Forward J/ ψ in UPCs 2023

Diana Krupová 7. miniworkshop difrakce a ultraperiferních srážek September 20, 2024 Decin, Czech Republic

Introduction

- our goal is to measure the energy evolution of the |t|-dependence of coherent photoproduction of J/ ψ in ultra-peripheral Pb–Pb collisions
 - at $\sqrt{s_{\rm NN}} = 5.36$ TeV, using 2023 Pb-Pb data
 - in dimuon channel
 - at forward rapidity -4.0 < y < -2.5
 - MCH and MID used only for now; MFT tracks will be included later on

Dataset used

- <u>UPCCandidateProducer.cxx</u> was used to produce the J/ψ candidates by running on Hyperloop over the following datasets from 2023 Pb-Pb data taking:
 - LHC23_PbPb_pass3_fullTPC runs with full TPC acceptance
 - LHC23_PbPb_pass3_I-A11 runs without TPC sector A-II
- derived data downloaded and analyzed locally
 - some jobs were not successful, so the luminosity is slightly lower compared to the full sample
- MCH and MID information used
 - studies with MFT tracks in progress, plan to run over the full sample once we optimize the settings

Selection

- 2 MCH+MID tracks or I MCH+MID + I MCH track, unlike sign
- $17.6 < R_{abs} < 89.5 \text{ cm}$
- $p \times DCA$
- $-4 < \eta < -2.5$
- VOA amplitude <100 in the same BC

Cross section for coherent photoproduction in UPCs

Cross section for coherent photoproduction in UPCs

- yield of J/ ψ measured from the invariant mass fit see slide 8
- incoherent contamination: $\left\langle p_{\rm T}^{\rm coh} \right\rangle \sim 60 \, {\rm N}$
- feed-down contamination:
 - $\psi(2s) \rightarrow J/\psi + X$
 - $\psi(2s)$ coherent or incoherent
 - X charged or neutral, most often $\pi\pi$

$$/ (1 + f_{\rm I} + f_{\rm D})$$

$$\varphi \to \mu^{+} \mu^{-}) \cdot \mathscr{L}_{\rm int} \cdot \Delta y \cdot \Delta |t|$$

MeV/c,
$$\left\langle p_{\rm T}^{\rm inc} \right\rangle \sim 300 \,\,{\rm MeV/c}$$

Total yield of J/ψ candidates

produced locally with the downloaded data from the dataset mentioned in s.3

- some jobs were not successful, the luminosity is slightly lower (see next slide)
- using the double-sided crystal ball + an exponential for background
- ψ' parameters are fixed to the ones from the J/ ψ in a standard way
- details of the fit in the back-up

ψ(2s) background $N_{\rm J/w} = 60855 \pm 313$ $N_{w'} = 470 \pm 97$ $N_{\rm bkg} = 136373 \pm 435$ $M_{\rm J/w} = 3.083 \pm 0.001 ~{\rm GeV}/c^2$ $\sigma_{\rm I} = 0.0827 \pm 0.0010 \, {\rm GeV}/c^2$ $\sigma_{\rm B} = 0.0733 \pm 0.0008 \; {\rm GeV}/c^2$ 4.5 mass

λ	1	-0.370713	-0.158658	0.19682	0.0201506	-0.0355914	-0.(
N_{ψ}	-0.370713	1	0.118108	-0.297238	0.0158978	0.0630682	0.0
N _{J/ψ}	-0.158658	0.118108	1	-0.297463	0.0966901	0.276326	0.0
N _{bg}	0.19682	-0.297238	-0.297463	1	-0.0729956	-0.212559	-0.
m0	0.0201506	0.0158978	0.0966901	-0.0729956	1	0.777157	-0.
sigmaL	-0.0355914	0.0630682	0.276326	-0.212559	0.777157	1	-0.
sigmaR	-0.0827104	0.0262765	0.0210509	-0.020996	-0.850031	-0.567023	
	λ	N _{ψ'}	Ν _{J/ψ}	N _{bg}	m0	sigmaL	S

Integrated luminosity

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{J/\psi}}^{\mathrm{coh}}}{\mathrm{d}y \, \mathrm{d}t} = \frac{N_{\mathrm{J/\psi}}}{(A \times \varepsilon)_{\mathrm{J/\psi}} \cdot \mathrm{BR} \left(\mathrm{J/\psi} \right)}$$

- hCountersTrg that contains count for TVX-TCE triggers used \bullet to calculate analyzed luminosity
 - stored along with produced UD tables

 $\frac{N_{\mathrm{J/\psi}}/(1+f_{\mathrm{I}}+f_{\mathrm{D}})}{\cdot \mathrm{BR}\left(\mathrm{J/\psi} \to \mu^{+}\mu^{+}\right) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta \mathrm{y} \cdot \Delta |\mathrm{t}|}$ integral of TCE distribution $\sigma_{\rm TCE} = \sigma_{\rm INEL} \frac{N_{\rm TCE}}{N_{\rm INEL}}$ ~ 4.1 b from the fit

luminosity calculated from TVX-TCE triggers for the local dataset: 1213 μb^{-1}

MC sample

- for the moment:
 - sample for coherent J/ ψ downloaded from grid
 - J/ψ generated in |y| < 4.1, then filtered to -4.1 < y < -2.4, using STAR light (approx. 2M events)
 - test simulation with latest MCH and MID developments
 - to be used to calculate $A \times \varepsilon$, resolution, for unfolding...
 - work in progress

 $\frac{\mathrm{d}^{2}\sigma_{\mathrm{J/\psi}}^{\mathrm{coh}}}{\mathrm{d}y \,\mathrm{d}t} = \frac{N_{\mathrm{J/\psi}} \left(1 + J_{\mathrm{I}} + J_{\mathrm{D}} \right)}{\left(A \times \varepsilon\right)_{\mathrm{J/\psi}} \cdot \mathrm{BR}\left(J/\psi \to \mu^{+}\mu^{-}\right) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta y \cdot \Delta |t|}$

Yield of J/ ψ in p_T and y bins

Choice of binning in p_T and y

- using the XnXn class: the sample with the fewer candidates
- 6 p_T bins defined as

p_T bin	y range	#J/ψ	
(0.0, 0.05)	(-4.0, -2.5)	767 ± 32	
(0.05, 0.075)	(-4.0, -2.5)	742 ± 32	
(0.075, 0.10)	(-4.0, -2.5)	753 ± 32	
(0.10, 0.13)	(-4.0, -2.5)	751 ± 32	
(0.13, 0.17)	(-4.0, -2.5)	768 ± 32	
(0.17, 0.25)	(-4.0, -2.5)	800 ± 34	

• by performing the fit of the invariant mass distribution, bins selected such that they all contain a similar number of signal events

Choice of binning in p_T and y

- using the XnXn class
- 6 p_T bins defined as

p_T bin	y range	#J/ψ	
(0.0, 0.05)	(-4.0, -2.5)	767 ± 32	
(0.05, 0.075)	(-4.0, -2.5)	742 ± 32	
(0.075, 0.10)	(-4.0, -2.5)	753 ± 32	
(0.10, 0.13)	(-4.0, -2.5)	751 ± 32	
(0.13, 0.17)	(-4.0, -2.5)	768 ± 32	
(0.17, 0.25)	(-4.0, -2.5)	800 ± 34	

• further divided into 2 rapidity bins:

• (-4.0, -3.25) and (-3.25, -2.5)

p_T bin	y range	#J/ψ]	p_T bin	y range	#J/ψ
(0.0, 0.05)	(-4.0, -3.25)	288 ± 20		(0.0, 0.05)	(-3.25, -2.5)	478 ± 25
(0.05, 0.075)	(-4.0, -3.25)	266 ± 19		(0.05, 0.075)	(-3.25, -2.5)	479 ± 25
(0.075, 0.10)	(-4.0, -3.25)	$308\pm\!20$		(0.075, 0.10)	(-3.25, -2.5)	444 ± 25
(0.10, 0.13)	(-4.0, -3.25)	290 ± 20		(0.10, 0.13)	(-3.25, -2.5)	464 ± 25
(0.13, 0.17)	(-4.0, -3.25)	333 ± 21		(0.13, 0.17)	(-3.25, -2.5)	436 ± 24
(0.17, 0.25)	(-4.0, -3.25)	305 ± 21		(0.17, 0.25)	(-3.25, -2.5)	499 ± 26

• by performing the fit of the invariant mass distribution, bins selected such that they all contain a similar number of signal events

Choice of binning in p_T and y

- by performing the fit of the invariant mass distribution, bins selected such that they all contain a similar number of signal events
- using the XnXn class
- further divided into 2 rapidity bins:
- (-4.0, -3.25) and (-3.25, -2.5)

p_T bin	y range	#J/ψ	p_T bin	y range	#J/ψ
(0.0, 0.05)	(-4.0, -3.25)	288 ± 20	(0.0, 0.05)	(-3.25, -2.5)	478 ± 25
(0.05, 0.075)	(-4.0, -3.25)	266 ± 19	(0.05, 0.075)	(-3.25, -2.5)	479 ± 25
(0.075, 0.10)	(-4.0, -3.25)	$308\pm\!20$	(0.075, 0.10)	(-3.25, -2.5)	444 ± 25
(0.10, 0.13)	(-4.0, -3.25)	290 ± 20	(0.10, 0.13)	(-3.25, -2.5)	464 ± 25
(0.13, 0.17)	(-4.0, -3.25)	333 ± 21	(0.13, 0.17)	(-3.25, -2.5)	436 ± 24
(0.17, 0.25)	(-4.0, -3.25)	305 ± 21	(0.17, 0.25)	(-3.25, -2.5)	499 ± 26

MFT track studies for forward UPC analyses

Tracks at forward rapidity

- MCH-MID tracks:
 - muon analyses that require no vertex information
- global tracks:
 - muon analyses that need access to the vertex
- matching is done at reco level currently
 - not flexible

Forward matching

Track types:

- 0: GlobalMuonTrack MFT-MCH-MID
- I: GlobalMuonTrackOtherMatch MFT-MCH-MID (MCH-MID used another time)
- 2: GlobalForwardTrack MFT-MCH
- 3: MuonStandaloneTrack MCH-MID
- 4: MCHStandaloneTrack MCH

example from a random AO2D file: $0+2 \approx 3+4$ (MFT-MCH-MID)+(MFT-MCH) \approx (MCH-MID)+(MCH)

 \rightarrow MCH track always gets matched with MFT

nother time)

69	<pre>enum ForwardTrackTypeEnum :</pre>	uin [.]	t8_t {		
70	GlobalMuonTrack = 0,	//	MFT-MCH-MID		
71	GlobalMuonTrackOtherMatch,	//	MFT-MCH-MID	(MCH-MID	used
72	GlobalForwardTrack,	//	MFT-MCH		
73	MuonStandaloneTrack,	//	MCH-MID		

// MCH

74 MCHStandaloneTrack

Forward tracks

MCH ~ 40 BC MCH+MID ~ 1 BC MFT+MCH+MID ~ 594 BC (for Pb-Pb)

UPC EVENTS SEEN IN FWD TRACKS:

- valid UPC no background
- 2 tracks in MFT + GLOBAL
- I track in MFT + I outside
- 0 tracks in MFT + 2 outside

DOUBLE COUNTING TRACKS:

- to remove this:
 - value for matching

• MCH+MID acceptance

• $-4.0 < \eta < -2.5$

• MFT acceptance

• $-3.6 < \eta < -2.45$

• it can happen that one MFT track gets matched with two MCH tracks

• the MCH track which is outside of MFT acceptance typically has a high χ^2

• applying a strict selection (e.g. $\chi^2 < 35$) should remove most of the cases

when analysing a matched track in AO2Ds, we could retrieve the corresponding MCH track that was used for matching, and discard the global tracks if the MCH track is outside of MFT acceptance

Vertexing

- all the tracks are propagated using <u>fwdTrackPropagation.cxx</u>
 - if (static_cast<int>(muon.trackType()) > 2) { o2::dataformats::GlobalFwdTrack track; track.setParameters(tpars); track.setZ(fwdtrack.getZ()); track.setCovariances(tcovs); auto mchTrack = fMatching.FwdtoMCH(track); o2::mch::TrackExtrap::extrapToVertex(mchTrack, vtx[0], vtx[1], vtx[2], vtxCov[0], vtxCov[1]); auto proptrack = fMatching.MCHtoFwd(mchTrack); propmuon.setParameters(proptrack.getParameters()); propmuon.setZ(proptrack.getZ());

propmuon.setCovariances(proptrack.getCovariances());

- MCH-MID tracks:
 - else if (static_cast<int>(muon.trackType()) < 2) {</pre> double centerMFT[3] = {0, 0, -61.4}; o2::field::MagneticField* field = static_cast<o2::field::MagneticField*>(TGeoGlobalMagField::Instance()->GetField()); auto Bz = field->getBz(centerMFT); // Get field at centre of MFT auto geoMan = o2::base::GeometryManager::meanMaterialBudget(muon.x(), muon.y(), muon.z(), vtx[0], vtx[1], vtx[2]); auto x2x0 = static_cast<float>(geoMan.meanX2X0); fwdtrack.propagateToVtxhelixWithMCS(vtx[2], {vtx[0], vtx[1]}, {vtxCov[0], vtxCov[1]}, Bz, x2x0); propmuon.setParameters(fwdtrack.getParameters()); propmuon.setZ(fwdtrack.getZ());
- tracks with MFT: }
 propmuon.setCovariances(fwdtrack.getCovariances());
 }
 - propagation to vtx helix with MCS

- using Hyperloop
- dataset LHC23zzh_pass3_small
- two trains
 - one with a process for MCH+MID tracks
 - one with both tracks of the MFT+MCH+MID type
- slim derived data produced
- UDFwdTracksExtra, UDZdcsReduced, UDFwdIndices

UDCollisions, UDCollisionsSels, UDCollisionsSelsExtra, UDCollisionsSelsFwd, UDFwdTracks,

globalIndex matchMFTTrackId matchMCHTrackId

Event selection

- $17.6 < R_{abs} < 89.5 \text{ cm}$
- $p \times DCA$
- $-4 < \eta < -2.5$
- VOA amplitude <100 in the same BC

• Nazar's selection:

• our selection:

- MCH-MID / MCH-MID + MCH
- total number of MCH-MID tracks: $1.23076 \times 10^7 = 12.3$ M tracks
- total number of MCH tracks: $2.093 \times 10^6 = 2$ M tracks
- MFT-MCH-MID
- total number of MFT-MCH-MID tracks: $1.04021 \times 10^7 = 10.4$ M tracks

After the selection

see next slides

Comparison of the two samples After the selection • 2 MCH-MID tracks / I track MCH-MID + I MCH track

• 2 MFT-MCH-MID tracks: $\chi^2_{MFT-MCH}$ is 0 everywhere

 \rightarrow the idea of using a χ^2 fit is not possible ?

Invariant mass fits

without MFT tracks

pt in (0.00,0.25), y in (-4.00,-2.50)

- MCH+MID acceptance
 - $-4.0 < \eta < -2.5$

• $-3.6 < \eta < -2.45$

• MFT acceptance

both tracks with MFT

pt in (0.00,0.25), y in (-4.00,-2.50)

Invariant mass fits

with the acceptance reduced to $-3.6 < \eta < -2.5$ both tracks with MFT without MFT tracks

pt in (0.00,0.25), y in (-3.60,-2.50)

- MCH+MID acceptance
 - $-4.0 < \eta < -2.5$
- MFT acceptance
 - $-3.6 < \eta < -2.45$

pt in (0.00,0.25), y in (-3.60,-2.50)

23

A different approach

 retrieve the corresponding MCH track which was used in the matching and discard the global track if the MCH track is outside the MFT acceptance

Further modification of FwdTracks in UDTables.h

• we had the following:

346	// Muon track kinematics		
347	DECLARE_SOA_TABLE(UDFwdTracks, "AOD", "UDFWDTRACK",		
348	o2::soa::Index<>,		
349	udfwdtrack::UDCollisionId,	•	tracki
350	udfwdtrack::Px,		
351	udfwdtrack::Py,		
352	udfwdtrack::Pz,		
353	udfwdtrack::Sign,		
354	udfwdtrack::GlobalBC,		MCHT
355	udfwdtrack::TrackTime,		
356	udfwdtrack::TrackTimeRes);		
357			
358	// Muon track quality details		
359	DECLARE SOA TABLE(UDFwdTracksExtra, "AOD", "UDFWDTRACKEXTRA",		METT
360	fwdtrack::NClusters.		
361	fwdtrack::PDca.		
362	fwdtrack::RAtAbsorberEnd.		
363	fwdtrack::Chi2.		
364	fwdtrack::Chi2MatchMCHMTD		
265	fundt nack + Chi2MatchMCHMET		
365	fusit each i MCHRitMan		
300	fight as also MTDR it Man		
367	Twotrack::midbitmap,		
368	Twotrack::MiDBoards);		

- MCH+MID acceptance
 - $-4.0 < \eta < -2.5$
- MFT acceptance

• $-3.6 < \eta < -2.45$

• what was added:

ype

rackID

rackID

366	<pre>// Details about FWD indices</pre>
367	<pre>DECLARE_SOA_TABLE(UDFwdIndices, "A0D", "UDFWDINDEX",</pre>
368	o2::soa::Index<>,
369	udfwdmatchindex::UDCollisionId,
370	udfwdmatchindex::GlobalIndex,
371	udfwdmatchindex::MCHTrackId,
372	udfwdmatchindex::MFTTrackId);

/ Version with global tracks
ECLARE_SOA_TABLE_VERSIONED(UDFwdTracksExtra_001, "AOD", "UDFWDTRACKEXTRA", 1,
fwdtrack::TrackType,
fwdtrack::NClusters,
fwdtrack::PDca,
fwdtrack::RAtAbsorberEnd,
fwdtrack::Chi2,
<pre>fwdtrack::Chi2MatchMCHMID,</pre>
fwdtrack::Chi2MatchMCHMFT,
fwdtrack::MCHBitMap,
fwdtrack::MIDBitMap,
<pre>fwdtrack::MIDBoards);</pre>

Outlook Next steps

- acceptance and efficiency in p_T bins
 - veto efficiency, acceptances, unfolding
- calculation of feed-down and incoherent contamination
- further studies with MFT tracks
 - still many aspects to be understood (matching, χ^2 distributions, IDs)
- inclusion of MFT tracks looks promising for forward UPC analyses
 - better mass resolution when MFT tracks are included
- UPCCandidateProducer to be modified with an option to include the 1 MFT track

Back-up

- total number of events in ZN classes
- 0n0n, 0nXn, Xn0n, XnXn
- approx. number of J/ ψ candidates in each ZN class: \bullet
 - 44k in 0n0n
 - 6k in Xn0n
 - 9k in 0nXn
 - 5k in XnXn

ZN classes

• ZNA and ZNC time information will be used to separate the events into the 4 classes:

More details on the mass fit

- fitting function for the J/ψ peak: double-sided crystal ball
 - tail parameters n_L , n_R fixed to 10
 - tail parameters $\alpha_L = 1.2$, $\alpha_R = 2.5$ fixed

•
$$\sigma_L = 0.08, \ \sigma_R = 0.07$$

- fitting function for the ψ' peak: double-sided crystal ball
- background fitted with an exponential function
 - parameter λ was left free

Mass fits in all ZN classes

0n0n

