

Alexian Lejeune¹

Supervision : Katarína Křížková Gajdošová¹, Jaroslav Bielčík¹

¹: Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

Děčín Workshop – 20th of September 2024

alexian.lejeune@cern.ch

Děčín Workshop

Děčín Workshop

alexian.lejeune@cern.ch

20th of September 2024

6

Introduction : signatures of the quark gluon plasma

Signatures : many !

2001 : discovery of strong « elliptic » flow at STAR 2002 : discovery of jet quenching at PHENIX

Many other signatures :

strangeness enhancement quarkonia suppression mass ordering baryon-meson grouping

Děčín Workshop

Summary of the discovery of QGP : arxiv:nucl-ex/0501009

Děčín Workshop

alexian.lejeune@cern.ch

20th of September 2024

8

Děčín Workshop

alexian.lejeune@cern.ch

20th of September 2024

9

Děčín Workshop

Introduction : **signatures?** of the quark gluon plasma

Near-side ridge in two-particle correlations was understood as a signature of QGP in heavy-ion collisions

Děčín Workshop

alexian.lejeune@cern.ch

Near-side ridge in two-particle correlations was understood as a signature of QGP in heavy-ion collisions

Introduction : **signatures?** of the quark gluon plasma

Děčín Workshop

alexian.lejeune@cern.ch

Near-side ridge in two-particle correlations was understood as a signature of QGP in heavy-ion collisions

Introduction : **signatures?** of the quark gluon plasma

alexian.lejeune@cern.ch

Introduction : signatures? of the quark gluon plasma

Digest of experimental results

measured and similar measured but different not measured – ALICE

14

	OBSERVABLES	A-A	p—A (high mult.)	pp (high mult.)	low	op mult.)	UPC	ер	e⁺e⁻ (high mult.)	e⁺e-		
	Near-side ridge yield	V [1,2]	[30,32,33]	V [30,31]	[34]		—	X [74,75]	[77]	X [76]		
unar	Anisotropic flow	V [3,4]	[36,37,38,39]	V [35,37]	V [30]		72,73]	X [74,75]	? [77]	—		
	Multiparticle cumulants	5]	[40-45]	V [40,41,45]			—		-	—		
	Mass ordering	[6]	[47-49]	V [46,48]	-	—		_	—	—		
	Baryon-meson grouping	[6]	[47-49]	[46,48]					—	—		
	Flow decorrelations (p _T)	[7,8]	[50-51]	_	- [+ strangeness enhancement + quarkonia suppression in high multiplicity pp collisions						
3	Flow decorrelations (ŋ)	V [9,10]	[52]	[53]	—							
	Event-by-event vn	V [11,12]	—	—	—							
	vn correlations	V [13,14]	[54-57]	[54,55,57]	—							
	ψ_n correlations	V [15]	—	[58]	—							
(Nonlinear response of V_n	[16-18]	—	[59]	—							
	ESE	V [19]	—	_	-							
	rho(vn²,[pt])	V [20,21]	[60,61]	[61]								
	High-p⊤ flow	V [22,23]	V [63,65]	[62,64]			_	_	—	_		
	Charm flow	V [24-27]	67,68]	V [66,67]	_		_	_	—	_		
	Bottom flow	V [28,29]	[70]	X [69]	_		_	_				

EJF seminar | 10.11.202 Děčín Workshop

alexian.lejeune@cern.ch

Introduction : signatures? of the quark gluon plasma

ALICE

15

Digest of experimental results

measured and similar measured but different not measured

OBSERVABLES	A-A	p—A (high mult.)	pp (high mult.)	pp (low mult.)	UPC	ер	e⁺e⁻ (high mult.)	e⁺e⁻			
Near-side ridge yield	V [1,2]	[30,32,33]	V [30,31]	[34]	_	X [74,75]	[77]	X [76]			
Anisotropic flow	[3,4]	V [36,37,38,39]	[35,37]	[30]	[72,73]	X [74,75]	? [77]	—			
Multiparticle cumulants	5]	[40-45]	V [40,41,45]	—	—	—	—	—			
Mass ordering	[6]	V [47-49]	V [46,48]	_	_	_	—	—			
Baryon-meson grouping	[6]	[47-49]	[46,48]	—							
Flow decorrelations (p _T)	7,8]	V [50-51]	—	—							
Flow decorrelations (ŋ)	9,10]	52]	53]	—							
Event-by-event vn	V [11,12]	—	—	—	Jet quenching has yet to be observed in small collision systems !						
vn correlations	V [13,14]	54-57]	54,55,57]	– Je							
ψn correlations	V [15]	-	58]	—							
Nonlinear response of V_n	V [16-18]	-	59]	—							
ESE	V [19]	-	—	—							
rho(vn²,[pt])	V [20,21]	V [60,61]	V [61]								
High-p⊤ flow	V [22,23]	V [63,65]	V [62,64]	_		_	_	-			
Charm flow	V [24-27]	[67,68]	V [66,67]	—	—	—	-	_			
Bottom flow	V [28,29]	[70]	X [69]				_	-			
EJF seminar 10.11.2023	-							19			

Děčín Workshop

Děčín Workshop

Anisotropic flow illustrated with heavy-ion collisions....

17

Děčín Workshop

Understanding the 2D correlation function

alexian.lejeune@cern.ch

Děčín Workshop

ALICE

20th of September 2024 19

What is our interest in the 2D correlation function ?

Děčín Workshop

What is our interest in the 2D correlation function?

21

The near-side peak spans a limited $\Delta \eta$ range because the $\Delta \eta$ of two charged particles within the same jet is limited by the definition of the jet itself :

 $d^2 N_{assoc}$

 $N_{trig} \ d\Delta\eta\Delta\varphi$

ax
$$\Delta \eta \approx R_{jet}$$

The near-side peak is bigger than the away-side peak for 2 reasons : more physics phenomena occur at this range and for each oppositejet, there is 2 times the contribution of 1 same-jet correlations

s from back-to-back jets at r form the away-side peak

Děčín Workshop

 $\Delta \varphi \approx 0$

1.3-

1.2-

1.1-

0.9

 $\Delta \eta^{1.5}$

.....

alexian.lejeune@cern.ch

CICUITS . JASPET LAIKKIIA

What is our interest in the 2D correlation function?

 $d^2 N_{assoc}$

 $\eta_1 - \eta_2 \gg 1$

 $\eta_1 - \eta_2 \approx -2$

N_{trig} d

 $\eta_1 - \eta_2 \approx 0$

Děčín Workshop

0 _0.5

 $\Delta \varphi \approx 0$

1.3-

1.2-

1.1-

0.9 1.5

 $\Delta \eta$

alexian.lejeune@cern.ch

cieuits . Jaspei Faikkiia

= beam axis

to-back jets at

ay-side peak

What is our interest in the 2D correlation function?

 $d^2 N_{assoc}$

 $\Delta \varphi$ (rad)

Flow signal **contributes across all** $\Delta \eta$ **range**, but it is

more visible in long-range, because most of the other

2D correlation function contributions are negligible !

To study long-range correlations, we can make use of

forward detectors to broaden the $\Delta \eta$ gap !

periment

 $N_{trig} \ d\Delta\eta\Delta\varphi$

23

 $\Delta \varphi \approx \pi$

-side peak kkila

Děčín Workshop

 $\Delta \varphi \approx 0$

1.3-

1.2-

1.1-

0.9 1.5 $\Delta \eta$

0 __0.5

Why studying heavy flavor?

Heavy flavor (charm, beauty) = hard probes !
(= coming from energetic processes at very early collision stage A, which will later experience the QGP medium completely)

Děčín Workshop

alexian.lejeune@cern.ch

24

Focusing on D^0 and Λ_c^+ but we will see what statistics allow us...

They are the lightest heavy-flavor hadrons and both hadrons will be reconstructed through their hadronic decays

ĸ

0

25

The ALICE detector

ALICE during RUN 2

ITS \rightarrow 6 layers of silicon pixel detectors

TPC \rightarrow Multi Wire Proportional Chambers

Forward detectors (of interest) \rightarrow Forward Multiplicity Detectors on both sides

FMD already used to broaden η gap in : arXiv:2308.16590

26

ALICE during RUN 3

 $ITS \rightarrow 7$ layers and 1st layer closer to interaction point

TPC \rightarrow Gas Electron Multipliers + continuous readout

Děčín Workshop

The ALICE detector

ALICE during RUN 2

ITS \rightarrow 6 layers of silicon pixel detectors

 $\mathbf{TPC} \rightarrow \mathbf{Multi}$ Wire Proportional Chambers

Forward detectors (of interest) \rightarrow Forward Multiplicity Detectors on both sides

FMD already used to broaden η gap in : arXiv:2308.16590

ALICE during RUN 3

 $ITS \rightarrow 7$ layers and 1st layer closer to interaction point

TPC \rightarrow Gas Electron Multipliers + continuous readout

Děčín Workshop

Analysis procedure (I)

Děčín Workshop

alexian.lejeune@cern.ch

28

Analysis procedure (I)

Děčín Workshop

-0,8

alexian.lejeune@cern.ch

29

Why using MFT for correlations?

Remove jet-peak apply $\Delta \eta > 1.4$ and project on $\Delta \varphi$

Děčín Workshop

One consequence of using MFT for correlations

When measuring the flow of identified particles (such as D^0 and Λ_c^+ here) we **must** cancel the effect of the reference flow (h-h correlations) so the final flow does not depend on the choice of reference

Using MFT introduces a bias in the forward region, and using the usual 2PC method isn't enough anymore..

How to cancel forward region reference flow ?

$$V_2^{HF} = \frac{\langle V_2^{HF} \cdot V_2^{MFT} \rangle}{\sqrt{\langle V_2^{TPC} \cdot V_2^{MFT} \rangle}}$$

We must also correlate the TPC from the other side with FV0, and then cancel the forward region reference flow by correlating MFT and FV0

$$V_2^{HF} = \sqrt{\frac{\langle V_2^{HF} \cdot V_2^{FV0} \rangle \langle V_2^{HF} \cdot V_2^{MFT} \rangle}{\langle V_2^{FV0} \cdot V_2^{MFT} \rangle}}$$

« 3x2PC » method first used in PHENIX : Phys. Rev. C 105, 024901 (2022)

alexian.lejeune@cern.ch

Děčín Workshop

A potential problem with MFT

A potential problem with MFT tracks

Analysis procedure (II)

Template fit a nice scheme to understand more easily S

Děčín Workshop

alexian.lejeune@cern.ch

20th of September 2024 38

I tried to show the relevance of anisotropic flow measurements both in the QGP history and in the young field of the study of collective behavior in small systems

I hope to have described well enough for you to understand the measurement of anisotropic flow through two particle correlations

I hope to have well motivated the purpose of my analysis

And I hope to have highlighted the use of forward detectors to improve anisotropic results, and the challenges that they bring to the table

BACK UP

References from Katka's JCF seminar

References in heavy-ion collisions

Near-side long-range ridge yield

[1] CMS, Eur. Phys. J. C (2012) 72:2012 [2] ALICE, PLB 708 (2012) 249–264

Anisotropic flow [3] CMS, JHEP02(2014)088

[4] ALICE, PRL 116, 132302 (2016) Multiparticle correlations

[5] ALICE, JHEP07(2018)103

Mass ordering / baryon-meson grouping [6] ALICE, JHEP 05 (2023) 243

Flow decorrelations (p_T) [7] CMS, PRC **92**, 034911 (2015) [8] ALICE, PRC 107 (2023) L051901

Flow decorrelations (η)

[9] ATLAS, PRL 126, 122301 (2021) [10] ATLAS, Eur. Phys. J. C (2018) 78:142

Event-by-event vn [11] ATLAS, JHEP11(2013)183 [12] CMS, PLB 789 (2019) 643–665

Flow magnitude correlations/fluctuations

[13] ATLAS, PRC **92**, 034903 (2015) [14] ALICE, PRL 117, 182301 (2016) Symmetry plane correlations

[15] ATLAS, PRC 90, 024905 (2014)
Nonlinear response of Vn
[16] CMS, *Eur.Phys.J.C* 80 (2020) 6, 534
[17] ALICE, PLB 773 (2017) 68–80
[18] STAR, PLB 839 (2023) 137755

Event-shape engineering of v_n [19] ALICE, PRC **93**, 034916 (2016)

[19] ALICE, PHC 93, 034910 (2010)
p(vn²,[pτ])
[20] ATLAS, Eur. Phys. J. C (2019) 79:985
[21] ALICE, PLB 834 (2022) 137393
High-pτ flow (hard scattering)
[22] ATLAS, PRC 105 (2022) 6, 064903
[23] CMS, PRL 109, 022301 (2012)
Charm flow
[24] ATLAS, PLB 807 (2020) 135595
[25] CMS, PRL129 (2022) 022001

[26] ALICE, *JHEP* 10 (2020) 141 [27] STAR, PRL 118, 212301 (2017)

Bottom flow

[28] ATLAS, PLB 807 (2020) 135595 [29] ALICE, PRL 123, 192301 (2019)

References in small collision systems

Near-side long-range ridge yield

[30] ATLAS, PRC 96, 024908 (2017)
[31] CMS, PLB 765 (2017) 193–220
[32] CMS, PLB 718 (2013) 795–814
[33] ALICE, PLB 719 (2013) 29–41
[34] ALICE Preliminary

Anisotropic flow

[35] ATLAS, PRL 116, 172301 (2016)
[36] CMS, PRC 98, 044902 (2018)
[37] ALICE, PRL 123, 142301 (2019)
[38] PHENIX, *Nature Phys.* 15 (2019) 3, 214-220
[39] STAR, arXiv:2210.11352

Multiparticle correlations

[40] ATLAS, PRC 97, 024904 (2018)
[41] ATLAS, Eur. Phys. J. C (2017) 77:428
[42] CMS, PRL 115, 012301 (2015)
[43] CMS, PRC 101, 014912 (2020)
[44] ALICE, PRC 90, 054901 (2014)
[45] ALICE, PRL 123, 142301 (2019)
Mass ordering / baryon-meson grouping

[46] CMS, PLB 765 (2017) 193–220
[47] ALICE, PLB 726 (2013) 164–177
[48] ALICE Preliminary
[49] PHENIX, PRC 97, 064904 (2018)
Flow decorrelations (p_T)
[50] ALICE, JHEP09(2017)032

[51] CMS, PRC **92**, 034911 (2015)

Flow decorrelations (η) [52] CMS, PRC 92, 034911 (2015) [53] ATLAS, ATLAS-CONF-2022-020 Event-by-event ν_n

Flow magnitude correlations

[54] ATLAS, PLB 789 (2019) 444–471
[55] CMS, PRL120, 092301 (2018)
[56] CMS, PRC 103, 014902 (2021)
[57] ALICE, PRL 123, 142301 (2019)
Symmetry plane correlations

[58] ALICE Preliminary Nonlinear response of Vn

[59] ALICE Preliminary

Event-shape engineering of \boldsymbol{v}_n

ρ(v_n²,[p_T])

[60] ATLAS, Eur. Phys. J. C (2019) 79:985 [61] CMS, PAS HIN-21-012

High-p_T flow (hard scattering)

[62] ATLAS, *Eur.Phys.J.C* 80 (2020) 1, 64
[63] ATLAS, Eur. Phys. J. C (2020) 80:73
[64] ATLAS, arXiv:2303.17357
[65] ALICE, arXiv: 2212.12609

Charm flow

[66] ATLAS, PRL 124, 082301 (2020) [67] CMS, PLB 813 (2021) 136036 [68] ALICE, PRL 122, 072301 (2019)

Bottom flow

[69] ATLAS, PRL 124, 082301 (2020) [70] CMS, PAS-HIN-21-001

Ultraperipheral collisions

[72] CMS, arXiv:2204.13486 [73] ATLAS, PRC 104 (2021) 1, 014903

ep collisions

[74] ZEUS, JHEP 04 (2020) 070 [75] ZEUS, JHEP 12 (2021) 102

e+e- collisions

[76] ALEPH, PRL 123, 212002 (2019) [77] ALEPH, Preliminary

alexian.lejeune@cern.ch

Děčín Workshop

alexian.lejeune@cern.ch

Děčín Workshop

Introduction : signatures of the quark gluon plasma

Au+Au collisions at $\sqrt{s} = 130$ GeV (RHIC)

(2002)

301

022

88.

Lett.

Rev.

Phys.

44

2001

Signatures : many !

2001 : discovery of strong «2002 : discovery of jet quen

Many other signatures :

strangeness enhancement **quarkonia suppression** mass ordering baryon-meson grouping

Quarkonia is even more suppressed in the presence of quark gluon plasma <u>Illustration</u> : PHENIX case, J/ψ suppression in Au-Au PHENIX, Phys.Rev.Lett.98 (2007) 232301 R_{AA}(CNM) EKS98 |y|<0.35 syst CNM effec £ 0 CNM effect Au+Au |y| = 0.0 |y|∈[1.2,2.2] syst Au+Au |v| = 1. 0.8 Meas. R_{AA} 0.6 þ 0.6 OGP" effects ٠ 0.4 0.4 ۲ 0.3 0.2 0.2 0.1 350 50 100 150 200 250 300 400 N_{part} Nnart 32 / 55Brambilla et al, Eur.Phys.J.C71(2011) 1534 Antonin.MAIRE@unistra.fr - IPHC / M2-PSA (p.127, Fig.87) v2022.0 From Antonin Maire's lecture : Strong interaction at hadron colliders

>[∾]0.18

0.16

Summary of the discovery of QGP : <u>arxiv:nucl-ex/0501009</u>

20th of September 2024

Děčín Workshop

Introduction : signatures of the quark gluon plasma

ALICE

(2002)

022301

88

Lett.

Phys. Rev.

45

Signatures : many !

2001 : discovery of strong «2002 : discovery of jet quen

Many other signatures :

strangeness enhancement
quarkonia suppression
mass ordering
baryon-meson grouping

Figure from Katka's JCF seminar on 10/11/2023

Summary of the discovery of QGP : arxiv:nucl-ex/0501009

Děčín Workshop

Template fit the principles detailed...

46

Our measurement at given multiplicity → Contains **non-flow** & collective effects Non-flow component → Assumption : low-multiplicity sample contains only non-flow

Collective flow component \rightarrow Fourier expansion

 $Y^{ridge}(\Delta \varphi) = G \left[1 + 2 \sum_{n=2}^{3} \boldsymbol{V}_{n\Delta} \cdot \cos(n\Delta \varphi) \right]$

Děčín Workshop

alexian.lejeune@cern.ch

20th of September 2024