Parameter Estimation in Cyclic Plastic Loading

Martin Kovanda^{1,2,3} Petr Tichavský² René Marek³

¹Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague
³Institute of Thermomechanics of the Czech Academy of Sciences, Czech Republic
²Institute of Information Theory and Automation of the Czech Academy of Sciences, Czech Republic

June 21, 2024

Content

- Ocyclic Plastic Loading
- Model MAFTr
- A Priori Distribution for parameters
- Oata Preparation
- Synthetic datasets for Plastic Deformation
- Novel loss function
- Numerical results on synthetic data
- Validation on real-life data
- Onclusion

Cyclic Loading Measurement

The axial-torsional extensometer Epsilon Tech 3550.

Cyclic Loading and the Bauschinger Effect

- Bauschinger effect
- Permanent changes in the metallic specimen under cyclic loading

Denoised measured data from cyclic plastic loading.

Hardening Model MAFTr

- \bullet Developed by Marek et al. in 2022 1
- Needs to be calibrated on cyclic loading experimental data.

Parameter	Unit	Description		
k ₀	MPa	Initial yield strength		
κ_1	MPa	Adjustment of the rate of isotropic hardening		
κ_2	MPa^{-1}	Inverted asymptotic limit of isotropic hardening		
Ci	-	Adjustment of the evolution rates of the		
		backstress components		
ai	MPa	Asymptotic limits of the backstress components		

Parameters of analytical model developed by Marek et al.

Martin Kovanda Petr Tichavský René Marek Parameter Estimation in Cyclic Plastic Loading

¹R. Marek et al. "A quick calibration tool for cyclic plasticity using analytical solution". In: Engineering Mechanics 27/28 (May 2022), pp. 249 –252. DOI: 10.21495/512249.

Synthetic datasets for Plastic Deformation

• **D**₁ dataset

- consists of pairs $(\theta_i, S(\theta_i))$, where θ_i is generated from the a priori distribution.
- Plastic deformation setup $\epsilon_{\rm p}$ remains constant across the dataset.
- Dataset length is $L = 10^6$.

- Extended **D**₂ Dataset
 - consists of triplets $(\boldsymbol{\theta}_i, \boldsymbol{S}(\boldsymbol{\theta}_i), \epsilon_{\mathrm{p}})$.
 - Dataset length is $L = 10^6$.

A Priori Distribution for parameters

- A uniform distribution is selected for all 11 parameters.
- Conditions:
 - Sum of a_i parameters in the range of [150, 350].
 - Ordering of *c_i* parameters to ensure uniqueness of the training objective.

	k_0	κ_1	κ_2^{-1}	$\log(c_1)$	$\log(c_{2,3,4})$	<i>a</i> _{1,2,3,4}
min	15	100	30	$\log(1000)$	log(50)	0
max	250	10000	150	$\log(10000)$	log(2000)	350

Range of the a priori uniform distribution for each parameter.

Data Downsampling Strategy

Top: Interpolated plastic deformation covering each load segment by 15 points.

Bottom: Interpolated stress from the measured data.

Approaches

- Neural Networks
 - Feed Forward Networks
 - LSTM ¹
 - GRU ²
- Non-neural methods
 - TTOpt ³
- Refinement using the Nelder-Mead method

¹Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-term Memory". In: Neural computation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.

²Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].

³Konstantin Sozykin et al. TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning. arXiv:2205.00293 [cs, math].

Novel loss function

• Calculating $\widehat{\mathbf{S}} := M_{\widehat{\theta}}(\epsilon_{\mathrm{p}})$ from NN-predicted $\widehat{\theta}$, where M_{θ} represents the MAFTr model.

$$L(\widehat{\boldsymbol{\theta}}_{\mathcal{N}}, \boldsymbol{\theta}_{\mathcal{N}}, \widehat{\mathbf{S}}, \mathbf{S}) := k \|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|_2^2 + \alpha (1-k) \|\widehat{\mathbf{S}} - \mathbf{S}\|_2^2, \ k \in [0, 1], \ \alpha \in \mathbb{R}_+.$$

Comparison of L_{θ} and L_{s} metrics for FFN and GRU trained with $L(\hat{\theta}_{\mathcal{N}}, \theta_{\mathcal{N}}, \hat{\mathbf{S}}, \mathbf{S})$ for different k values.

Martin Kovanda Petr Tichavský René Marek Parameter Estimation in Cyclic Plastic Loading

Numerical results on synthetic data

architecture	dataset	Ls	$L_{\rm S}^{(r)}$
GRU	D_1^{T}	111.64	0.137
LSTM	D_1^{T}	149.91	0.510
FFN	D_1^{T}	106.90	2.314
GRU	D_2^{T}	242.43	0.595
LSTM	D_2^{T}	528.03	7.523
FFN	D_2^{T}	350.02	7.058
TTOpt	D_2^{T}	63.30	0.961

Metrics and their refined values of selected GRU and FFN networks compared to TTOpt on test datasets D_1^T and D_2^T .

Prediction analysis

Histogram of refined predictions of both GRU and TTOpt on test dataset $\boldsymbol{D}^{\mathsf{T}}$.

Validation 1

Top: Plastic deformation in the measured experiment #1. Middle: Predicted stress using the refined estimated parameters θ of both GRU and TTOpt. Bottom: Stress prediction error.

Validation 2

Top: Plastic deformation in the measured experiment #2. Middle: Predicted stress using the refined estimated parameters θ of both GRU and TTOpt. Bottom: Stress prediction error.

Validation 1 - Nelder Mead

Histogram of randomly generated θ using the a priori distribution after its refinement using the Nelder-Mead simplex optimization on experiment #1. For comparison, the refined predictions of GRU and TTOpt are depicted by dashed lines.

Validation 2 - Nelder Mead

Histogram of randomly generated θ using the a priori distribution after its refinement using the Nelder-Mead simplex optimization on experiment #2. For comparison, the refined predictions of GRU and TTOpt are depicted by dashed lines.

- The novel loss function combining L_{θ} and L_{s} enhances the training effectiveness.
- FFNs and CNNs appeared to be unstable on D_2 dataset.
- Both GRU and TTOpt exhibit comparable performance on both synthetic and real-world data.
- The entire approach is not model specific and can be easily used with other material models.

Bibliography

- R. Marek et al. "A quick calibration tool for cyclic plasticity using analytical solution". In: Engineering Mechanics 27/28 (May 2022), pp. 249 –252. DOI: 10.21495/512249.
- [2] Konstantin Sozykin et al. TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning. arXiv:2205.00293 [cs, math]. Sept. 2022. URL: http://arxiv.org/abs/2205.00293 (visited on 09/21/2023).
- [3] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].
- Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-term Memory". In: Neural computation 9 (Dec. 1997), pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.
- [5] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019. arXiv: 1711.05101 [cs.LG].
- [6] John A. Nelder and Roger Mead. "A simplex method for function minimization". In: Computer Journal 7 (1965), pp. 308–313.

Data Downsampling Strategy

- Stress response recorded at 10Hz for 4 hours.
- Needs to preserve points of reversals.
- Each segment is downsampled to 15 points.

$$\epsilon_i^{(j)} := \epsilon_{i-1}^{(r)} + \sum_{k=1}^j \delta_k, \quad \forall i \in \{1, \dots, K\}, \ \forall j \in \{1, \dots, N-1\},$$

• The increments follow a geometrical sequence: $\delta_{k+1} = \sqrt[N-1]{R} \delta_k, \ \forall k \in \{1, \dots, N-1\}, \quad R = 20.$