Dispersion of a Point Set Enhanced Bounds and Practical Applications

Matěj Trödler

FNSPE CTU in Prague

June 21, 2024

Matěj Trödler (FNSPE CTU)

Dispersion of a Point Set

June 21, 2024

イロト イヨト イヨト イ

Contents

Introduction

- Dispersion of a Point Set
- Discrepancy and Integration
- 2 Basic Definitions and Concepts
- 3 Estimation Development
- Applications
- Dispersion and Restriction SetsRestriction Set

6 Dispersion and Cover-Free Families

- Equivalence of Restriction Set and Cover-Free Families
- Generalization of (w, r)-cover-free concept

- Let $f : [0,1]^d \to \mathbb{R}$ be a real continuous function
- Sequence of points in the cube $\left(x_n
 ight)_{n\in\mathbb{N}}\subset [0,1]^d$
- Define $m_1 = f(x_1)$ and subsequently $m_{i+1} = \max(m_i, f(x_{i+1})), \ \forall i \in \mathbb{N}$
- Niederreiter [1, 2]: $m_n \xrightarrow{n \to \infty} M \iff f$ "sufficiently continuous" and points well distributed

$$M-\omega(d_N) \leq m_N \leq M, \quad \omega(t) := \sup_{||x-y|| \leq t} |f(x) - f(y)|$$

• By the dispersion of the point set $(x_n)_{n=1}^N$ we mean

$$d_N = \max_{x \in [0,1]^d} \min_{1 \le n \le N} ||x - x_n||$$

3/16

Discrepancy and Integration

• Approximation of the integral

$$I_N := \frac{1}{N} \sum_{i=1}^N f(x_i)$$

• If points are uniformly distributed, then

$$I_N \xrightarrow{N \to \infty} \int_{[0,1]^d} f(x) dx$$

• Error in approximation proportional to discrepancy

$$D_N = \sup_B \left| \frac{\#(X \cap B)}{\#X} - \mu(B) \right|,$$

where B are boxes with axes parallel to the cube

Dispersion

Definition 1

Let $X \subset [0,1]^d, d \in \mathbb{N}$ be a set of points in the space \mathbb{R}^d . By the dispersion of the set X we mean

$$\mathsf{disp}(X) := \sup_{B: B \cap X = \emptyset} |B|,$$

where $B = I_1 \times \cdots \times I_d$, $\forall j \in \hat{d} : I_j \subset [0, 1]$ is a box with axes parallel to the cube and the symbol |B| denotes its volume.

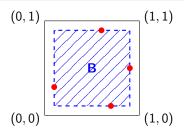


Figure: Box *B* forming the dispersion of $X = \{(0.7, 0.1), (0.9, 0.5), (0.1, 0.3), (0.6, 0.9)\}$ in \mathbb{R}^2

5/16

Definition 2

Let $n, d \in \mathbb{N}$. Then the *n*-th minimal dispersion of the cube $[0, 1]^d$ is defined as

$$disp(n,d) := \inf_{\substack{X \subset [0,1]^d \\ \#X = n}} disp(X)$$

and its inverse function as

$$N(\varepsilon, d) := \min\{n : \operatorname{disp}(n, d) \le \varepsilon\}.$$

• Clearly, $N(\varepsilon, d) = 1$ for every $\varepsilon \in [\frac{1}{2}, 1]$ and $d \in \mathbb{N}$

• Intuitively, $\operatorname{disp}(n,d) pprox n^{-1} \ orall d \in \mathbb{N}$

6/16

イロト イヨト イヨト

Illustration of Variable Behavior

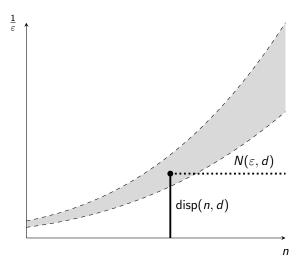


Figure: The relationship between disp(n, d) and $N(\varepsilon, d)$.

< 47 ▶

Estimation Development

- Lower bounds are much more difficult
- Upper bounds often use probabilistic methods
- Elementary estimate using the pigeonhole principle

$$rac{1}{n+1} \leq {\sf disp}(n,d) \implies rac{1}{arepsilon} -1 \leq {\sf N}(arepsilon,d)$$

• C. Aistleitner et al. [3]: $\exists C > 0, \forall d \in \mathbb{N} \text{ and } \varepsilon \in (0, \frac{1}{4})$:

$$C \frac{\log d}{\varepsilon} \le N(\varepsilon, d).$$
 (1)

• A. Litvak and G. V. Livshyts [4]: for any $d \ge 2$ and $\varepsilon \in (0, \frac{1}{2}]$:

$$N(\varepsilon, d) \le 12e \frac{4d \ln \ln \left(\frac{8}{\varepsilon}\right) + \ln \left(\frac{1}{\varepsilon}\right)}{\varepsilon}.$$
 (2)

8/16

• Data-mining [5]

- Some attributes never occur together
- Identification and quantification of empty spaces in data
- Useful for outlier analysis, anomaly detection, clustering, ...
- Quasi Monte-Carlo methods [6]
 - Points with low dispersion are better than random sampling
 - The difference is notably larger with increasing dimension
- Cutting undamaged parts of iron from a damaged block [7]
- Anywhere uniform point distribution is needed:
 - Optimization
 - Genetic algorithms
 - Computer graphics, ...

< □ > < 同 > < 回 > < Ξ > < Ξ

- Transition from infinitely many boxes to a discrete plane.
- Use of a testing set of boxes of volume greater than ε .
- Each box must intersect.
- Size of such a set $\rightarrow N(\varepsilon, d) \rightarrow \operatorname{disp}(n, d)$.

Image: A math the second se

Estimation via Restriction Set

• Use of cubes with one short and the remaining sides long.

Definition 3 (Testing Cubes)

Let $k, d \in \mathbb{N}$, $A \subset \{1, \ldots, d\}$, and $j \in \{1, \ldots, d\} \setminus A$. Define a testing cube $B_{j,A} = I_1 \times \cdots \times I_d \subset [0, 1]^d$ as:

- $I_j = (0, 2\varepsilon)$,
- $\forall i \in A : I_i = (2\varepsilon, 1),$
- $\forall l \in \{1,\ldots,d\} \setminus (A \cup j) : I_l = (0,1).$

Finally, construct the set $\mathcal{B} = \{B_{j,A} : A \subsetneq \{1, \dots, d\}, j \in \{1, \dots, d\} \setminus A\}.$

•
$$|A| \approx \frac{1}{\varepsilon} \implies |B_{j,A}| > \varepsilon.$$

• If $X = \{x^1, \dots, x^n\} \cap \mathcal{B} \neq \emptyset$, then

$$\forall A, \forall j, \exists u \in \hat{n} : (x^u)_j \in (0, 2\varepsilon) \text{ and } (x^u) \big|_A \in \prod_{i=1}^{|A|} (2\varepsilon, 1)$$

$$\iff \phi(x^u)_j = 0 \land \phi(x^u)\big|_A = 1$$

Restriction Set and Dispersion Estimation

Definition 4

Let $N, I, d \in \mathbb{N}$ such that $1 \leq I \leq d$. We say a set of points $x^1, \ldots, x^N \in \{0, 1\}^d$ is (I, d)-restriction set if $\forall A \subset \{1, \ldots, d\} : |A| = I - 1$ and $\forall j \in \{1, \ldots, d\} \setminus A$, there is a point x^u with

$$(x^u)_j = 0 \land (x^u)\big|_A = 1.$$

Subsequently, define the size of the smallest (I, d)-restriction set as

$$R(I,d) = \min\{N \in \mathbb{N} : \exists \{x^1, \dots, x^N\} \subset \{0,1\}^d \text{ that is } (I,d) \text{-restriction set} \}.$$

Probabilistic and combinatorial estimations can be constructed on R(I, d).
It can be shown that R(2^{k-2}, d) ≤ N(2^{-k}, d).

Corollary 5

There exists a constant C > 0 such that for any $\varepsilon \in (0, \frac{1}{2})$ and $d \in \mathbb{N}, d \ge 2$,

$$C\frac{\log d}{\varepsilon} \leq N(\varepsilon, d).$$

• It can be shown that the concept of a restriction set is equivalent to that of an *r*-cover-free system.

Definition 6

Let $d, r \in \mathbb{N}$ with r < d, and $\mathcal{F} = \{F_1, \ldots, F_d\}$ be a system of subsets of set X. We say \mathcal{F} is *r*-cover-free if

$$\forall A \subset \{1,\ldots,d\}, |A| = r, \ \forall j \in \{1,\ldots,d\} \setminus A : \ F_j \not\subset \bigcup_{i \in A} F_i.$$

Finally, define the smallest size of set X as

$$\mathcal{C}(1, r, d) = \min\{n \in \mathbb{N} : \{F_1, \dots, F_d\} \subset X^d, |X| = n \text{ is } r\text{-cover-free}\}.$$

イロト イボト イヨト イヨ

Estimation of Dispersion using r-cover-free families

- N. Alon, V. Asodi [8]: $\exists c > 0, \forall r, d \in \mathbb{N}: r \leq 2\sqrt{d}$ such that $c \frac{r^2 \log d}{\log r} < C(1, r, d)$.
- Proof principle analogous to the previous one.

Theorem 7

There exists c > 0 such that for any $d \ge 2$ and ε satisfying $\frac{1}{4} \ge \varepsilon \ge \frac{1}{4\sqrt{d}}$, the following holds:

$$\mathsf{N}(arepsilon,d) > rac{c\,\log d}{arepsilon^2\cdot\lograc{1}{arepsilon}}.$$

• Limitation that estimation holds only for limited $\varepsilon \to$ generalization and extension.

イロト イヨト イヨト

(3)

- Non-coverage of a single set can be generalized to non-coverage of intersections of multiple sets.
- $\{F_1, \ldots, F_d\}$ is (w, r)-cover-free if $\bigcap_{j \in W} F_j \not\subset \bigcup_{i \in A} F_i$.
- Allows considering cubes with more than one short edge.
- Using estimation for such sets, dispersion can again be estimated.
- Resulting estimation will be valid even for smaller ε .
- Also utilizing the recurent relationship

$$N(\xi, d) \ge k \cdot N(k\varepsilon, d) \quad \forall k \in \mathbb{N}, k\xi = \varepsilon$$

• Currently working on a rigorous mathematical proof.

15/16

イロト イヨト イヨト

- H. Niederreiter, P. Peart, *Localization of search in quasi-Monte Carlo methods for global optimization*. SIAM J. Sci. Stat. Comput. 7, 1986, 660-664.
- H. Niederreiter, *Random Number Generation and Quasi-Monte Carlo Methods*. SIAM, Philadelphia, 1992.
- C. Aistleitner, A. Hinrichs, D. Rudolf, *On the size of the largest empty box amidst a point set*. Discrete Applied Mathematics 230, 2017, 146–150.
- A. E. Litvak, G. V. Livshyts, *New bounds on the minimal dispersion*. Journal of Complexity 72, 2022, 101648.
- J. Edmonds, J. Gryz, D. Liang, R. J. Miller, *Mining for empty spaces in large data sets*. Theoretical Computer Science 296(3), 2003, 435–452.
- G. Rote, R. F. Tichy, *Quasi-Monte-Carlo methods and the dispersion of point sequences*. Mathematical and Computer Modelling 23, 1996, 9–23.
- A. Naamad, D. T. Lee, W.-L. Hsu, *On the maximum empty rectangle problem*. Discrete Applied Mathematics 8(3), 1984, 267–277.
- N. Alon, V. Asodi, *Learning a hidden subgraph*. SIAM Journal on Discrete Mathematics, 18(4), 2005, 697-712.

16/16

Thank you for your attention!

June 21, 2024

• • • • • • • • • • •