

Study of the Dipole Scattering Amplitude using the Balitsky-Kovchegov evolution equation

Outline

The rcBK equation

F_{2}
Impact parameter independent solutions

Geometric scaling

Introduction and the rcBK equation

The rcBK equation

Optimal setup

F_{2}
Impact parameter independent solutions

Geometric scaling

Introduction

- One of the most important ways of studying the inner structure of protons is the electron-proton scattering at large accelerators (HERA-Germany).
- This inner structure can be composed of quarks, anti-quarks and gluons and can be parametrized as the protons structure function \boldsymbol{F}_{2}, which can be directly measured.
- These observables can be also calculated from the so called evolution equations.
- Balitsky-Kovchegov (BK) evolution equation describes such systems and predicts the values of $\boldsymbol{F}_{\mathbf{2}}$ and $\boldsymbol{\sigma}_{\text {reduced }}$.

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into
a quark and anti-quark pair

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into
a quark and anti-quark pair

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into
a quark and anti-quark pair

This process is not a part of the observables that we compute.

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into a quark and anti-quark pair
\bar{q}

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into a quark and anti-quark pair
\bar{q}

$$
\begin{aligned}
& \left|\Psi_{T}\left(z, \vec{r}, Q^{2}\right)\right|^{2}=\frac{3 \alpha_{e m}}{2 \pi^{2}} \sum_{i} e_{q_{i}}^{2}\left(\left(z^{2}+(1-z)^{2}\right) \varepsilon^{2} K_{1}^{2}(\varepsilon r)+m_{q_{i}}^{2} K_{0}^{2}(\varepsilon r)\right) \\
& \left.\left|\Psi_{L}\left(z, \vec{r}, Q^{2}\right)\right|^{2}=\frac{3 \alpha_{e m}}{2 \pi^{2}} \sum_{i} e_{q_{i}}^{2}\left(4 Q^{2} z^{2}(1-z)^{2}\right) K_{0}^{2}(\varepsilon r)\right)
\end{aligned}
$$

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into a auark and anti-quark pair

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into a quark and anti-quark pair

$$
\sigma_{d i p}(\vec{r}, x)=2 \int d \vec{b} N(\vec{r}, x, \vec{b})
$$

Where $N(\vec{r}, x, \vec{b})$ is the scattering amplitude.

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

Virtual photon fluctuates into
a quark and anti-quark pair

Color dipole approach to DIS

A virtual photon is emitted by incoming lepton

This dipole interacts with the target hadron

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}} \iint d \vec{r} d z\left(\left|\Psi_{T}\left(z, \vec{r}, Q^{2}\right)\right|^{2}+\left|\Psi_{L}\left(z, \vec{r}, Q^{2}\right)\right|^{2}\right) \sigma_{d i p}(\vec{r}, x)
$$

Color dipole approach to DIS

For the computation of the structure function F_{2} we need:

Wave functions $\left|\Psi_{T}\left(z, \vec{r}, Q^{2}\right)\right|^{2}$ and $\left|\Psi_{L}\left(z, \vec{r}, Q^{2}\right)\right|^{2}$

- These we can obtain from QED
- For this we need the scattering amplitude $N(\vec{r}, x, \vec{b})$

Cross section of the interaction between
the dipole and the hadron $\sigma_{\operatorname{dip}}(\vec{r}, x)$

The BK evolution equation can be used as a tool to compute $N(\vec{r}, x, \vec{b})$

The rcBK evolution equation

The BK equation with NLO kernel and running coupling reads

Optimal setup of the computation

The rcBK equation

Optimal setup

Solving the rcBK equation

- 25 steps over one order of magnitude where the interval of $|\vec{r}|$

For the numerical computation we used: runs from 10^{-7} to 10^{2}

- 20 steps over the interval of $[0,2 \pi]$ in θ which is the angle between \vec{r} and $\overrightarrow{r_{1}}$
- Discretization of the dipole size vector and rapidity interval
- Simpson rule for integration $\longrightarrow \int_{a}^{b} f(x) d x=\frac{h}{3}\left(f\left(a_{0}\right)+4 f\left(a_{1}\right)+2 f\left(a_{2}\right)+\ldots+4 f\left(a_{m-1}\right)+f\left(a_{m}\right)\right)$
- Runge-Kutta method of fourth order
- Linear interpolation (in log-scale) for obtaining the values of $N\left(r_{2}, Y\right) \quad y_{n+1}=y_{n}+\frac{1}{6} h\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$

$$
k_{1}=f\left(x_{n}, y_{n}\right)
$$

$$
\begin{aligned}
k_{2} & =f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right) \\
k_{3} & =f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right) \\
k_{4} & =f\left(x_{n}+h, y_{n}+h k_{3}\right)
\end{aligned}
$$

Optimal setup

We varied the parameters that go in the computation in order to determine their influence on the overall precision and CPU time.

$$
D(r, Y)=\frac{\left|N_{\text {original }}(r, Y)-N_{\text {new }}(r, Y)\right|}{N_{\text {original }}(r, Y)}
$$

We fixed the proportional difference below 1\% for the relevant interval

Impact parameter independent rcBK solutions

The rcBK equation

F_{2}
Impact parameter independent solutions

Geometric scaling

Impact parameter independent rcBK solutions

Structure function $F_{2}\left(Y, Q^{2}\right)$

Reduced cross section $\sigma\left(Y, Q^{2}\right)$

Impact parameter independent rcBK solutions

Structure function $F_{2}\left(Y, Q^{2}\right)$

- 100s with an average personal computer (it took hours for other groups)
- The mean square error of the prediction was below $\mathbf{1 . 5 \%}$ of the experimentally measured value
- This is important for fitting the initial conditions, impact parameter dependent rcBK equation.

Geometric scaling

The rcBK equation

Optimal setup

F_{2}
Impact parameter independent solutions

Geometric scaling

Geometric scaling

Of course, are these results really relevant or just fitted to data?

The rcBK equation exhibits the phenomenon geometric scaling

The MV initial condition depends on four parameters. The geometrically scaled initial condition would require much less.

Geometrically scaled rcBK prediction

Conclusions

Conclusions

The $\mathbf{r c B K}$ evolution equation was solved on a wide interval of $\boldsymbol{Q}^{\mathbf{2}}$, values of $\boldsymbol{F}_{\mathbf{2}}\left(\boldsymbol{Y}, \boldsymbol{Q}^{\mathbf{2}}\right)$ and $\boldsymbol{\sigma}\left(\boldsymbol{Y}, \boldsymbol{Q}^{\mathbf{2}}\right)$ were computed.

Step in rapidity (RK method)
$-\Delta Y=0.01$

Order of the Runge- Kutta method	Order of interpolation	Interval over r (Simpson rule)
- Fourth order	- Linear interpolation	- 25 steps over one order of magnitude

Interval over θ (Simpson rule)
- 20 steps over $[0,2 \pi]$

Interval over the momentum fraction z

- 10000 steps over the interval [0,1]
- A geometrically scaled initial condition was obtained from the rcBK evolution equation intrinsic properties.
- The ideal choice for the rescaling parameter was determined to be $Q_{s}^{2}=0.07 \mathrm{GeV}^{2}$.
- This approach reduced dramatically the number of free parameters in necessary for this model and can be used to obtain a more physical description of the system.
- This initial condition was then used to predict values of structure function in regions that were not yet measured and future measurements (possibly at the LHC) will determine the validity of this approach to the dipole model and rcBK equation in particular.

Thank you for your attention

I presented the Optimal setup section at POETIC6 conference in Ecole Polytechnique in Paris. The Optimal setup was then published by the European Physics Journal. The Geometrical scaling section will be submitted for publishing in the next few weeks.

How do we compute the rcBK evolution equation?

Solving the impact parameter independent rcBK

- Choose an equidistant grid and precompute the initial condition.
- Precompute the values of Kernel and r_{2} into a three dimensional array.
- For each value of \boldsymbol{r}, you need to compute the values of Kernel, Split and Recomb (integrate over $\overrightarrow{\boldsymbol{r}}_{\mathbf{1}}$).
- For this you will need the values of $\boldsymbol{N}\left(\boldsymbol{r}_{2}, \boldsymbol{Y}\right)$ that since $r_{2}=\sqrt{r^{2}+r_{1}^{2}-r r_{1} \cos (\theta)}$ do not always fall on the precomputed grid.
- Therefore you need to linearly interpolate with the neighboring values. If $N\left(r_{2}, Y\right)$ falls outside the considered interval, its value is fixed as 0 or 1 (smaller or greater then the values of the interval).
- First, for each value of $\boldsymbol{r}_{\mathbf{1}}$ integrate over the interval of $\boldsymbol{\theta}$.
- Then integrate this half-integrated function over $\boldsymbol{r}_{\boldsymbol{1}}$.
- This then allows you to calculate the Runge-Kutta coeffitients.
- Then with RK method you can determine the amount of change in the point \boldsymbol{r} to the function $N(r, Y)$ and store it in an array.
- Once all values of r are accounted for, you can add the array that stores the change to the function $N(r, Y)$ and therefore acquire $\boldsymbol{N}(\boldsymbol{r}, \boldsymbol{Y}+\boldsymbol{h})$.
- This you can repeat until you reach the desired value of rapidity .

Solving the impact parameter dependent rcBK

$$
\begin{array}{lll}
\vec{r}=\vec{x}_{0}-\vec{x}_{1} & \vec{b}=\frac{\vec{x}_{0}+\vec{x}_{1}}{2} & \theta_{b r} \text { is fixed in the computation } \\
\vec{r}_{1}=\vec{x}_{0}-\vec{x}_{2} & \vec{b}_{1}=\frac{\vec{x}_{0}+\vec{x}_{2}}{2} & \theta_{b r_{1}=\theta_{b r}+\theta_{r r_{1}}} \\
\vec{r}_{2}=\vec{x}_{2}-\vec{x}_{1} & \vec{b}_{2}=\frac{\vec{x}_{2}+\vec{x}_{1}}{2} & \theta_{b r_{2}}=\theta_{b r}+\theta_{r r_{2}}
\end{array} \quad \theta_{r r_{1}} \text { is a parameter in the numerical computation }
$$

In this approach, we need to obtain the values of impact parameters in order to evaluate the integral of rcBK equation and compute the RK method

$$
\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(N\left(\vec{r}_{1}, \vec{b}_{1}, Y\right)+N\left(\vec{r}_{2}, \vec{b}_{2}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\vec{r}_{1}, \vec{b}_{1}, Y\right) N\left(\vec{r}_{2}, \vec{b}_{2}, Y\right)\right)
$$

RK method goes for all values of $|\vec{b}|$

$$
\begin{aligned}
& \left|\vec{b}_{1}\right|=\left|\vec{b}+\frac{\vec{r}_{2}}{2}\right|=\sqrt{|\vec{b}|^{2}+\frac{\left|\vec{r}_{2}\right|^{2}}{4}-|\vec{b}|\left|\vec{r}_{2}\right| \cos \theta_{b r_{2}}} \\
& \left|\vec{b}_{2}\right|=\left|\vec{b}-\frac{\vec{r}_{1}}{2}\right|=\sqrt{|\vec{b}|^{2}+\frac{\left|\vec{r}_{1}\right|^{2}}{4}-|\vec{b}|\left|\vec{r}_{1}\right| \cos \theta_{b r_{1}}}
\end{aligned}
$$

How do we compute the rcBK evolution equation fast?

Speeding up the computation

- Integrating only over $[0, \pi]$ in θ and multiplying by two since it only comes in cosine
- Precomputing the values of r_{2} and kernel into a large three-dimensional array
- Using the fact that the $B K$ equation does not depend explicitly on Y and dividing the integral into

$$
\text { Kernel }=\int d \vec{r}_{1} K\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}\right) \quad \text { Split }=\int d \vec{r}_{1} K\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}\right)\left(N\left(\vec{r}_{1}, Y\right)+N\left(\vec{r}_{2}, Y\right)\right) \quad \text { Recomb }=\int d \vec{r}_{1} K\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}\right) N\left(\vec{r}_{1}, Y\right) N\left(\vec{r}_{2}, Y\right)
$$

And from these, we can compute the Runge Kutta coefficients as follows

$$
\begin{array}{ll}
k_{1}=\text { Split }-N(\vec{r}, Y) \text { Kernel }- \text { Recomb } & k_{3}=k_{2}+\frac{1}{2} h k_{2} \text { Kernel }-\frac{1}{2} h k_{2} \text { Split }-\frac{1}{4} h^{2} k_{2}^{2} \text { Kernel } \\
k_{2}=k_{1}+\frac{1}{2} h k_{1} \text { Kernel }-\frac{1}{2} h k_{1} \text { Split }-\frac{1}{4} h^{2} k_{1}^{2} \text { Kernel } & k_{4}=k_{3}+\frac{1}{2} h k_{3} \text { Kernel }-\frac{1}{2} h k_{3} \text { Split }-\frac{1}{4} h^{2} k_{3}^{2} \text { Kernel }
\end{array}
$$

How do we determine the optimal setup?

Interval of main interest

The unintegrated structure function at rapidity $Y=2$

The unintegrated structure function at rapidity $Y=10$

Determining the optimal setup

$$
D(r, Y)=\frac{\left|N_{\text {original }}(r, Y)-N_{\text {new }}(r, Y)\right|}{N_{\text {original }}(r, Y)}
$$

Variation of steps over $[0, \pi]$ in $\theta(5-10,10-20)$.

Order of the Runge-Kutta method variation

Variation of steps over one order of magnitude in $r(10-25,25-50)$.

Impact parameter dependent Solutions

Impact parameter dependent solutions

The impact parameter dependent rcBK evolution equation reads:

$$
\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(N\left(\vec{r}_{1}, \vec{b}_{1}, Y\right)+N\left(\vec{r}_{2}, \vec{b}_{2}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\vec{r}_{1}, \vec{b}_{1}, Y\right) N\left(\vec{r}_{2}, \vec{b}_{2}, Y\right)\right)
$$

with NLO kernel $K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)=\frac{\alpha_{s}\left(r^{2}\right) N_{c}}{2 \pi}\left[\frac{r^{2}}{r_{1}^{2} r_{2}^{2}}+\frac{1}{r_{1}^{2}}\left(\frac{\alpha_{s}\left(r_{1}^{2}\right)}{\alpha_{s}\left(r_{2}^{2}\right)}-1\right)+\frac{1}{r_{2}^{2}}\left(\frac{\alpha_{s}\left(r_{2}^{2}\right)}{\alpha_{s}\left(r_{1}^{2}\right)}-1\right)\right] \theta\left(r_{1}^{2}-\frac{1}{m^{2}}\right) \theta\left(r_{2}^{2}-\frac{1}{m^{2}}\right)$
where the cutoff parameter $m=0.35 \mathrm{GeV}$

$$
N^{0}(r, b, 0)=1-\exp \left(-c r^{2} \exp \left(-d b^{2}\right)\right) \quad \text { where } c=0.0643 \mathrm{GeV}^{2} \text { and } d=0.125 \mathrm{GeV}^{2}
$$

Impact parameter dependent solutions

The impact parameter dependent rcBK evolution equation reads:

$$
\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(N\left(\vec{r}_{1}, \vec{b}_{1}, Y\right)+N\left(\vec{r}_{2}, \vec{b}_{2}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\vec{r}_{1}, \vec{b}_{1}, Y\right) N\left(\vec{r}_{2}, \vec{b}_{2}, Y\right)\right)
$$

with NLO kernel $K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)=\frac{\alpha_{s}\left(r^{2}\right) N_{c}}{2 \pi}\left[\frac{r^{2}}{r_{1}^{2} r_{2}^{2}}+\frac{1}{r_{1}^{2}}\left(\frac{\alpha_{s}\left(r_{1}^{2}\right)}{\alpha_{s}\left(r_{2}^{2}\right)}-1\right)+\frac{1}{\left.r_{2}^{2}\left(\frac{\alpha_{s}\left(r_{2}^{2}\right)}{\alpha_{s}\left(r_{1}^{2}\right)}-1\right)\right] \theta\left(r_{1}^{2}-\frac{1}{m^{2}}\right) \theta\left(r_{2}^{2}-\frac{1}{m^{2}}\right)}\right.$
where the cutoff parameter $m=0.35 \mathrm{GeV}$

$$
N^{0}(r, b, 0)=1-\exp \left(-c r^{2} \exp \left(-d b^{2}\right)\right) \quad \text { where } c=0.0643 \mathrm{GeV}^{2} \text { and } d=0.125 \mathrm{GeV}^{2}
$$

- Impact parameter dependence introduces two additional dimensions to the computation (| $|\overrightarrow{\boldsymbol{b}}|$ and $\boldsymbol{\theta}_{\boldsymbol{r b}}$)
- This elongates the running time of the evolution up to $\mathbf{5}$ hours on a regular PC (for other groups, computation took weeks).

Impact parameter dependent solutions

The initial condition was cut at $\frac{2}{m}$ since $\vec{r}=\vec{r}_{1}+\vec{r}_{2}$

Impact parameter dependent solutions

Scattering amplitude with respect to r and b.

Impact parameter dependent solutions

We were the first ones to show that the Runge-Kutta method can be used for solving this equation.

This approach enabled me to reduce the computation time by nearly a factor of 100 .

- Shows a completely different shape even for the values of small b.
- Decreases for high values of r. In this approach, dipoles that are too large do not interact with the target hadron as easily.

Impact parameter dependent solutions

