Dynamic Mixture Ratio Model

Marko Ruman, Miroslav Kárný

Institute of Information Theory and Automation,

Czech Academy of Sciences

Contacts: [ruman, school]@utia.cas.cz

http://www.utia.cas.cz

- ロ ト - 4 回 ト - 4 □

Decision making

The agents chooses actions in order to influence the environment and receive reward

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We wanted to create a very general model

To create a probabilistic model $P(y|x, \Theta)$ that:

- generally approximates any probability function / density,
- 2 can model any mix of discrete and continuous variables,
- is capable of online learning,
- 4 is suitable for **decision making**.

y - dependent variable, x - explanatory variables, Θ - model parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Markov property is assumed in decision making

Data in decision making

$$D^{t-1} = (S_1, A_1, ..., S_{t-1}, A_{t-1})$$

Observed data contains states and actions for t - 1 epochs.

Markov property

$$P(S_t|A_t, D^{t-1}, \Theta) = P(S_t|x_t, \Theta)$$

where x_t is finite regression vector containing history of length n. $x_t = A_t, S_{t-1}, A_{t-1}, ..., S_{t-n}, A_{t-n}$

・ロト・(四ト・(日下・(日下))

The inspiration comes from modelling of joint probabilitiy densities

Gaussian mixture

A Gaussian mixture model is a universal approximator of smooth densities, [4].

Modelling of mixed, discrete-continuous systems

$$X = (y, x) = (X_{D_1}, X_{D_2}, X_{C_1}, X_{C_2})$$

$$\begin{aligned} \mathsf{P}(X|\Theta) &= \mathsf{P}(X_{D_1}, X_{D_2}, X_{C_1}, X_{C_2}|\Theta) \\ &= \mathsf{P}(X_{C_1}, X_{C_2}|X_{D_1}, X_{D_2}, \Theta_1)\mathsf{P}(X_{D_1}, X_{D_2}|\Theta_2) \end{aligned}$$

The problematic modelling of a discrete variable depending on a continuous one is avoided.

Ratio of Mixtures satisfies all of the goals

The model is obtained from the joint probability

$$\mathsf{P}(y|x,\Theta) = \frac{\mathsf{P}(y,x|\Theta)}{\int_{\mathbf{y}}\mathsf{P}(y,x|\Theta)}$$

Modelling of joint $P(y, x | \Theta)$

$$\mathsf{P}(y, x | \Theta) = \sum_{c \in c} \alpha_c \mathsf{P}_c(y, x_c | \Theta_c)$$

 $\alpha_{\textit{c}}$ - weight parameter of the c-th component

 $P_c(y, x_c | \Theta_c)$ - the *c*-th mixture component

x_c - the component specific regression vector

▲口 > ▲圖 > ▲ 国 > ▲ 国 > ― 国

Properties of Mixture ratios

The resulting model has data-dependent weights

$$\mathsf{P}(y|x,\Theta) = \sum_{c \in \mathbf{c}} \mathsf{w}_c(x|\Theta) \mathsf{P}_c(y|x_c,\Theta_c)$$

 $\mathsf{w}_c(x|\Theta)$ - weight of the c-th component depending on the data-vector x

Interesting properties:

- Generally approximating
- Data-dependent weights
- Modelling of mixed, discrete-continuous systems:

Strong dependence on the model structure

The mixture components are assumed to be from the exponential family

The specific choice of the mixture components P_c is the following:

- 1 for y and x_c discrete $P_c(y, x_c | \Theta_c)$ is the categorical distribution
- **2** for *y* **continuous**
 - $P_c(y, x_c | \Theta_c)$ is the normal distribution
 - The component has separate parameters for each possible value of "discrete part" of x_c

The online learning is done in two steps

The distribution on parameters $P_t(\Theta)$ is evolved, $\Theta = (\alpha_c, \Theta_c)_{c \in \mathbf{c}}$.

- 1) $\tilde{\mathsf{P}}_{t}(\Theta) \propto \mathsf{P}(y|x,\Theta)\mathsf{P}_{t-1}(\Theta)$ (Bayes rule),
- 2) $P_t = \underset{P \in \mathbf{P}}{\operatorname{argmin}} \operatorname{KL}(\tilde{P}_t || P)$ (Kullback-Leibler projection)

• The second step is to preserve the functional shape of $P_t(\Theta)$. $\mathbf{P} = \left\{ P(\Theta) \mid P_t(\Theta) = P(\alpha) \prod_{c \in \mathbf{c}} P(\Theta_c) \right\}$

A D N A 目 N A E N A E N A B N A C N

The learning requires approximations

We need to approximate:

The denominator of Bayes rule

$$\int_{\Theta} \mathsf{P}(y|x,\Theta) \mathsf{P}_{t-1}(\Theta) d\Theta$$

The integrations in Kullback-Leibler projection in the following form:

$$\int_{\boldsymbol{\Theta}} \tilde{\mathsf{P}}_t(\boldsymbol{\Theta}) \mathsf{ln}\left(\mathsf{P}(\boldsymbol{\Theta})\right) d\boldsymbol{\Theta} \qquad \mathsf{P}(\boldsymbol{\Theta}) \in \boldsymbol{\mathsf{P}}$$

The learning requires approximations

The integrals are solved by

Taylor expansion around expected value of parameter $\hat{\Theta}$ It leads to solving a set of (numerically easily solvable) equations.

200

A simulation suggests that Mixture Ratio outperforms the standard mixture model

Figure: Histogram of $KL(P_R||P)$ with P_R being the real probability of the system.

Left: system simulated by a standard mixture

Right: system simulated by mixture ratio with fixed parameters Θ .

Blue: learning with mixture ratio — Red: learning with standard mixture

Mixture Ratios show very good quality in real classification tasks

	Logistic Regression		Naive Bayes		Mixture Ratio	
Dataset	Log loss	F1	Log loss	F1	Log loss	F1
Iris	0.18	0.93	0.53	0.54	0.22	0.95
Wine	0.51	0.85	0.50	0.80	0.69	0.89
Cancer	0.21	0.92	0.38	0.84	0.24	0.92
UFC	0.63	0.42	0.63	0.40	0.64	0.46
Credit card	0.006	0.50	0.007	0.50	0.007	0.52
fraud						

The values are obtained by 5-fold crossvalidation The datasets were discretized.

A Python library is being developed

Github repository

https://github.com/marko-ruman/mixture-ratio

Code example

 $variables_domain = [10, 5, 7, 3, 2]$ $variables_connection = [[0, 1, 2], [0, 3], [0, 4]]$

mixture = *MixtureRatio*(*variables_domain*, *variables_connection*)

mixture.fit(X, Y)

Many things remain to be done

- Creating automatic optimal structure choice of the Mixture Ratio model
- Further developing the Python library the continuous and mixed case is missing.

Optimizing the speed of learning.

Let's summarize the main points

- A general probabilistic model was created.
- A Python library is in development.

Pros

- Generally approximating
- Online learning
- Ability to model discrete-continuous systems
- A lot of freedom in model structure

Cons

- Computationally demanding learning
 - In every leaning step, a set of (convex) equations are solved numerically.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for your attention!

- M. Kárný, M. Ruman: Mixture Ratio Modelling of Dynamic Environments, Neural Networks, 2019, submitted.
- M. Ruman. *Mixture Ratios for Decision Making*. Master thesis, Czech Technical University, Prague, 2018.
- M. Kárný. Approximate Bayesian recursive estimation. Information Sciences, 289:100-111, 2014.
- G. McLachlan, D.Peel. *Finite Mixture Models*. Wiley Series in Probability and Statistics, 2000-11-01.

The research was supported by the research projects LTC18075 and CA16228