Heterogeneous Variants of Balanced Particle Systems

Jiří Nábělek

Supervisor: Doc. Mgr. Milan Krbálek, Ph.D.

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

1 Introduction

- 2 Motivational Task
- 3 Quasi-Homogeneous BPS
- 4 Heterogeneous BPS with Periodic Generators
- 5 Conclusion

Role of Traffic System Analysis

Objectives:

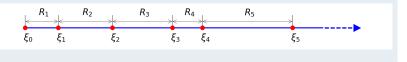
- 1. Describe and quantify traffic flow.
- 2. Obtain information about the capacity of a given road.

Applications:

- 1. In the design of new highways and intersections.
- 2. Identifying problematic sections of the road.

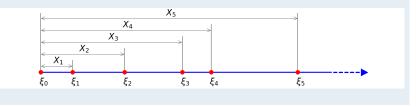
Description Using Gaps

Distance between individual agents (vehicles) $\xi_0, \xi_1, \xi_2, ...$



Description Using Multi-Gaps

Distance of agents from the reference particle ξ_0 .

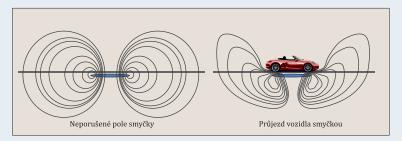


Description Using Interval Frequencies

Number of agents in an interval of fixed length L.

Measurement Methods

Double-loop induction detectors



Doc. Mgr. Milan Krbálek, Ph.D. Passage of a vehicle through a double-loop detector. In: M. Krbálek, J. Vacková, Mathematical Modeling of Traffic, Czech Technical University Publishing, Prague 2022

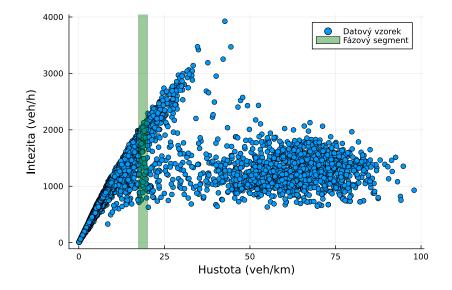
Macroscopic Characteristics

- 1. Traffic density
- 2. Traffic flow rate
- 3. Average speed of traffic flow

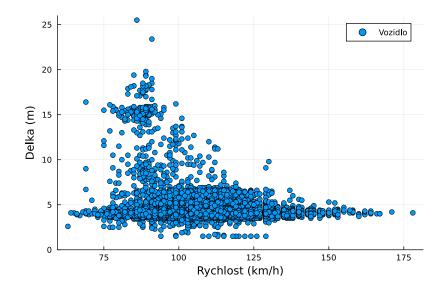
Standard Data Processing Methods

Data Sample						
	length	time	speed	lane	spatial gaps	time gaps
	3.3	47.7	88	1	642.0	26.4
Variables:	3.7	74.1	88	2	382.5	15.8
variables:	3.5	89.9	98	1	739.7	27.3
1 Mahala Lanath [m]	3.7	117.2	119	2	135.1	4.2
1. Vehicle length [<i>m</i>]	3.1	121.4	106	2	1198.2	40.8
	4.1	162.2	118	1	422.0	13.0
2. Passage time [s]	3.2 3.4	175.2 180.3	144 99	1	200.8 403.6	5.1 14.8
	3.4	195.1	115	1	676.8	21.3
3. Average speed in section	3.9	216.4	121	1	3851.3	114.7
$[l_{max}/h]$	3.5	331.1	82	2	30.7	1.5
[km/h]	3.8	332.6	83	2	408.9	17.9
4 Laws	3.9	350.5	115	1	98.3	3.2
4. Lane	3.8	353.7	108	1	530.2	17.8
	3.9	371.5	110	1	992.2	32.6
5. Spatial gaps [<i>m</i>]	3.2	404.1	84	2	90.1	4.0
	3.2	408.1	110	1	1396.2	45.8
6. Time gaps [s]	3.6	453.9	115	1	478.8	15.1
0 1 [1]	3.5	469.0	90	1	211.5	8.6
	3.5	477.6	137	1	3752.6	98.7

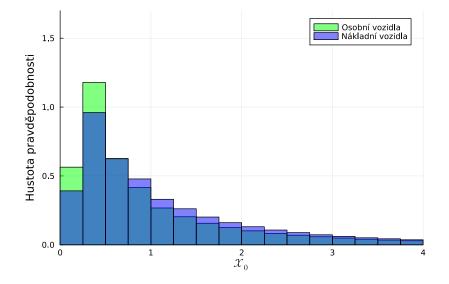
Dependence of Flow Rate on Traffic Density



Vehicle Lengths in Selected Data Sample



Probability Density of Gaps



Quasi-Homogeneous BPS

A quasi-homogeneous balanced particle system is understood as a sequence of gaps $(\mathscr{R}_k)_{k=0}^{\infty}$, where $\mathscr{R}_0, \mathscr{R}_1, \mathscr{R}_2, \ldots$ is any sequence of non-negative, absolutely continuous, and independent random variables, whereas $\mathscr{R}_N, \mathscr{R}_{N+1}, \mathscr{R}_{N+2}, \ldots$, where $N \in \mathbb{N}_0$, are identically distributed random variables with the probability density function $h(x) \in \mathscr{B}$. The probability density functions of the random variables $\mathscr{R}_0, \mathscr{R}_1, \ldots, \mathscr{R}_{N-1}$ are denoted as $h_0(x), h_1(x), \ldots, h_{N-1}(x) \in \mathscr{B}$ and the probability density functions h(x) and $h_0(x), h_1(x), \ldots, h_{N-1}(x)$ will be called generators of the quasi-homogeneous balanced particle system.

First-Order Statistics

Definitions for Quasi-Homogeneous BPS

- 1. Trend function: $\omega(L) = \mathbb{E}(\mathcal{N}_L)$,
- 2. Cluster function: $r(x) = \sum_{k=0}^{+\infty} g_k(x)$,
- 3. Laplace transform: $\mathbb{H}(s) := \mathscr{L}[h(x)], \mathbb{R}(s) := \mathscr{L}[r(x)].$

Selected Theorems for First-Order Statistics

1.

2.

$$\mathbb{R}(s) = \sum_{k=0}^{N-1} \prod_{i=0}^{k} \mathbb{H}_i(s) + \prod_{i=0}^{N-1} \mathbb{H}_i(s) rac{\mathbb{H}(s)}{1 - \mathbb{H}(s)},
onumber \ \mathscr{L}[\omega(x)](s) = rac{1}{s} \sum_{k=0}^{N-1} \prod_{i=0}^{k} \mathbb{H}_i(s) + rac{1}{s} \prod_{i=0}^{N-1} \mathbb{H}_i(s) rac{\mathbb{H}(s)}{1 - \mathbb{H}(s)},$$

Example for N = 1

Consider that $h_0(x)$ has an Exponential and h(x) an Erlang distribution, then:

$$g_k(x) = \left(\frac{n+1}{n}\right)^{k(n+1)} e^{-(n+1)x} \sum_{j=k(n+1)}^{+\infty} \frac{(nx)^j}{j!}.$$

First-Order Statistics for n = 1

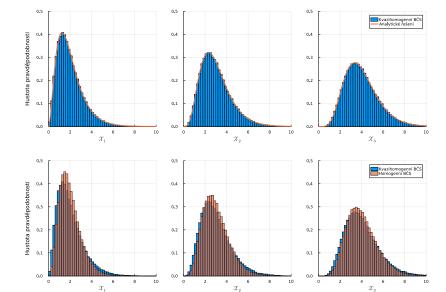
1.
$$\omega(x) = x - \frac{e^{-4x}}{12} + \frac{e^{-x}}{3} - \frac{1}{4}$$

2. $r(x) = \frac{e^{-4x}}{3} - \frac{e^{-x}}{3} + 1$.

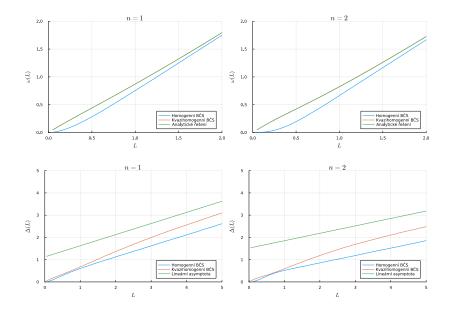
Second-Order Statistics

1.
$$\chi = B'(0) = \frac{1}{n+1}$$
,
2. $\delta = \frac{1}{2}B''(0) = \frac{1}{6}\frac{n(14n+13)}{(n+1)^2}$.

Probability Density of Gaps



Selected First- and Second-Order Statistics



Heterogeneous BPS with Periodic Generators

A heterogeneous balanced particle system with periodic generators is understood as a sequence of gaps $(\mathscr{R}_k)_{k=0}^{\infty}$, where $\mathscr{R}_0, \mathscr{R}_1, \mathscr{R}_2, \ldots$ is any sequence of non-negative, absolutely continuous, and independent random variables, whereas:

$$\forall i \in \{0, 1, \dots, N-1\} : \mathscr{R}_i, \mathscr{R}_{N+i}, \mathscr{R}_{2N+i}, \dots \sim h_i(x),$$

where $N \in \mathbb{N}_0$ and $\forall i \in \{0, 1, ..., N-1\}$, $\mathscr{R}_i, \mathscr{R}_{N+i}, \mathscr{R}_{2N+i}, ...$ are identically distributed random variables with the probability density function $h_i(x) \in \mathscr{B}$. The probability density functions $h_0(x), h_1(x), ..., h_{N-1}(x)$ will be called generators of the heterogeneous balanced particle system with periodic generators.

Consider that $h_0(x)$ has a Poisson and $h_1(x)$ an Erlang distribution. Further, let in front of particle k:

- 1. k_0 particles have generator $h_0(x)$,
- 2. k_1 particles have generator $h_1(x)$.

The probability density function of multi-gaps:

$$g_k(x) = \frac{(n+1)^{(k_1+1)(n+1)}}{(k_1+n+k_1n)!k_0!} e^{-x} \cdot \sum_{i=0}^{k_0} {\binom{k_0}{i}} \frac{x^{k_0-i}(-1)^i}{n^{(k_1+1)(n+1)+i}} \gamma(nk_1+n+k_1+i+1,nx).$$

Main contributions:

- ► Formal definition of special variants of heterogeneous BPS.
- Analytical derivation of description and statistics for first- and second-order characteristics for specific cases of special variants of heterogeneous BPS.
- Application of the developed theory and properties of special variants of heterogeneous BPS in traffic data processing.

Thank you for your attention.