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Introduction

Great attention in the previous decade was given to studying the properties of par-
ticles at the high-energy limit of QCD. Deep Inelastic Scattering (DIS) studied at
the HERA collider was a good tool for measuring such properties. Evolution equa-
tions such as BFKL [1–5], BK [6–10], JMWLK [11–15] and DGLAP [16–18] are used
to describe the properties of particles that take part in high energy collisions. The
BFKL evolution equation predicts the emergence of new partons as the energy of
the collision increases. In this approach, at leading logarithmic (LL) accuracy the
gluon density is not bound by unitarity restrictions.

In the experiments at large accelerators such as HERA or LHC, it was shown that
the number of partons does not completely satisfy this equation and that there are
less partons then predicted. Measured cross sections predicted by these evolution
equations grow above the experimentally obtained values at high energies, where
the largest contribution to the cross section is due to newly created gluons. The fact
that predictions from LL-BFKL equation overshoot experimental data may be due
to recombination processes inside the hadrons and it is included in the BK evolution
equation. Recombination processes take place when it is not anymore energetically
favorable for a new parton to emerge in the hadron and its entire phase space is
already populated.

The BK evolution equation is an integro-differential equation and there are several
ways to solve it numerically [19–22]. The BK evolution equation considered in this
work includes running coupling kernel that takes into account the two loop processes
and assumes both impact parameter dependent and independent solutions.

Using numerical methods such as the Runge-Kutta method of fourth order and
Simpson’s rule, one can obtain predictions for the structure functions and reduced
cross sections of DIS that include recombination processes within the hadron. Nu-
merical methods used to compute these values need to be studied and an optimal
setup regarding the precision and speed of computation has to be tested [23].

The solution of the BK equation depends on the considered initial condition. Cur-
rently used initial conditions require several parameters that need to be fitted from
data in order to obtain valid predictions for observable quantities. It is desirable
to come up with an initial condition that would require less parameters and would
correspond to the physical nature of this equation. Geometric scaling [24–27] is a
phenomenon that might be used for acquiring such an initial condition . This ap-
proach generalizes the evolution of the solution towards higher rapidities and allows
us to reverse this evolution back to the starting rapidities and corresponding Bjorken-
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x. The properties of this acquired initial condition require only a single parameter
that needs to be fitted from data and is obtained solely from the properties of the
integro-differential equation itself. However in this approach, the measured structure
functions cannot be described in as straightforward way as it was with the original
initial condition. The change of the evolution behavior when this initial condition
is introduced needs to be studied in order to answer the question of validity of this
approach and to determine the new set of computation parameters such as σ0.

Results obtained by solving this equation can be used in describing and understand-
ing processes that occur in heavy-ion physics, especially on experiments such as LHC
or RHIC.

In this work, we first manage to reproduce the results obtained by other theoretical
groups both for the impact parameter independent equation [21]. Since these nu-
merical computations are typically CPU-time demanding, we then focused on the
optimization of the numerical method. We managed to reduce the running time
by more then one order of magnitude after implementing the optimized computa-
tion [23]. Then we established an analysis to find and test a new initial condition
that would be given by the intrinsic properties of the rcBK equation. The proper-
ties of this scaled initial condition proved to be of a different nature then those of
the originally considered MV initial condition. We tested those properties and then
established the optimal way of obtaining such initial condition. The scaled initial
condition was then used to predict values of the structure function in regions where
it differs from the MV initial condition.

My personal contribution to the results presented in this thesis is the following:

1. Implementation of the Runge-Kutta method of order one, two and four to
solve the rcBK evolution equation.

(a) The method of order two has already been used in [21], and I have used
those results to cross check my implementation.

(b) The method of order four has been introduced in [22], and I have used
those results to cross check my implementation

2. I have searched for the best parameters of the numerical setup to balance the
speed of execution with the accuracy of the numerical results. These results
are new; they are presented in Section 3.1 and have been reported in [23].

3. I have explored the use of initial conditions obtained from solutions of the
rcBK equations at large rapidities using geometric scaling. These results are
new. They are discussed in Section 3.3 and are intended for publication in the
near future.

This contribution is a subsection to my Diploma thesis that was submitted in the
May of 2016.
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Chapter 1

High energy collision
phenomenology

1.1 Color dipole approach to DIS

So far we have shown how the inner composition of proton changes with respect to
energy and scale of the incoming photon.

If we consider the target rest frame, the lepton - hadron collision is as follows.
First, the incoming lepton emits a virtual photon. This photon then spontaneously
fluctuates into a quark - antiquark color dipole (analog to the dipole in electrody-
namics). This dipole then interacts strongly with the target proton and its further
fluctuation back into a photon is disrupted. This approach is called the Color dipole
model [35–40]. The fluctuation of a photon into the color dipole is necessary be-
cause of new particles that emerge from the collision, which is only possible when
strong interaction is present and could not be described by mere electromagnetic
interaction.

Figure 1.1: Color dipole fluctuating from the virtual photon [41].

At small x, it can be shown that the lifetime of such quark - antiquark fluctuation
is greater than the average time of the whole interaction [31], which is important
because then the dipole has enough time to react with the target hadron before it
annihilates. The cross section of the total photon-proton scattering is shown in 1.1,
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where | Ψi
T,L |2 is the wave function of the photon that fluctuates to create a color

dipole. Indexes T and L correspond to transverse and longitudinal polarizations of
the incident photon and eqi , mqi and z correspond to fractional electric charge of
quark qi, its mass and fraction of the longitudinal momentum of photon it carries.

σγ
∗−h
T,L (x,Q2) =

∑
i

∫
d~rdz | Ψi

T,L(z, ~r) |2 σqq̄(~r, x) (1.1)

The final cross section is then computed by integrating the photon-color dipole
wavefunction and the cross section of the quark-antiquark dipole scattering of the
proton target over all transverse dipole sizes ~r and over all possible values of photon’s
fractional momentum z [21].

Using the dipole cross-section σqq̄(r, x) we can compute the structure function F2 as
shown in Eq. 1.2 and this can then be measured experimentally.

F2(x,Q2) =
Q2

4π2αem

∫ ∑
i

d~rdz | Ψi
T,L(z, ~r) |2 σqq̄(~r, x̃), (1.2)

[22] where | Ψi
T,L(z, ~r) |2 is a sum of squared longitudinal and transversal photon

wave functions as shown in Eq. 1.4 and x̃ is introduced due to photoproduction limit
as shown in Eq. 1.3 [42].

x̃ = x

(
1 +

4m2
qi

Q2

)
, (1.3)

where the mass of the incident quark is set to the value of 140 MeV2 for u,d and s
quarks. For charm quark, the mass is set to 1.27 GeV2 and 4.2 GeV2 for the beauty
quark [43].

| Ψi
T,L(z, ~r) |2=| Ψi

T (z, ~r) |2 + | Ψi
L(z, ~r) |2 (1.4)

and the longitudinal and transversal photon wave functions are given by

| Ψi
T (z, ~r,Q2) |2=

3αem
2π2

e2
qi

((z2 + (1− z)2)ε2K2
1(εr) +m2

qi
K2

0(εr)) (1.5)

| Ψi
L(z, ~r,Q2) |2=

3αem
2π2

e2
qi

(4Q2z2(1− z)2K2
0(εr)) (1.6)

where z is the fraction of the total momentum carried by the quark, K0 and K1 are
the MacDonald functions and

ε2 = z(1− z)Q2 +m2
qi
, (1.7)

where mqi is the mass of the considered quark.
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The reduced cross-section is obtained from relation [21]

σr(x, y,Q
2) = F2(x,Q2)− y2

1 + (1− y)2
FL(x,Q2), (1.8)

where inelasticity y is obtained from y = Q2/sx and
√
s is the CMS collision energy.

The actual dipole scattering cross section is then computed by integrating the dipole-
proton scattering amplitude over the impact parameter as shown in Eq. 1.9.

σqq̄(r, x) = 2

∫
d~bN(x, r,~b) (1.9)

This dipole cross section then covers all the QCD effects and can be also obtained
from the BK evolution equation. If we neglect the dependence of the scattering
amplitude N on the impact parameter, the integral over it can be simplified into
expression 1.10. [44],

σqq̄(r, x) = σ0N(x, r) (1.10)

where σ0 is a parameter that we fit from data.

1.2 Evolution equations

During the interaction, color dipole exchanges a particle with the target hadron. To
maintain the color conservation, the exchanged particle must be colorless and in the
first approximation we consider it to be a pair of gluons. The actual complex particle
that is exchanged is called Pomeron. A linear approach to the interaction such as the
one used in BFKL evolution equation suggests only one particle exchange between
the color dipole and target hadron whereas non-linear evolution equations such as
the BK equations suggest multiple pomeron exchanges.

If we fix the scale of the virtual photon and increase the energy of the collision, we
observe that some gluons start to overlap due to fixed dimensions of the proton itself.
In this case we have to take into account the recombination processes that take place
among gluons as they become more influential. The scale when gluons start to overlap
is called saturation scale and occurs when most of the phase space in the proton
is already occupied by other gluons. Further decreasing of Bjorken x will then not
result into further gluon number rise since the whole system is already saturated and
the new gluons are compensated with the recombination processes and a dynamical
balance is established. This situation varies for different scales as with higher Q2,
we decrease the dimensions of the gluons themselves. We can determine a so called
saturation scale Qs at which this effect takes place with respect to the total energy.
These non-linear recombination processes are described by the Balitsky-Kovchegov
evolution equation (BK).

6



1.2.1 Balitsky-Kovchegov evolution equation

Balitsky-Kovchegov evolution equation (BK) is one of the equations that describe the
evolution of the scattering amplitude N . It was derived from the JIMWLK evolution
equations in the limit of large number of colors Nc by Kovchegov [10, 49, 50]. It is
a modification of the BKFL evolution equation and unlike BFKL, does account for
the nonlinear effects of gluon recombination. The BK evolution equation is shown
in Eq. 1.11 [51,52]

∂N(r, Y )

∂Y
=

∫
d~r1K

run(r, r1, r2)(N(r1, Y )+N(r2, Y )−N(r, Y )−N(r1, Y )N(r2, Y )),

(1.11)

where Krun(r, r1, r2) can be expressed as in Eq. 1.12 [53]

Krun(r, r1, r2) =
Ncαs(r

2)

2π2

(
r2

r2
1r

2
2

+
1

r2
1

(
αs(r

2
1)

αs(r2
2)
− 1

)
+

1

r2
2

(
αs(r

2
2)

αs(r2
1)
− 1

))
(1.12)

and ~r2 = ~r− ~r1. If we disregard the last term in the BK equation, we obtain a linear
equation that can be shown to be equivalent to the BFKL evolution equation [45].
As the rapidity increases, this linearized version rises the scattering amplitude above
any boundaries.

The coupling that is used in the kernel of the integro-differential equation depends
on the number of considered quark flavors according to equation 1.13.

αs,nf (r
2) =

4π

β0,nf ln

(
4C2

r2Λ2
nf

) , (1.13)

where

β0,nf = 11− 2

3
nf . (1.14)

The constant C2 is the uncertainty coming from the Fourier transformation that was
used to derive this result and is usually fit to data [44]. The constant nf corresponds
to the number of flavors that are active, and is usually set to a value of 3 in the light
flavor quarks approximation.

Λ2
nf

is called the QCD scale parameter and its value depends on the value of nf in
the variable nf scheme. When heavier quark flavors are active (charm and beauty
quark) 1.2.1, its value needs to be calculated from the relation [21]

Λnf−1 = (mf )
1−

β0,nf
β0,nf−1 (Λnf )

β0,nf
β0,nf−1 . (1.15)
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fit Q2
0 C Λ2

nf
γ σ0

GBW 0.241 2.46 0.241 0.971 32.357

MV 0.165
√

6.5 0.241 1.13 32.895

Table 1.1: A possible values of the initial condition parameters [21].

To determine the value of Λ5, the experimentally measured value of αs(MZ) =
0.1196± 0.0017 at the Z0 mass MZ = 91.18 GeV [54] and the Eq.1.13 can be used.
Value of nf are set for values of r2 for which the momentum scale is heavier then
the heaviest quark considered. This condition can be expressed as

r2 <
4C2

m2
f

. (1.16)

Since all dipole sizes are accounted for in the BK evolution equation, there is a need
to reduce the coupling after a certain value is reached, so that the maximal value
of coupling constant would not exceed a set limit [21, 44]. The modified running
coupling takes into account the next to leading two loop expressions [33].

In order to compute the Balitsky Kovchegov evolution equation and get the cross
section of the whole interaction or a structure function of a hadron, one must start
with certain initial conditions. One of the frequently used initial conditions is the
GBW initial condition Eq. 1.17 [44].

NGBW (r, x = x0) = 1− exp
(
−(r2Q2

0)γ

4

)
(1.17)

Another typical initial condition for the BK equation is a MV initial condition
1.18 [55]

NMV (r, x = x0) = 1− exp
(
−(r2Q2

0)γ

4
ln

(
1

rΛ
+ e

))
(1.18)

Where Λ represents the infrared cutoff of the dipole cross section and does not have to
be equal to Λ2

nf
introduced earlier [44], Q2

0 is the scale for the biggest Bjorken x that
is considered in the computation and γ is a parameter that controls the slope of the
fall of the dipole amplitude when r is decreased. However the BK evolution equation
does not incorporate the quantum fluctuations of the gluon field and therefore its
saturation scale is not entirely accurate. The fluctuations are not accounted for in
the fixed coupling approach. The running coupling approach shown in Eq. 1.13 evens
its effects out [45]. Table 1.2.1 shows possible values for the initial parameters.
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Chapter 2

Solving the rcBK equation

2.1 Impact parameter independent rcBK equa-

tion

The Balitsky-Kovchegov equation unfortunately does not have an analytic solution,
so it has to be solved numerically such as in [19–21]. A usual way of solving this
equation involves the Simpson method for integration, a linear interpolation for
acquiring values of N(r) for intermediate positions and the Runge-Kutta method
for solving the differential equation.

Since both the Simpson method and the Runge-Kutta method use points in grid
and not continuous functions, the initial condition is computed on an equidistant
grid with step h. We choose to set a logarithmic grid over the dipole distance vector
~r (and later also for the impact parameter ~b) To obtain the next step in rapidity
evolution, one must use the RK method and therefore compute the integral

∫
d~r1K

run(r, r1, r2)(N(r1, x) +N(r2, x)−N(r, x)−N(r1, x)N(r2, x)). (2.1)

This integral depends on the value of r, so it is necessary to compute it for every
value of r on the whole considered interval separately. To compute this integral,
Simpson method was used. That means that for every value of r, a cycle has been
run for the whole interval integrating the function over ~r1, where the value of r2 was
computed according to

r2 =
√
r2 + r2

1 − 2rr1cos(θrr1) (2.2)

where θrr1 is the angle between ~r and ~r1. If the point r2 does not match exactly one
of the grid points on which the values of the initial condition has been computed, it
is necessary to interpolate. Lagrange interpolation of first or third order is consid-
ered since even values of interpolations order tend to inaccurately interpolate linear
regions.
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For every point r1 inside the integral 2.1, integral over θrr1 has been computed. This
variable goes from 0 to 2π but since cosine is an even function, we can simplify this
by integrating over [0, π] instead and multiplying the result by a factor of two. Once
the function is integrated over θrr1 in every point r1, it is possible to integrate these
integrated functions and determine the final integral. This integral can be split in
three separate terms:

Kernel =

∫
d2~r1K

run(r1, r2, r)

Split =

∫
d2~r1K

run(r1, r2, r)(N(Y, r1) +N(Y, r2))

Recomb =

∫
d2~r1K

run(r1, r2, r)(N(Y, r1)N(Y, r2)),

(2.3)

which allows us to speed up the Runge-Kutta method. These three terms are then
used to compute the next step in the rapidity evolution and this step is then added
to the initial condition in every point of r. The obtained function be used as an
input to this process until the desired rapidity is reached.

To speed up this process, it is useful to create a three-dimensional array in the very
beginning of the computation that will hold the values of Krun(r, r1, r2) for every
combination of r, r1 and r2 so that they don’t have to be computed over and over.
Same principle was used to hold the values of r2(r, r1, θrr1).

To determine the values of αrun(r2), equation 1.13 is used on a region, where r >
rrun holds. The value of rrun is chosen so that the total value of αrun(r2) would never
exceed the value of 0.7 [21].

For some choices of r, r1 and θrr1 the value of Krun(r, r1, r2) diverges. It is then neces-
sary to exclude these points from the whole integral, because whereas in continuous
integration a diverging singularity does not necessarily mean divergence of the entire
integral, in the discrete approximation an infinite value added to the integration sum
changes the result irreversibly.

2.2 Geometric Scaling

The solution of the BK evolution equation exhibits a phenomenon called Geometric
scaling [24]. After a few units of rapidity, the initial condition is ”forgotten” by the
evolution and the solution propagates independently. Moreover, as rapidity increases,
its geometric properties do not change, the solution only shift towards lower values of
r. This then allows us to either predict future values of the evolution, or ”rewind”back
the evolution and hope to obtain a new initial condition to this integro-differential
equation, that would require less parameters and that would be obtained solely from
the intrinsic properties of the BK equation. The evolution of the solution to the BK
equation is shown in Fig. 2.1 where we can see the effect of geometric scaling.

The evolution equation itself forgets the shape of the initial condition in the evolution
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in few units of rapidity. Even if we choose to start with dramatically different initial
conditions, by the rapidity Y = 8 the solution yields its usual shape.

Figure 2.2 shows the evolution for a simple linear initial condition that has a value
of 0 for all dipole sizes below 1, linearly grows to one in the (1,10) interval and has a
value of 1 elsewhere. Even more extreme initial condition was considered in Figure
2.3, that shows the evolution for an initial condition that exceeds the value of 1 for
N(r, Y ). It has a value of 0 for r smaller then 1, linearly grows up to the value of
1.5 at the dipole size of twenty, and is set to 1 for larger dipole sizes. Final initial
condition that was tested is shown in Fig. 2.4. It does not reach the value of one for
N(r, Y ) anywhere on the interval and is set to 0 for the dipole sizes smaller than one,
grows linearly to the value of 0.5 at r = 5 and stays at that value for the remaining
part of the interval. Note that the dipole size axis is in the logarithmic scale.
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 0.4
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 0.7

 0.8

 0.9

 1

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

N
(r

,Y
)

r [GeV-1]

N(r,0)
N(r,1)
N(r,5)

N(r,10)
N(r,50)

N(r,100)

Figure 2.1: The shape of the solution to the BK equation shows geometric scaling
properties.

We can see that these extreme initial conditions seem not to affect the later evolution
and that the evolution equation itself shapes the curve into a predetermined shape.
In all of these cases we can see that by rapidity of about 10, the shape of the initial
condition is suppressed and that the evolution than continues similarly for all initial
conditions.

For obtaining the geometrically scaled solution, we ran the MV initial condition to
high rapidity (Y = 100) where the integro-differential equation ”forgot” the shape
of the initial condition and then re-scaled it to the starting value.
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Figure 2.2: Evolution of N(r,Y) when a simple linear initial condition is used.

First, we found r100
s according to the condition.

N(r100
s , Y = 100) = 0.5, (2.4)

and then we computed the value of r0
s from the saturation scale as

Qs0 = 1/r0
s . (2.5)

The saturation scale Q2
s0 is a free parameter that needs to be fitted from the data.

Since for such obtained value of r0
s stands

N(r0
s , Y = 0) = 0.5, (2.6)

we then calculated the shift in the r-axis in logarithmic scale according to

∆r = ln(r100
s )− ln(r0

s) (2.7)

and then re-scaled the solution to the rcBK equation as

N(ln(r), Y = 0) = N(ln(r)−∆r, Y = 100). (2.8)

We linearly interpolated when the values of ln(r)−∆r got of the precomputed grid.

The initially considered value for the saturation scale was set as Q2
s0 = 0.07 GeV2.

The values of F2data
F2rcBK

were evaluated and fitted with a constant to determine the new
value of σ0 since the original value obtained with MV initial conditions can differ.
A second propagation to Y = 100 and re-scaling of the initial condition was carried
out to determine the validity of the assumption that by Y = 100, the rcBK equation
”forgot” its initial condition.
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Figure 2.3: Evolution of N(r,Y) when an atypical initial condition is used, that
exceeds the value of one.
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Figure 2.4: Evolution of N(r,Y) when an atypical initial condition is used, that does
not reach one.
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Chapter 3

Results

3.1 The Optimal Setup

To find the optimal setup of parameters that are used throughout the computa-
tion, their influence on the result has been analyzed [23]. For each parameter, it
was necessary to find a reasonable ratio between precision and running time of the
computation. Therefore each parameter has been varied and the amount of change
to the resulting function was studied.

As a default computation setup, the MV initial condition with the value of param-
eters shown in Tab. 3.1 were used in the Runge-Kutta method of fourth order, 25
steps over each order of magnitude in r, 10 steps in the interval of [0, π], 10000 steps
in the integration over the interval [0,1] of z in the photon wave function compu-
tation, linear interpolation method and a step of 0.01 over Y in the Runge-Kutta
method.

The variations of the type of method where the Runge-Kutta method of fourth
order, the Ralston method and the Euler method have been compared. We showed
that the difference between results obtained by the Euler and RK2 methods is about
twice as high as the difference between the RK2 and RK4 methods and is of the
order of one percent of the total value. However the difference between the running
times for the Euler method and the RK4 method is not as significant and therefore
we will restrict ourselves to the RK4 in the following computations.

A variation for the integration step over the parameter θrr1 has been done. Steps of
5, 10, 20 and 40 have been compared at various rapidities to determine the optimal
speed/precision ratio. The variation of the scattering amplitude when five steps over
the interval of [0, π] are considered instead of 10 reaches up to 25% for the rapidity
of Y = 10 and decreases slowly with rising dipole size r. The change of the resulting

Fit Q2
0 C Λ2

nf
γ σ0

MV 0.165 2.52 0.241 1.135 32.895

Table 3.1: Parameters for the default MV initial condition [21].

14



function when 20 steps are introduced instead of 10 over [0, π] starts with a value of
about 1% for the rapidity of 10 but decreases rapidly with increasing r. As we will see
further in the thesis, the small values of r are not as important for the comparison to
the experimental data because of the behavior of the wave function term. Increasing
the steps further results in an even smaller variation of the scattering amplitude.

A variation over the integration step r has been done. The values of 10, 25, 50 and 100
per order of magnitude were compared. We have shown that the difference between
the result obtained by the method using 10 steps per order of magnitude and 25
steps exceeds the value of 2% on the central part of the interval for the rapidity
of 10. This region is particularly important for the precision of the obtained result
as shown in the following section. When we use 50 steps per order of magnitude,
the difference between the results obtained with 25 is less than 1% for most of the
interval with the exception of values of r smaller then 10−6. The scattering amplitude
variation when 100 steps per order of magnitude are introduced has also less then
1% difference when compared to the previous 50 steps method.

Various methods of interpolation have been tested. As it turns out, the cubic inter-
polation is not good for this computation since it does not describe well the regions
where the slope changes rapidly and an error is introduced into the evolution. For
the evolution with the use of cubic interpolation, we have shown that in some re-
gions, the value of N(r, y) exceeds the value of one, which is violating the fact that
its value have to fall within the [0,1] interval.

The step of the Runge-Kutta method has also been varied. The obtained scattering
amplitude can differ by 4% at rapidity Y = 10 when steps of 0.05 and 0.01 are
compared, for further interval splitting (from 0.01 to 0.005) the scattering amplitude
variation does not exceed the value of 0.6% at the rapidity of 10.

Therefore we conclude that for our case, we will restrict ourselves to use the set
of computation parameters for the impact parameter independent rcBK as follows.
Runge-Kutta method of fourth order, linear interpolation, a step in rapidity of 0.01,
25 steps over the order of magnitude in r and 10 steps over the interval [0, π] in the
integration over θrr1 . We will assume that the b-dependent rcBK equation would
exhibit a similar behavior since the methods and numerical complexity of the com-
putation does not change.

3.2 rcBK solutions without impact parameter de-

pendence

The Balitsky Kovchegov evolution equation was used to obtain the following results
combined with Simpson’s rule for integration and the Runge-Kutta method of fourth
order for solving the differential equation.

The properties of the photon wave function | ψT,L |2 weighted with several factors
that are needed to compute the proton structure function and reduced cross section
are shown in the following figures as well as the evolution of N(r, Y ) with respect
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to rapidity and r. Fig. 3.2 shows the dependence of | ψT,L |2 on r for different values
of Q2.
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Figure 3.1: The dependence of N(r, Y ) on Y for various values of r.

To obtain the structure function F2(x,Q2) for the b-independent case, it is only
needed to integrate the function shown in Fig. 3.3 and multiply it by a constant
factor. This function reaches a value of 10−8 at r = 0.01 GeV−1, which is below its
maximum value by a factor of 10−4. Similar situation occurs at r = 40 GeV−1. So
the region of the main interest and desired precision for obtaining an accurate value
of F2(x,Q2) is r ∼ (0.1, 30) GeV−1.

Figures 3.4 and 3.5 show the predicted values of the structure function and the re-
duced cross section for the b-independent case compared with the data from HERA.
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3.3 Geometric scaled solutions

In this section, I will discuss the process of finding a geometrically scaled initial
condition. First, we took the MV initial condition with parameters described in
previous sections and ran the evolution to Y = 100. For larger values of rapidity, the
solution does not change its shape with further evolution, but just shifts along the
r-axis. By the rapidity of Y = 100, we assumed that the evolution already forgot the
MV initial condition since as was shown in the previous section, even dramatically
different initial conditions converge to the usual shape by the rapidity of 8. This
scaled solution was then taken and re-scaled to higher values of r to obtain a new
initial condition that would be more physical and require less parameters that need
to be fitted from data.

In the re-scaling process, we had to come up with a parameter, that would char-
acterize the amount of shift in the values of r. This parameter is called Q2

s0 and it
determines the amount of shift according to the equation by the relations

Qs0 = 1/r0 (3.1)

and
N(r0) = 0.5. (3.2)

The initially considered value was Q2
s0 = 0.07 GeV2 which was later varied. For this

re-scaled initial condition, we ran the evolution again to Y = 10 to get the observable
values that can be compared to the data measured at HERA.

Figure 3.6 compares the geometrical scaled initial condition to the MV initial con-
dition. We can see that the geometric scaled initial condition is different to the MV
initial condition that was obtained by fitting the data in the range that is of the
most importance.

Since we now used a different initial condition, the previously used value of σ0

which parametrizes the integral over b in the approximation of a trivial black disc b-
dependence might have a completely different value and needs to be fitted from data
again. To obtain this fit, we computed the values of FData

2 /F Theory
2 for values of Q2

varying from 0.2 to 150 GeV2. For each value of Q2, we fitted the ratio of structure
functions with a constant to determine the correction factor for the previously used
value of σ0.

This ratio then showed a nontrivial Q2 dependence. Its value obtained from the
constant fit was decreasing in a logarithmic-like decrease see Fig. 3.7. We then varied
the initial re-scaling parameter Q2

s0 from the values of 0.03 to 0.13 GeV2 to determine
the dependence of this logarithmic decrase on the shift of the intial condition. The
results for the values of Q2

s0 = 0.04 and 0.13 GeV2 are shown in Fig. 3.7 and 3.8
respectively. As we can see, the slope of the logarithmic decrease remains the same,
only a constant shift towards the lower values of the ratio is observed, when we go
to higher values of Q2

s0.

Of course in this approach, we assumed that there is no dependence of the ratio
FData

2 /F Theory
2 on rapidity. In other words, that the geometrical scaled initial condi-
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tion predicts the measured values of the structure function correctly and that there
are no other effects to be accounted for except for the normalization of the integral
over the impact parameter. Therefore next, we focused on determining quantita-
tively the quality of the fits of FData

2 /F Theory
2 . To determine this ”validity” of the fit,

we used the value of χ2 which is defined by the following expression

χ2 =
1

ndf

∑
i

(Xi − f(Xi))
2

σ2
i

, (3.3)

where Xi are the measured values and f(Xi) is the value of our fit for the data
point Xi. Here σi represents the error corresponding to the measured value Xi and
ndf stands for the number of degrees of freedom of the fit. The value of χ2 should
be about one for a good fit. If the value is too big, it means that the experimental
values are off the describing function and the fit might be incorrect. If the values of
χ2 are too small, it can mean that the errors of the measurement are in fact much
smaller than the values used in the computation. The error that we used for our
computation was

σi = Eri%
FData

2i

F Theory
2

· 0.01, (3.4)

where Eri% is the error of the HERA data point i in percent. The values of χ2 for
the values of Q2

s0 = 0.04 and 0.13 GeV2 are shown in Fig. 3.9 and 3.10 respectively.

The fits FData
2 /F Theory

2 exhibit rather large values of χ2 for all possible setups of
Q2
s0. If we go towards lower values of Q2

s0 (at about 0.04 GeV2), the fits get better
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in the region of high Q2 - above Q2 = 30 GeV2, but reach higher values of χ2 for fits
with lower values of Q2. On the other hand, if we set Q2

s0 to higher values (at about
0.13 GeV2), the fits get worse in the region of high Q2, but better in its lower values
see Fig.3.9 and 3.10. The studied χ2 values for the re-scaling parameter spanning
from Q2

s0 = 0.03 GeV2 to 0.13 GeV2 lead us to the conclusion that the optimal
value lies around the value of 0.07 GeV2, where the lower values of Q2 still exhibit
reasonable values of χ2 and the peak forming at higher values does not grow too
much to start influencing the values of Q2 in its proximity.

Even the fits in this region are not perfect constants and the values of FData
2 /F Theory

2

show a slight dependence on rapidity. The dependence of the ratios proves to be
slightly linearly growing with increasing rapidity, and it may tell us that there are
some effects that were not yet accounted for in this approach. This slight growing
tendency of the ratios with higher rapidity values is distorting the fits and therefore
increasing the resulting value of χ2. The fact that a small variation from the constant
behavior can produce high values of χ2 is given by the decreasing trend of the
errorbar value of the measured data from HERA at higher values of Q2. As was
shown, this behavior cannot be easily singled out by another choice of the re-scaling
parameter Q2

s0.

Of course since the evolution is carried out to such high values of rapidity, more error
would come from the numerical implementation of the equation (rounding errors,
repeated linear interpolation and extrapolation etc.). In order to determine whether
the evolution itself can introduce errors that would change the behavior of the scaled
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initial condition, we took the already scaled initial condition and ran it to Y = 100
again. Then we re-scaled it back to the initial position and analyzed its properties
in the same manner as was described above for the once-scaled initial condition.
The initial condition scaled after running to Y = 200 exhibits the same behavior as
the initial condition scaled at Y = 100. It gives the same logarithmic decrease in
the structure function ratio with respect to Q2 and the χ2 plots for various values
of Q2

s0 are almost identical. The only difference is a slight constant shift of about
0.06 towards lower values of the fit of the structure function ratio which is due to
rounding errors and inaccurate interpolations within the computation. It gives us an
information on the inaccuracies that are introduced to the solution by computing it
up to the rapidity of Y = 100.

In order to determine whether this scaled initial condition is of a more physical nature
than the initial condition obtained by fitting the data, a prediction of the observables
has been made. In Figures 3.11 and 3.12, we can see structure functions computed
with both the scaled initial condition and the MV initial condition. The correction
factor for σ0 has been incorporated into the structure function computation for
the geometrical scaled case. In these figures we can see the structure function for
Q2 = 0.25 and 22 GeV2 and we can see that they differ in the regions where data has
not yet been measured. A future measurement, possibly at the LHC, can determine
the validity of this approach to the dipole model and the rcBK evolution equation
in particular.
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Conclusion

There are several models that predict the effect of saturation of partons in high
energy collisions. The Balitsky Kovchegov evolution equation does that by modifying
the BFKL equation with recombination processes that occur in hadrons at high
energies. These are expected to be reached in large accelerators such as LHC, HERA
or RHIC. The solution to the BK equation including running coupling effects and a
b-independent amplitude can predict correctly the values of structure functions of
protons or DIS reduced cross section in four orders of Q2. It is an integro-differential
equation and it typically cannot be solved analytically.

The Balitsky-Kovchegov evolution equation was numerically solved using the Runge-
Kutta method of fourth order, Simpson’s rule and Lagrange interpolation. Various
methods were tested and their initial parameters compared to obtain the best ratio
of precision and computing speed since the program for solving the BK evolution
equation is time demanding.

The optimal parameters to compute the BK equation for the case without impact
parameter dependence prove to be the Runge-Kutta method of fourth order with a
step of 0.01 in rapidity, Simpson’s rule for the integration with step of 20 over the
interval over θrr1 and 25 steps per order of magnitude of the dipole size r. A simple
linear interpolation (in the log-scale) has been determined to give the best results
since higher orders are not precise in certain regions and misshape the computed
function. For the computation of the photon wave function, 10000 steps per the
interval of [0, 1] over the parameter z were chosen. This setup then enables us to
compute the structure function up to the rapidity of Y = 10 in about 90 seconds on
an average personal computer with a mean square error of 1.5 %.

The shape of the photon wave functions was calculated and plotted with various
factors that also take part in the final structure function computation. It was shown
that the largest numerical contribution to the final value of the cross section and the
structure function comes from the dipole size in interval r ∼ (0.1, 30) GeV−1 since
the photon wave functions weighted by the solution of the BK evolution equation
show negligible values outside this region and thus do not affect the final integral over
r as much. The structure function F2 and reduced cross section σT,L were computed
from the obtained solutions given by the rcBK equation for various values of Q2 and
compared to data measured at HERA.

The effect of geometric scaling, which is observed in solutions to the BK equation
was also studied. Since the shape of the solutions changes only in the first few units of
rapidity and then solely shifts towards lower values of r as the evolution propagated
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towards higher values of Y , we were able to establish a new initial condition from
the intrinsic properties of the BK equation itself. This geometrical scaled initial
condition would then require less parameters that need to be fitted to data than the
MV initial condition and could better reflect the physical nature of the system.

The geometrically scaled initial condition was obtained by running the computation
up to the rapidity of Y = 100 and then re-scaling it back to the initial position.
The functionality of this initial condition was then tested and the dependence of the
results on the re-scaling parameter was studied. Its initial value was set as Q2

s0 = 0.07
and the variation of this parameter later span from Q2

s0 = 0.03 to Q2
s0 = 0.13.

We searched to obtain a new value for the parameter σ0 since in this approach,
we are using a new initial condition and its value that was obtained in previous
fits might not be accurate anymore. For this reason, values of FData

2 /F Theory
2 were

studied in order to obtain a correction factor for this constant. However the ratio of
FData

2 /F Theory
2 showed a logarithmically decreasing dependence on Q2 for all choices

of the re-scaling parameter. The slope of this decrease proved to be identical for all
setups (−0.07log(Q2)), just the added constant lowered as the saturation scale Q2

s0

increased (from 0.7 to 0.45 GeV2). This effect has not yet been reported by other
groups and its origin needs further explanation.

The quality of these fits was also tested by determining the value of χ2. Its depen-
dence on Q2 was studied for various values the of re-scaling parameter. The lower
values of Q2

s0 exhibited worse χ2 behavior in the regions with lower Q2 than the fits
obtained with higher Q2

s0. Its values reached up to χ2 = 3 in the region Q2 ∼ (1, 10)
for Q2

s0 = 0.04 GeV2. The regions higher than Q2 = 30 showed high values of χ2 for
all sets of re-scaling parameters, which might be caused by the fact that at these
values of Q2, the ratio FData

2 /F Theory
2 has a non-trivial dependence on rapidity and

that it cannot be fitted with a constant. This can mean that in this approach, there
are still some softly contributing effects that have not yet been accounted for by the
theory.

For Q2
s0 = 0.04 GeV2, the value of χ2 reached the values of 7 at the highest at

Q2 ∼ 50GeV2. As the re-scaling parameter increases, the value of χ2 in this region
further increases up to the maximal value of 14 when Q2

s0 is set as 0.14 GeV2. The
values of χ2 reach high values towards higher Q2, even though the growing trend
of the ratio with respect to rapidity is slow, partly because the errorbars of the
measured values decrease towards higher values of Q2. In the intermediate values of
Q2, the values of χ2 decrease with the increase of Q2

s0 at first, but as we approach
higher and higher values of Q2

s0 its values are also distorted, so the optimal choice
of the re-scaling parameter indeed proved to be Q2

s0 = 0.07 GeV2.

We used the obtained scaled initial condition to predict the values of the struc-
ture function F2(Q2, Y ) in regions that were not yet measured and where it differs
from the solutions obtained with the MV initial condition. This prediction can then
be used to determine the validity of this approach to the dipole model and rcBK
equation in particular when new measurements (possibly at the LHC) are carried
out.
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