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Abstrakt: Weyluv tensor nabyva dulezitosti jakozto invariant konformnich transformaci
metrického tensoru a je soucasti rozkladu Riemannova tensoru. Ekvivalence lokalni kon-
formni plochosti variety a nulovosti Weylova tensoru je dulezitym vysledkem Riemannovy
geometrie. Na tfidimenzionalni varieté toto neplati, protoze Weyluv tensor je za takovych
predpokladu identicky rovny nule. Existuje jiny tensor - Cottonuv, ktery slouzi jako
obstrukce lokalni konformni plochosti tfidimenzionalni (pseudo-)Riemannovské variety.
Vlastnosti Cottonova tensoru jsou velmi blizké vlastnostem Weylova tensoru, obzvlastée
dulezita je konformni invariance Cottonova tensoru (ve tfech dimenzich). Piedstavujeme
detailni studii vlastnosti tensoru, které zastavaji dulezitou roli v moderni matematice a
teoretické fyzice.
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Abstract: The Weyl tensor arises as an invariant of conformal transformations of the
metric tensor and it is a completely trace-less constituent of decomposition of the Riemann
tensor. The vanishing of the Weyl tensor being equivalent to local conformal flatness of
the manifold is an important result of Riemannian geometry. However in three dimensions
this does not hold, for the Weyl tensor vanishes identically. There is another known tensor,
namely the Cotton tensor, that serves as an obstruction to local conformal flatness of a
three-dimensional (pseudo-Riemannian) manifold. The Cotton tensor possesses properties
that are very similar to those of the Weyl tensor, in particular it is conformally invariant
(in three dimensions). The Weyl tensor and the Cotton tensor play an important role in
modern mathematics and theoretical physics and we present a thorough survey of their
properties.
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Introduction

The aim of this thesis is to present a self-contained study of geometric and algebraic
properties of the Weyl and the Cotton tensors on a pseudo-Riemannian manifold in a
unified notation. The Weyl tensor that first appeared in [9] is of great importance to
certain subjects of study in theoretical physics, namely the general theory of relativity
and other theories that include gravity ([I1]). The Cotton tensor (first appearance [10])
is a less known object, however it is closely tied to the conformal geometry and the Weyl
tensor by its properties and plays an important role in the Hamiltonian formulation of
general relativity ([12]).

On the background of a pseudo-Riemannian manifold equipped with the Levi-Civita
connection we define a conformal transformation of the metric tensor as well as review
upon some of its basic properties. After doing so, we are to ask, how do fundamental
objects of differential geometry (e.g. the Riemann tensor, its traces and the Levi-Civita
connection) change. This is necessary, for the Weyl tensor most naturally arises as an
invariant of conformal transformations of the metric tensor. The Weyl tensor is a com-
pletely trace-free constituent of decomposition of the Riemann curvature tensor and it
satisfies the same symmetries (e.g. first Bianchi identity) as the Riemann tensor. We give
proofs to all these classical results as well as prove that on a three-dimensional manifold
the Riemann tensor is possible to be expressed solely in terms of the metric tensor, the
Ricci form and the Ricci scalar curvature. This is equivalent to the fact that the Weyl
tensor vanishes identically for three-dimensional manifolds.

The Cotton tensor ([I0]) in a general dimension arises as a constituent of the non-zero
right-hand side when we study the first covariant derivatives of the Weyl tensor. We
find all the basic symmetries of the Cotton tensor and show that for the dimensions of
the manifold higher than three (three excluding) the vanishing of the Weyl tensor is a
sufficient condition for the Cotton tensor to vanish. After doing so we prove that the
Cotton tensor is invariant under conformal transformations of the metric tensor.

The vital property of the Weyl tensor is the fact that it is an obstruction (its vanishing
is a necessary and sufficient condition) to local conformal flatness of a pseudo-Riemannian
manifold in dimensions four and higher. The Cotton tensor is an obstruction in a similar
sense on a three-dimensional manifold. We summarize this in a theorem with a rather
involved proof using the Ricci identity as an integrability condition ([4]).

Using the Hodge star we convert the Cotton tensor into an equivalent tensor of lower
order on a three-dimensional manifold. This equivalent tensor, called the Cotton-York
tensor, is due to York ([8]). We study its properties and show that it is divergence-free.



10



Chapter 1

Preliminary terms in differential
geometry

In this opening chapter we shall summarize the necessary framework of differential geom-
etry along with notation conventions that we are to use throughout the whole thesis. The
definitions and results that are contained in this chapter are largely standard yet possess
appropriate amount of generality which shall be made use of in the chapters that are to
follow. Unless specified otherwise content of this chapter is courtesy of [I] and [2].

1.1 Differentiable manifolds, vector bundles

Definition 1.1.1. Let M be a topological space.

o Let U°=U C M and V° =V C R". A homeomorphism ¢ : U — V is called a (local
coordinate) chart on M. Here the open set U is called a coordinate neighborhood.

e An open covering {U, }.cr of the space M equipped with charts ¢, : Uy, — V, is
called an atlas on M.

e We say that atlas {(Uy, ¢a) tacr on M is differentiable if all the maps

0309, 1 0a(Ua NUz) = pa(Us N Up)

are of the class C*°(R™) for all a, 8 € I such that U, NUs # 0. Compositions of the
type g o, ! are called transition maps.

e A chart is said to be compatible with an atlas if its transition maps for all charts
contained in the atlas with intersecting coordinate neighborhoods are of the class
C®(R™).

e An atlas is called a differentiable structure if it contains all the compatible maps.

Definition 1.1.2. A topological space M that is Hausdorff, paracompact and equipped
with a differentiable structure is called a differentiable manifold.

11



12 CHAPTER 1. PRELIMINARY TERMS IN DIFFERENTIAL GEOMETRY

Definition 1.1.3. A tangent vector X on a differentiable manifold M at a point p € M
is a map X : C*°(M) — R satisfying:

1. X(af+g9g)=aXf+Xg Vf,geC®M),VaeR

2. Vf,g € C°(M) there exists an open neighborhood U of the point p € M such that
flv = gly implies X f = Xg

3. X(fg) = (X[f)g(p) + f(p)(Xg)  Vf.g€C®(M)

Remark 1.1.4. A space of all tangent vectors at a point p is a vector space of the same
dimension n that are the open sets of R™ mapped bijectively by charts. Such space is
called the tangent space at p, denoted by T,,M.

Definition 1.1.5. A (differentiable) vector bundle of rank n consists of a total space FE,
a base M and a projection w : & — M, where E and M are differentiable manifolds, 7 is
differentiable, each fiber E, := n~'(z) for x € M carries the structure of an n-dimensional
vector space, and the following local triviality requirement is satisfied:

For each x € M, there exists neighborhood U and a diffeomorphism

p:m H(U) = UxR"
with the property that for every y € U

oy :=¢lg, + B, = {y} x R"

is a vector space isomorphism (a bijective linear map). Such pair (p, U) is called a bundle
chart.

Remark 1.1.6. A vector bundle that is globally isomorphic to M x R™ (n =rank) is called
trivial.

Definition 1.1.7. A tangent bundle is a disjoint union of all T,M, p € M:
™™ = [[ T,M = {X, € T,M|p € M}
peEM

equipped with projection = : TM — M such that 7(X,) = p. An atlas {(Va, Vo) taer
is on TM constructed from an atlas {U,, 0o = {7’} }acr on M for V,, := 771(U,) and
Vo = Vo = pao(Ua) x R™ as follows

Va(Xp) = (24(p), - wa(p), X4 (p), ., X2 (p))

Remark 1.1.8. A tangent bundle is a vector bundle.

Definition 1.1.9. Let (E,m, M) be a vector bundle. A section of E is a differentiable
map s : M — E with m o s = idy;. The space of sections of E is denoted by I'(E).

Definition 1.1.10. A section of the tangent bundle T'M of M is called a vector field on
M.
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Definition 1.1.11. Let M be a differentiable manifold, x € M. The vector space dual
to the tangent space T, M is called the cotangent space of M at the point p and denoted
by Ty M. The vector bundle over M whose fibers are the cotangent spaces of M is called
the cotangent bundle of M and denoted T*M. Sections of T*M are called one-forms.

Remark 1.1.12. We shall hold onto the conventional notation and denote the basis vectors
of a tangent bundle by {0;} = {2 }. Thus the coordinate expression of a vector field
becomes X = X'9;. In a very simmilar manner a basis of a cotangent bundle is {dz'}
and a coordinate expression for an arbitrary one-form becomes w = w;dz’. The two bases
{0:} and {dz'} are dual to each other in a sense that (dz*,d;) = da*(0;) = ¢} for all 4, j.

This also defines a bilinear inner product (-,-) : Ty M x T,M — R as follows:

(w,V) =wV(da',0;) = w Vs, =w, V' VYweT; M,V € T,M

1.2 Tensors, differential forms

Definition 1.2.1. A p times contravariant and q times covariant tensor or a tensor of a
type (p,q) on a differentiable manifold M is a section of

TM®.0TM © T'M@..0T°M

Vv Vv
p times q times

Definition 1.2.2. A tensor T of a type (p,q) is a multilinear map (in stronger sense of
multiplying one of its arguments by a C*°(M) function) that maps p elements of 7'M and
q elements of T*M to R.

Remark 1.2.3. The two definitions of a tensor are equivalent.

Definition 1.2.4. Let M be a differentiable manifold. A pseudo-Riemannian metric g is
a (0,2) tensor on M such that it is:

e Symmetric g(U, V) =g(V,U) VU,V e I(T'M)
e Non-degenerate gU,V)=0 YWeTM — V=0

In addition to that, if the metric tensor is:
e Positive definite gU,V)>0 VYUV eTM
and the equality holds only for V' = 0, it is called a Riemannian metric.

Remark 1.2.5. By g, we shall denote a metric at a particular point p of M. Since g,
is a map T,M ® T,M — R it is possible to define a linear map g,(U,-) : T,M — R by
V' — gp(U, V). Then g,(U, ) is identified with a one-form wy € T M. Similarly, w € Ty M
induces V,, € T,M by ¢,(V,,,U) := (w,U) for all U € T,,M. (Here the inner product (-, -)
is the one defined in remark [1.1.12]) Thus, the metric g, gives rise to an isomorphism
between T),M and T; M.
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Definition 1.2.6. Let (E, 7, M) be a vector bundle. A bundle metric is given by a family
of scalar products on the fibers E,, depending smoothly on x € M.

Theorem 1.2.7. Each vector bundle (E, 7w, M) of rank n with a bundle metric has struc-
ture group O(n). In particular, there exist bundle charts (f,U), f : 7= (U) — U x R", for
which Vo € U, f~!(z, (eq, ..., €,)) is an orthonormal basis of E, (ey, ..., e, is an orthonormal

basis of R™).
Theorem 1.2.8. Each vector bundle can be equipped with a bundle metric.

Definition 1.2.9. A local orthonormal basis of T, M of the type obtained in theorem
is called an orthonormal frame field.

Definition 1.2.10. The wedge product N\ of k one-forms is the totally antisymmetric
tensor product
dz' N N\ dxtt = Z sgnm dzt ™ A ... A dzt®

TES

Remark 1.2.11. We put
AS(M) :=T;M AN ... NT;M

~
k times

A vector bundle over M whose fibers are the spaces AF(M) for p € M is denoted AF(M).

Definition 1.2.12. The space of sections of A*(M) is denoted by Q¥ (M) so that Q¥ (M) =
[(A*(M)). Elements of Q¥(M) are called (exterior) k-forms.

Remark 1.2.13. Let dim M = n, we put
] . AO 1 n
AS(M) := Apg(M) @ Ay (M) & ... & A (M)

where A)(M) = C*(U), p € U C M and @ denotes the direct sum. A vector bundle
over M whose fibers are the spaces A3 (M) for p € M is denoted A*(M). The space of
sections of A®*(M) is denoted by Q°*(M) so that Q*(M) = T'(A*(M)).

Definition 1.2.14. We define an exterior product for the elements of A3(M) followingly.
Let w € AY(M),& € Aj(M) and Vi, ..., Vyy, € T,M, we put:

1

WAV, s Vo) = 7

Z Sgn mw w(Vﬂ(l), ceey Vﬂ(q))f(vﬂ(ﬁl), P Vﬂ-(q+r))

TESqir
Theorem 1.2.15 (Properties of exterior product). The exterior product satisfies:
1. linearity (in both arguments)

(aw; + wo) AN = awy A0+ ws A0 Vwi,wy, 0 € AY(M),a € R

2. asociativity
(WADNANT=wA(OANT) V1,w,0 € AY(M)
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3. antisymmetry (in the following sense)
wAo=(=1D)F"g Aw w e N(M),0 € AL(M)

Definition 1.2.16. The exterior derivative is a linear map d : QF(M) — QFY(M)
satisfying:

1. dlo Aw) =do Aw+ (—=1)Fo A dw o€ QFM),we Q (M)

2. d*w=(dod)w=0 we Q*(M)

3. df(X)=Xf  feQ(M)=C%(M),X eT(TM)
Definition 1.2.17. A differential form w € Q°*(M) is said to be:

o closed if dw=0

e czact if Jo € Q°(M) such that w = do
Remark 1.2.18. A differential form that is exact is closed.

Theorem 1.2.19 (Poincaré lemma). If a coordinate neighborhood U of a manifold M is
contractible to a point p € M, any closed r-form on U is also exact.

Remark 1.2.20. Any closed form is by Poincaré lemma exact at least locally (on a certain
coordinate neighborhood).

1.3 Lie algebras, induced maps, Lie groups

Definition 1.3.1. For vector fields X,Y on M, the Lie bracket [X,Y] is defined as the
vector field:
[X,Y]:=XoY —YoX

Proposition 1.3.2 (Cartan identity). Let w € Q'(M) and X,Y € T'(TM). Then the
following identity holds:

dw(X,Y) = X(w(Y)) = Y (w(X)) - w([X,Y])

Definition 1.3.3. A Lie algebra (over R) is a real vector space V equipped with a bilinear
map [(.,.): V x V — V| satisfying:

1L UX,X)=0 VXEeV
2. UX Y, 2) + 1Y, (Z, X))+ UZ X, Y)) =0 VX,Y,ZeV

Corollary 1.3.4. The space of vector fields on M, equipped with the Lie bracket is a Lie
algebra.

Definition 1.3.5. Let M, N be two diferentiable manifolds, and let ® : M — N be a
differentiable map.
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A tangent map P, at a point p € M induced by the map ® is a map &, : T,M —
Top N defined by:

(©.(X))f=X(fo®) XeTM,[fecCUsp)

A cotangent map ®* at a point p € N induced by the map ® is a map ¢* : T(I";(p)N —
Ty M defined by:

(@*(w)X =w(®.X) X e€T,MuweTh,N

A map ®* : Q° — Q° defined for an arbitrary k-form w € QF(N) by:

(@ () (X1, ooy Xi) 1= (@) (Bu(X1]),s ooy B (Xil))  Xiyooos Xp € TM

is called a pullback.

If the map @ is a diffemorphism of the manifolds M, N, we define a map &, : TM —
TM by
(@.X)(@(p) = 0.(X],) X eTM

that is called a pushforward.
Lemma 1.3.6. Let ¢ : M — N be a diffeomorphism, X, Y vector fields on M. Then,

Thus, ¥, induces a Lie algebra isomorphism.

Definition 1.3.7. A Lie group G is a differentiable manifold which is endowed with a
group structure such that the group operations:

1. :GxG—=G, (91,92) = 91 G
2. 1:G—=G, g—gt
are differentiable.
Definition 1.3.8. Let G be a Lie group. For g € G we define the left translation
Ly:G—G:h—gh YheG
and the right translation
R,:G—G:h—hg VYheG
Remark 1.3.9. The translations L, and R, are diffeomorphisms of a Lie group G.

Definition 1.3.10. A vector field X on G is called left invariant if for all g,h € G

Ly, X1|n = Xlgn



1.4. MISCELLANEOUS TOOLS OF TENSOR ANALYSIS 17

Theorem 1.3.11. Let G be a Lie group. For every V' € T,G (where e shall denote the
identity element of the group G throughout the rest of the chapter):

Xl|g=L,V Vge&

defines a left invariant vector field on GG, and we thus obtain an isomorphism between T,G
and the space of left invariant vector fields on G.

Remark 1.3.12. By lemma for g € G and vector fields X,Y on G, we have:
[Lg*X7 LQ*Y] - Lg*[X’ Y}
Corollary 1.3.13. The vector space T.G carries the structure of a Lie algebra.

Definition 1.3.14. The Lie algebra g of G is the vector space T.G equipped with the
Lie algebra structure of corollary [1.3.13

Definition 1.3.15. Let G be a Lie group. A principal G-bundle consists of a base M,
which is a differentiable manifold and a differentiable manifold P, the total space of the
bundle, and a differentiable projection 7 : P — M with an action of G on P satisfying:

1. G acts freely on P from the right - (p,g) € P x G is mapped to pg € P and pg # p
for g # e. The so-called G-action then defines an equivalence relation on P : q ~ p
if and only if 49 € GG such that ¢ = pg.

2. M is the quotient of P by this equivalence relation and 7 : P — M maps p € P to
its equivalence class. By (1.), each fiber 7~!(z) can then be identified with G.

3. P is locally trivial in the following sense: For each x € M, there exists a neighbor-
hood U of = and a diffeomorphism

o:m N U) = UxG
of the form ¢(p) = (7(p), ¢ (p)) which is G-equivariant, i.e.

¢(pg) = (7(p),v(p)g) Vged

1.4 Miscellaneous tools of tensor analysis

Definition 1.4.1. Let M be a differentiable manifold. We define a totally antisymmetric
Levi-Civita tensor density € by

+1 if (pypo...f4) is an even permutation of (12...m)
—1 if (1 pg...ptry) is an odd permutation of (12...m) (1.2)
0 otherwise

Cpapz.cpim =

Remark 1.4.2. Apparently

1

HIH2fom 1V 202 Hm Vi — -1 —
€ = gt g g e vy = AU (9T ) E i = detggulm'“”m
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Lemma 1.4.3. The Levi-Civita tensor density €;;;, satisfies:
Ez‘jkeimn = 0;"0p — 0,05

Remark 1.4.4. Tt is possible to define a totally antisymmetric Levi-Civita tensor ¢ with
the same algebraic properties (e.g. lemma [1.4.3)) as the Levi-Civita tensor density except
for the fact, that it does transform as a tensor, by putting:

1

ik . \/ﬁgijk and €5 = +/|det glesk (13)
et g

€ijpe™ = OIS — 56T (1.4)

Therefore we have:

Definition 1.4.5. Let (M, g) be a pseudo-Riemannian orientable manifold with dim M =
m. Let us define a linear operation * : Q" (M) — Q™" (M) by its action on a basis r-form:

v/ |det
*(dztt Ndxt? A N dat) = Me’“‘““"” dr”r VA N dTPm

(m — )l v
This operation is called the Hodge star (dual).

Remark 1.4.6. For an arbitrary r-form
1

W= Wz AT N DTN N dT € Q"(M)
we have \/7
|det |
*W = m Ml#zmuT{fﬁ:ﬁf::ﬁ;dxl/r+1 A A dztm (15)

Remark 1.4.7. The Hodge star is an isomorphism of Q" (M) and Q™" (M).

Definition 1.4.8. [3] The Kulkarni-Nomizu product of two symmetric (0,2) tensors H
and @ is the (0,4) tensor H ® Q given (VV, X,Y,Z € T(TM)) by}

HOQ(V. X, Y, Z) = H(V. Z)Q(X.Y)+H(X,Y)Q(V, 2)—H(V,Y)Q(X, 2)~H(X. Z)Q(V.Y)

Remark 1.4.9. In coordinates, this becomes:

(H O Qijk = HyQix + HiQji — HijQr — HiQij Vi, g, k,1 (1.6)
Lemma 1.4.10. [3] The Kulkarni-Nomizu product is symmetric
HopQ=Q0OH

Proposition 1.4.11. [3] Let M be a differentiable manifold with dim M > 2. The map
Q® - from I(TM @ TM) into (TM @ TM @ TM @ TM) = I'(Q* TM) defined by

H—-Q®oH VYHeT(TM®TM)

is injective.

"Here we adopt a different sign convention than in [3] in order for coordinate expression of the Kulkarni-
Nomizu product to be in line with our overall coordinate notation.



Chapter 2

Connection and canonical tensors

In this chapter we shall develop the theory of connections on (pseudo-)Riemannian mani-
folds. For the chapters on conformal transformations it would suffice to define a connection
on a tangent bundle solely however the theory we build here is more general in a sense
that connections are constructed over vector bundles. Unless specified differently, the
theory presented here is again courtesy of [1] and [2].

2.1 Connection on vector bundle

Definition 2.1.1. Let M be a differentiable manifold, E a vector bundle over M. A
(linear) connection is a map

D:T(ITM)®I'(E)— I['(E)
with the properties:
1. Dis f-linear in V € I'(T'M):
Dy, wo = Dyo + Dyo VW eI'(TM),oc € I'(E)
Dyyo = fDyo feC®M),ocel'(E)
2. D is R-linear in o € I'(E) :
Dy(aoc + 1) = aDyo + Dyt Vel(TM),a e RVr € I'(E)
and it satisfies the following product rule:

Dy(fo)=V(f)-o+ fDyo V€ T(TM), f € C®(M)

Remark 2.1.2. By a property (1) in the previous definition, we may consider D as a map
from I'(E) to I'(E) @ T'(T* M) by putting Do (V) := Dyo for all o € T'(FE).
19
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Definition 2.1.3. Let po € M and let U be an open neighborhood of pg such that a chart
for M and a bundle chart for F are defined on U. We then obtain coordinate vector fields
01, ..., Oq (where d = dim M), and through the identification

Elgy=UxR" (n = fiber dimension of E)

a basis of R" yields a basis p, ..., i, of sections of E|y. For a connection D, we define
functions called Christoffel symbols Ffj (j,k=1,..,n,i=1,...,d) by:

Do,y = Diuj =: T

Remark 2.1.4. Let now p € T'(E); locally, we write u(y) = a*(y)ux(y). Also let c(t) be a
smooth curve in U. Putting u(t) := p(c(t)) we define a section of E along c¢. Furthermore,
let V(t) = ¢(t) = Lc(t) = [¢(t)]'0;. Then by the definition of a connection:

Dy o)u(t) = Des(uyo, [a* (e(t)) i (c(t))] = ¢ (1)[0i(a* (c(t)))paw(t) + a* (c(t)) Diun(t)] =

o 0aR(c(t . ;
= (02 )+ a0 (O
—_—
ak(t)

The first memeber is completely independent of D. Christoffel symbols ng(c(t)) here
have indices j, k running from 1 to n (where n is the fibre dimension of F) and an index i
running from 1 to d = dim M. The index ¢ describes the application of the tangent vector
¢(t)0;. We can thus consider {I'}, }; jx as an (n x n)-matrix valued 1-form on U (from
the previous definition) :

{17, }ijk € D(gl(n,R) @ T*M|y)

Here, Lie algebra gl(n,R) is a space of (n x n)-matrices with real coefficients. In a more
abstract manner, we now write on U

D=d+A (2.1)

where d is an exterior derivative and A € I'(gl(n,R) ® T*M|y). A can be also considered
as an (n X n)-matrix with values in section of the cotangent bundle of M; A applied to
the tangent vector 9; becomes {I"/, }; ;. The application of A to a’u; is given by ordinary
matrix multiplication. We have:

D(a’ ) = d(a?)p; + o’ Ap;

Remark 2.1.5. We now write Ay; = A¥ ., where each A¥ now is a 1-form AY = T'¥.da". Let
[, -, fhy, be the basis dual to iy, ..., 1, on the bundle E* dual to £, explicitly (p;, j15) =
where (-,-) : E® E* — R is the bilinear pairingl] between E and E*.

!Here the pairing between a vector bundle and a bundle dual to it is defined in an analogic way to that
of the one between tangent bundle and its dual (see remarks and . We shall consistently use
two types of brackets - {.,.) for the one on T*M x TM and (.,.) for the one on E* X E - to differentiate
between them.
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Definition 2.1.6. Let D be a connection on E. The connection D* dual to D on the
dual bundle E* is defined by the requirement:

d(p,v*) = (Dp,v) + (u, D'v*)  VueT(E),v" € T'(EY)
Remark 2.1.7. Let us (via D = d + A) compute :

0= d(pi, 11}) = (dps +Afp, 115) + (i, d* s +(A%) 5 pp) = Afy + (A5, = Ay + (A%
N N

=0 -0
Hence
A= —AT (2.2)
where upper ”"index” T" denotes matrix transposition. From this we get:
Dy = —Thu (2:3)

Definition 2.1.8. Let E;, E5 be vector bundles over M with connections Dy, Dy respec-
tively. The induced connection D on FE := FE; ® FEs is defined by the requirement:

D(p1 @ po) = (D1pi1) @ pio + p1 ® (Dapia) pi € N(E;), i=1,2

Remark 2.1.9. In particular, we obtain an induced connection on End(E) = EF ® E*
denoted by D. Let 0 = oku; ® pj. We compute:

D(5p @ ;) = [(d + A)ofp] © 1 + o @ [(d" + A" =

= (do)p; ® 10 + 0 d(pe) R + oL Af e ® 11 + o @ d s + o @ (A
W—/ v g _

= =0 :70';'*’;;:/%@//';;
We obtain the following identity:
D(o) =do + [A, o] Vo € End(F)=FE® E” (2.4)

Remark 2.1.10. Henceforth we shall write as an abbreviation:
P(E)=T(F)® QM)

where as usual M is a differentiable manifold and E a vector bundle.

2.2 Curvature
Definition 2.2.1. The curvature of a connection D on a vector bundle E is the map
F:=DoD:Q%E)— Q*E)

Definition 2.2.2. The connection is called flat if its curvature satisfies F' = 0.
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Remark 2.2.3. We compute by [2.1] for p € I'(E)
F(p)=(d+A)o(d+A)p=(d+ A)(dp+ Ap) =

= d*u +(dA)p+ ()" ANdp+ANdp+ (AN A= (dA+ AN A)p
=0

Therefore we have the identity:
F=dA+ANA (2.5)

Remark 2.2.4. We now want to express the identity in coordinates. Because A =
A;dx?, we have:

A . . .

= %daf Ada? + A;Ajdat A da? =
:I/vl

= <—8A7 + AZ-AJ-) de' A da? =
oz’

1[04 ; i 1[04 i i
_E(axi—}—AZA])dx A dx +§(%+AJAz)dx Adx' =

1| 04; 04 , A
= - L — -+ A A — AGA; | dat A da?
2| oz oxJ +_] I v Aar

:[AivAj}

The identity in coordinates now yields:

1[04, 04 C

F= 5 (&ri 5 + [AZ,AJ]) dz' N dx (2.6)

Remark 2.2.5. We now want to compute DF. F is a map from Q°(E) to Q?(F), i.e.
FeD(E)® (QUE)" = Q*(End(E)) = Q*(E® E*)

We thus consider F as a 2-form with values in End(E). Now we have (by using identities

B4 and 25)
DF =dF +[AF]=d(dA+ANA)+[A,dA+ ANA] =

=PAFIANA+ (-D)'ANAA+AN(dA+ANA) — (dA+ANA)NA =
=0

=dANA—ANdA+ANAAFANANA—dANA—-—ANANA=0

Theorem 2.2.6 (Second Bianchi Identity). The curvature of a connection D satisfies

DF =0
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Remark 2.2.7. We will denote the connection on a tangent bundle TM by V : I'(T'M) ®
I'(T'M) — I'(TM). For such connection, the Christoffel symbols are given by Vy,0; =

Remark 2.2.8. In order to find the coordinate expression for the curvature map, we shall
consider F' as an element of Q?(End(FE)) and by R denote :

F:Q%E) = Q*E)
p— R(, )
Henceforth, we shall write (for k,l=1,...,nand i,j =1,...,d ):

Ry, == R(0;, ;) pu (2.7)

where (by equality and remark [2.1.4))

1 , .
R( )= Fu =5 (OiT% — o;Tk + Tk T —T% T da’ A da? @
l.e.
Ry = 0T — ;T + Th I —T% T (2.8)

which is the coordinate expression of R.

Lemma 2.2.9. The quantity R is a tensor.

2.3 Riemann tensor, connection on tangent bundles

Definition 2.3.1. Let M be a differentiable manifold equipped with a connection D. We
call R the Riemann (curvature) tensor of the connection D on the manifold M.

Theorem 2.3.2. The Riemann curvature tensor R of a connection D satisfies:
R(X,Y)u= DxDyp — Dy Dxpt — Dix yp (2.9)
for all vector fields X, Y on M and all u € I'(E).
Corollary 2.3.3. The Riemann tensor R satisfies
R(X,Y)=—-R(Y,X) VX,Y e I'(TM)
Corollary 2.3.4. Coordinate expression of Riemann tensor R satisfies:
R, =—Rpy  Yigk,l (2.10)

Remark 2.3.5. Henceforth we shall denote by V a connection on the tangent bundle T'M.
For such connection, the Christoffel symbols are given by:
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Remark 2.3.6. With respect to V on I'(T'M) the Riemann tensor takes form of:
R(X, Y)Z =VxVyZ —-VyVxZ — V[X,Y]Z VX, Y, Z € F(TM) (211)

Remark 2.3.7. In a very similar manner to that of remark and especially equation
2.3] where a connection D induces a connection D* on the dual bundle E*, the connection
of the previous remark[2.3.5 induces the dual connection (on 7 M), which we shall denote
V as well. Its Christoffel symbols satisfy:

Vida? = —T7, dz* (2.12)
Remark 2.3.8. For a one-form w we have the following identity:
Vjwi = 0jw; — Thwy (2.13)
This arises from the duality pairing by (-, -) as follows:

m

N——
&P om

7 k3

(V(wpda?), 0;) = ((Ojwy)da? — prﬁ»’mda:m, 0;) = (0jwy) dzP(0;) —wpl“g? dx™(0;)
——

Definition 2.3.9. The torsion tensor of a connection V on T'M is defined by:
T(X,)Y):=VxY —-VyX — [X|Y] VX, Y e T(TM) (2.14)

Definition 2.3.10. The connection V on the tangent bundle T'M is called torsion free
if its torsion tensor vanishes identically, i.e.

T=0
Lemma 2.3.11. The connection V on T'M is torsion free if and only if
=175 Vi, j, k (2.15)

Definition 2.3.12. A connection V on T'M is called flat if each point in M possesses
a neighborhood U with local coordinates for which all the coordinate vector fields 0; are
parallel, that is

Theorem 2.3.13. A connection V on T'M is flat if and only if its Riemann curvature
tensor and torsion tensor both vanish identically.

2.4 Metric connection, Levi-Civita connection

Definition 2.4.1. Let E be a vector bundle on a differentiable manifold M with bundle
metric (-,-). A connection D on E is called metric, if

d(p.v) = (Du,v) + (i, Dv)  Vp,v € T(E)
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Remark 2.4.2. On a tangent bundle, the previous definition is equivalent to the fact that:
Vg=0

Lemma 2.4.3. Let D be a metric connection on the vector bundle £ with bundle metric
(-,+). Assume that with respect to a metric bundle chart we have the decomposition

D=d+ A
Then for any X € T'M, the matrix A(X) is skew symmetric, i.e.
A(X) € o(n)

where n is the rank of E' (=dimension of the fiber of E) and o(n) is the Lie algebra of
O(n).

Remark 2.4.4. By QP(Ad(F)) we denote the space of those elements of QP(End(F)) for
which the endomorphism of each fiber is skew symmetric. Thus, if D = d+ A is a metric
connection, we have A € Q'(Ad(F)).

Theorem 2.4.5 (Fundamental theorem of Riemannian geometry). On a (pseudo-)Riemannian
manifold (M, g) there exists a unique (exactly one) metric and torsion-free connection V
(on TM).

Definition 2.4.6. The metric and torsion-free connection V on T M is called the Levi-
Civita connection.

Theorem 2.4.7. For the Levi-Civita connection we have:
rk — I 9 o
I 59 (9594 + 0igji — Digij) Vi, g,k (2.16)
Remark 2.4.8. Let us define:

1 .
sz’j = gmk‘rf] = 5(8391171 + aigjm - amgzg) VZ,], m
thus for the Levi-Civita connection, the Riemann curvature tensor takes form of:

1
G B, =2 Rpijr. = 5(@23-9% + 071.9ij — OrGnj — aijgik) + 6" (ConisTink — o ling) (2.17)

Lemma 2.4.9. For the Levi-Civita connection, the coordinate expression of R satisfies:

Ryij = — Ry (2.18)

Ryij = — Rikij (2.19)

Ryij = Riju = Rjax (2.20)
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2.5 Tensors constructed from Riemann tensor

Definition 2.5.1. Ricci form o is a tensor field of a type (0,2), which is defined at every
point p € M by:
oY, Z) =) (R(0:;,Y)Z,da")  VY,Z € T,M (2.21)

i=1
where {0;} is an arbitrary orthonormal basis of T, M and {dz'} of T M .

Remark 2.5.2. The Ricci form is symmetric and its definition does not depend on the
choice of basis of T,M and T; M. In coordinates, we have:

951 = Q(ajaal) = (R(@i,ﬁj)&,dmi> = ?z; (2'22)
In other words the Ricci form is a contraction of the Riemann curvature tensor.
Definition 2.5.3. The trace of the Ricci form:

R := Z Q(ai, 81)
i=1

is called the Ricci scalar (curvature) of (M,g), where {0;} is an arbitrary orthonormal
basis of T),M.
Remark 2.5.4. This fact is expressed in coordinates as follows:
Definition 2.5.5. Let M be a (pseudo-)Riemannian manifold with dim M = n. The
(0,2) tensor defined by:

R
2(n—1)

S(X,Y) = % (Q(X, y) - o(X, Y)) VX,Y € T(TM)

is called the Schouten tensor of M.

Remark 2.5.6. In coordinates this becomes

g -t (f, R
U= g\ 2(n—1)g”

Proposition 2.5.7. The Schouten tensor is symmetric in its arguments:
S(X,Y)=5(Y,X)

Theorem 2.5.8 (Second Bianchi Identity). Let R be the Riemann tensor defined
with respect to Levi-Civita connection. Then R satisfies the following identity:

(VxR)(Y, Z)V + (VZR)(X,Y)V + (VyR)(Z, X)V =0  VX,Y,ZV € T(TM)

Remark 2.5.9. The equation in the theorem above is a special case of and is known
under the same name. In coordinates, that becomes:

leZk + Vij];kl + Vth = 0 or equiv. lehijk: + Vthikl + kahilj = O (224)

ilj
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2.6 Ricci identities
Lemma 2.6.1. [4] Let f € C*°(M), then the following identity holds:
VJVZf — VZV]f = @@f — @@f =0

Theorem 2.6.2 (Ricci identity 1). [4] Coordinate expression of the Riemann curvature
tensor satisfies:

Ri‘jkwl = Vkvj'wi — Vijwi Vi, j, k weE Ql(M)

Remark 2.6.3. [4] In the same way as commuting of partial derivatives arises as an inte-
grability condition for a solution of a certain overdetermined system of partial differential
equations (see Frobenius theorem in e.g. [5] - chapter 6), Ricci identity must be used as
an integrability condition when one treats the same overdetermined system in terms of
covariant derivatives instead of normal partial differentiation.

Theorem 2.6.4 (Ricci identity 2). [4] Let M be a (0,2) tensor, then its components
satisfy the following identityf}

ViViMi; — ViV My = My Rl + My Ry, Vi, g,k

2Naturally there is a general formula for a tensor of an arbitrary rank due to Ricci. However in this
text we shall not need other than these special cases.
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Chapter 3

Conformal transformations

In this chapter we shall define a conformal transformation and determine how known
quantities (Riemann curvature tensor, Ricci form, Ricci scalar) behave under such trans-
formation. As a result of our endeavors we shall find a quantity that is invariant under
conformal transformations - the Weyl tensor.

3.1 Conformal transformations, conformal equivalence

Remark 3.1.1. Henceforth (until specified otherwise) we shall make use of a connection
on a tangent bundle V : T'(T'M) @ I'(TM) — T'(T M) defined in [2.3.5] specifically of the
Levi-Civita connection defined in 2.4.6]

Definition 3.1.2. Let (M, g) be a (pseudo-)Riemannian manifold. A diffeomorphism
¢ : M — M is called a conformal transformation if it satisfies:

" gopy = € Pg,  peM,o € C®(M)=Q"(M) (3.1)

Remark 3.1.3. In other words a diffeomorphism ¢ : M — M is a conformal transformation
if and only if it preserves metric up to a scale.
Remark 3.1.4. The expression [3.1] takes the form of:

9o (0:X,0.Y) = 2 Pg (X)Y) (3.2)

when a pair of tangent vectors X,Y € T, M is inserted.

Remark 3.1.5. In coordinates we have g;; = €*°g;; hence the defining equation for the

inverse denoted by g% yields: ) )
gzg — 6—20'ng (33)
Obviously: A ‘
3§’ = ¥ gy " = oF
Remark 3.1.6. The set of conformal transformations on M denoted by Conf(M) is a group,
called the conformal group. Obviously for ¢, € Conf(M), we have:

Y*  acting from the left on ¢ gy = eQU(p)gp — VO gy(p) = 629(”)620(’9)%
—_————

(629(17) +e20(p) Ydp

29
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therefore 1o ¢ € Conf(M). Associativity for any three elements of Conf(M) is an obvious
consequence of a straightforward equation that is an analogy to the one above and the
fact that the product of exponentials of real functions is associative. Identity element e
is determined by zero function o(p):

20(p)

EGe(p) = €V gp = eogp =0

Inverse element V¢ € Conf(M) is ¢! acting with the scaling of —20(p), we have:
(¢—1)*¢*g¢71¢(p) _ 6—20(P)€20(p)gp =g, = 5*95(10)
Definition 3.1.7. Angle 0 between two tangent vectors X,Y € T,M is defined by:

gp(X, Y)
\/gp(Xv X)gp<Y7 Y)

Proposition 3.1.8. A conformal transformation ¢ preserves the angle.

cosf =

Proof. Let X,Y € T,M, then we have:

9p(0:X, 0.Y) e g (X,Y)

\/gp(¢*X7 ¢*X)gp((/§*Y, ¢*Y) - \/620(1))91)()(7 X>€2a(p)gp(Y; Y) = cosf

/
cosf =

[]

Definition 3.1.9. Let g, g be a pair of metric tensors on a manifold M. The metric g is
said to be conformally equivalent to g if there exists a conformal transformation between
the two metrics.

Remark 3.1.10. An explicit relation for the two metrics is:
Ip = 62U(]D)gp (3.4)

This is really an equivalence relation among the set of metrics on M. Thanks to the group
properties of Conf(M), we have that the relation is symmetric (with scaling e=2(®) corre-
sponding to 62"(”)), reflexive (with the scaling coefficient e?(P) = 1, which, as we already
know from remark 3.1.6] exists) and transitive (compositions of conformal transformations
belong to Conf(M) as well).

3.2 Transformation of Levi-Civita connection

Definition 3.2.1. Let K be the difference of the Levi-Civita connections V (that is
metric and torsion free) with respect to g and V with respect to g:

K(X,Y)=VxY —-VxY VXY ecD(TM) (3.5)
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Lemma 3.2.2. [2] Let o € Q° and U be the vector field which corresponds to the one-form
do, so that Z(c) = do(Z) = g(U, Z). Then:

K(X,Y)=X(0)Y +Y(0)X —g(X,Y)U VX,Y € (TM) (3.6)

Proof. First, let us prove, that K is symmetric K(X,Y) = K(Y, X). It follows from the
torsion free property of Levi-Civita connection. For all A, B € ['(T'M), we have:

0=T(A,B):=VaB—-VgA—[A/B] — VsB=VgA+]A, B]
0=T(B,A):=VpA—-V4B—[B,A] — VpA=V,B-|[A B]
Now we add these two equations together:

VAB+@BA:VBA+@AB — yBA—vB/E:@AB—VAB/

—=:K(B,A) —K(A,B)

From the fact, that Levi-Civita connection is metric, it follows that:
X(3(Y,2)) = §(VxY, Z) + 3(Y,VxZ) (3.7)
and also:
X(eWg(Y, 2)) = 2X(0)e P g(V, Z) + e Pg(VxY, Z) + 9(V,VxZ)]  (38)
Now we subtract the first equation from the second and obtain:
0=2X(0)e*Pg(Y,Z) + > P [g(VxY, Z) + g(Y,Vx2)| — §(VxY,Z) — §(Y,VxZ)

J v
-~ -~

e20(Pg(VxY,Z) €20Pg(Y,VxZ)

and finally after dividing by a non-zero factor e2?®):

0=2X(0)g(Y,2) = g(K(X,Y), Z) — g(V, K(X, 2)) (A)
Permutations (X — Y — Z) yield:

0 = 2¥(0)g(Z, X) — g(K(Y, 2), X) — g(Z, K (Y, X)) ()

0 = 22(0)g(X,Y) — g(K(Z,X),Y) - g(X, K(2,Y)) (©)

The combination of (A) + (B) — (C) leads to:
X(0)g(Y, 2) + Y (0)9(2, X) = Z(0)g(X,Y) = g(K(X,Y), Z) =0
and if we make use of the equality Z(o) = g(U, Z), we get:
9(X(@)Y, 2) +g(Y(0)X, Z) = g(9(X,Y)U, Z) — g(K(X,Y),Z) = 0

This leads to:
g(X(0)Y +Y(0)X — g(X,Y)U - K(X,Y),Z) =0

Since the equality must hold for every Z, clearly:
KX,)Y)=X(0)Y +Y(0)X —g(X,Y)U
ergo the proof of lemma is complete.
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3.3 Transformation of Riemann tensor and its traces

Lemma 3.3.1. Let 0 € Q° and U be the vector field which corresponds to the one-form
do, so that Z(0) = do(Z) = g(U, Z). Then the difference of Riemann tensors defined by
ﬁ

the equality (with respect to Vv,V corresponding to the two conformally equivalent

metric tensors g, g) takes form of:

R(X,Y)Z - R(X,Y)Z = —[g(Y, Z)BX — g(BX, Z)Y + g(BY, 2)X — g(X, Z)BY] (3.9)

where B is a type (1,1) tensor field defined by:
1
B(X):=—-X(o)U+VxU+ §U(J)X (3.10)

Proof. Throughout the whole calculation the term (X, Y') will denote the symmetric part
of the expression positioned before it (sometimes called symmetrizer), in other words, the
same expression only with interchanged X and Y. We shall make use of and now,
from the definition:

R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z =
= {VXIK(Y,2) + Vv 2]} = B(X,Y) = K(X,Y], Z) - Vixn)Z =

= {K(X,K(Y, Z)+VyZ)+Vx[K(Y,Z) +Y\y/_@} —X(X,Y)-K([X,Y],Z2) - VixynZ

The underbraced terms (along with the part in the symmetrizer) are equal to the untilded
tensor R(X,Y)Z. Let us therefore rewrite the equality as follows:

R(X,Y)Z-R(X,Y)Z = K(X,K(Y,2))+K(X,VyZ)+VxK(Y, Z2)-S(X,Y)—-K([X,Y], Z) =

Using the equality [3.6] we get:

R(X,Y)Z — R(X,Y)Z = {X(0)[VyZ + K(X,Y)] + (VyZ)(0)X + K (Y, Z)(0) X —

—g(X,VyZ+ K(Y,Z2)U+Vx[Y(0)Z + Z(o)Y —g(Y,Z2)U]} — 5(X,Y)—
_[X7 Y]<U)Z - Z(U)[X> Y] +g(Z7 [Xv Y])U =

= X(0)VyZ+X(0)[Y(0)Z+ Z(o)Y —g(Y, Z)U]+

HVyZ)( )X +[Y(0)Z+Z(0)Y —g(Y, Z)U](0) X —

—9(X, Vy2)U —g(X,Y (0)Z + Z(0)Y — g(Y, Z)U)U+
—_———

)
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+ X(Y(0)Z+Y (0)VxZ+X(Z(0))Y + Z(0)VxY —
o B T

—g(VxY, 2)U — g(Y,Vx 2)U —g(Y, Z)VxU 3 —
N——

—E(X,Y) = [X(Y(0)) - Y(X(0))|Z - Z(0)[X, Y] +9(Z, [X,Y])U
o,B,7,6,e,T ?; af

Here the terms underbraced with the same greek letter subtract from each other. Terms
underbraced T' do not annihilate this way, but they are still zero together, because they
form a zero torsion tensor (under Levi-Civita connection). We can follow with:

R(X,Y)Z — R(X,Y)Z = { X(0)g(Y, Z)U +(Vy Z)(0)X + Z(0)Y (o)X —
\—,_/

N
3

:{(VyZ)( )X +2(0)Y (0)X — g(Y, Z)U(0) X+
N———

+9(Y, Z)g(X,U)U + X(Z(0))Y —g(Y, Z)VXU} - X(X,Y)
————

Due to the duality pairing between U and o via X(o) = g(U,X) VX € I'(T'M), under-
braced terms together can be rewritten as:

{(Vy2)(0)X + (X(Z(0)))V} - 2(X,Y) =

=9(U,Vy2)X + X[g(U, 2)]Y — g(U,Vx2)Y = Y[g(U, 2)]X =
=g(U,VyZ)X +9(VxU,Z2)Y + g(U,VxZ)Y —
—_ —_

9 2
—g(U,Vx2)Y —g(VyU, 2)X — g(U,VyZ)X
—_— T
Now in this last step, where we insert B(X) := —X(0)U + VxU + 3U(¢)X into our

equation, we near the end of the proof. Let us rearrange:
R(X,Y)Z —R(X,Y)Z ={Z(0)Y (o)X — g(Y, Z)U(0) X+

+9(Y, Z2)X (o) U — g(Y, Z)VxU — g(VyU, 2) X} — E(X,Y) =
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={—g9(Y,2)[+U(0)X — X(o)U + VxU|+ Z(0)Y (0)X —g(VyU,Z) X} — 2(X,Y) =
Y(0)g9(U,2)X
— {=B(X)g(Y.Z) ~ SU@(Y: 2)X + oY)V, 2)X — g(VyU, Z)X} ~ S(X.Y) -
={-B(X)g(Y.Z) —g(B(Y), Z)X} - X(X,Y)

The fact that B is a tensor (multilinearity with respect to f € C*°(M)) is obvious from
the superseding equation:

B(X) = ~(fX)(0)U+V x Ut LU0)(fX) = ~fX(0)U+fVxU+5 fU(0)X = [B(X)

where we have made use of the definition of a connection. The proof is now complete. [

Remark 3.3.2. Equation obtained in the previous lemma becomes by explicit calcu-
lation in coordinate notation (in line with cordinate convention established by equation

2.9):
Rijw = Riy, + (da', —g(0k, 0:) B(9;) + 9(B(8;), 0,)0) — 9(B(8k), 8)9; + 9(8;,8) B(dr)) =
= R+ (dz', —ga[B(9;)]"On + g([B(9;))" On, ;)0 — 9| B(Ok)]" On, 0:); + gi5| B(01))"Oh) =
= R.,. — 9B}, + Blgnid, — Brgnd: + g:; B0},
And therefore we have:
Rij, = Ry — 9B + B} ni6y, — Biignid; + 9i; By (3.11)

In a very similar manner we find coordinate expression of [3.10}

1
Bl = (d2', B(9;)) = (dz', —0;(0)U"0), + Va,(U"0y) + §Uh6‘h(o)8j> =

1
= —0,(0)U"8, + (BU) + FU"(0)5) =
’ 1
= —03(0)9™0n(0) + g% (9k0;(0) — 0u(0)T};) + 59" 0n(@)On(0)3;
Now we have made use of the fact that Z (o) = do(Z) = g(U, Z) for each Z € T,M:
8h(0) = g(U”@n,ﬁh) = gnhU" =U, — ghlaha = Ul
In a rather simpler notation:
1
B; = —0,0g™0,0 + g™ (000 — 0,0T%;) + §g"h8n03h05§ (3.12)
Now we lower the upper index:

1
Bij = —0,00j0 + 0,00 — 0,01}; + Eg”hana(?hagij (3.13)

From this equation it can be readily seen, that B;; := gilBj- = Bj; is symmetric.
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Lemma 3.3.3. The relationship between R and R viewed as a (0,4) tensors can be
expressed in a coordinate-free way through the Kulkarni-Nomizu product:

R=¢*Y[R—go B (3.14)
where B is a (0,2) tensor defined by equation [3.13]
Proof. Tt is an immediate consequence of lowering the index on [3.11}
¢~ Ryjx = Rujr + 9i; B + Bijgi — Birgi; — 9irBij

and recalling the Kulkarni-Nomizu product in coordinates (definition and equality
1) .

Remark 3.3.4. If we are to ask how do other tensors or quantities change under conformal
transformation of the metric, the answer is at hand. By contracting the expression |3.11
for [ and j we arrive at the following equation:

Rl =: 6ir = o — gir Bl + Bl'gni6k, — B gnior + guBL = o — 9B} — (n — 2) By, (3.15)

Here g1, 0 are (from equality [2.22)) the Ricci forms and n € N is the dimension of the
manifold. Yet another contraction in this expression leads (because of equality to:

"o = R = 672ggik[Qik_gikBll—(n—Z)Bik] = 6720[R—an—(n—2)Bll] = 6720[7?,—2(71—1)3[[]

where R, R are (by equality [2.23) the Ricci scalar curvatures. We shall rewrite this for

the future convenience as follows:
GixR = gir[R — 2(n — 1) B]] (3.16)

Now we shall be able to factor out expressions for Bf and By,. From the equation m
we have:

Bl—— gikR . R
2(n—1)gi.  2(n—1)
and [3.15] yields:
oik — O — gix Bj 1 - =
B, = = ik — Oik) — Rgir — Ry
- n—2 =20 = O) = 5oy =gy (Row = Ran)

3.4 Weyl tensor

Lemma 3.4.1. Coordinate expression [3.11| can be substituted in and rearranged so that
it is possible to separate tilded and untilded coordinate expressions of the same quantity
on the two sides of the resulting equation.



36 CHAPTER 3. CONFORMAL TRANSFORMATIONS

Proof. Let us insert equations for By, and Bj (found above) into after lowering the
indices at all coordinate expressions of B:

szk Réjk - gikgnanj + Bz‘j(ﬁ€ - Bikéé' + gijgnank =
ijk n— 2 J J 2( 1)( ) J J
[ 1 1 ~
— (04 — D i — Ragii) | oL—
+ _n_2<QJ 0ij) — 2(n 1)(71—2)(jo jo):| k
[ 1 1 ~
— | — (0 — b o — RG] ot
[ 1 1 ~
iJ n nk — ~n - R n _RNn

After separating tilded and untilded terms on different sides of the equation, we arrive at:

1 ~ ~ nl ~ nl ~ 7% ~ ~

LHS = R, + W[Qiﬂsé — 00 + Gi59™ Onk — Gicg™ Ong] + (= 1)(n—2) [Gik6% — GiO%)
RHS = Rj ! 5 5 " " R 8% — gi50;

ijk T W[Qij‘ k— 0ik0; + Gijg" Onk — Ging" Onj] + (n—1)(n—2) [9ik05 — 9i0;]
Because g;;9" = gije* e 2 g™ = §;;g™, it is obvious that on both sides of the equation is
the same quantity expressed in the means of g and g respectively. O]
Definition 3.4.2. The coordinate expression

! 1 ! 1 nl nl ! 1
Wz]k R, + W[Qijék — 0ik0; + 9i59" Onk — Girg" Onj] + = 1) —2) [9ik0; — 0]

(3.17)

defines a tensor on (M, g), called the Weyl tensor (conformal curvature tensmﬂ).

Proposition 3.4.3. Weyl tensor is indeed a tensor.

Proof. Follows from the fact that on the right hand side of equation figure only
tensors or products of tensors. ]

Theorem 3.4.4. Weyl tensor W is an invariant of conformal transformations of the
metric tensor.

Proof. Follows immediately as a corollary of remark and the result of lemma, |3.4.4]
that:
w! k= =W ik

1, 1,

]

IThe reason why the Weyl tensor is sometimes reffered to as the conformal curvature tensor is obvious
from some of its properties that we are to prove in chapter 4.



Chapter 4

Weyl and Cotton tensors

In the previous chapter we found a quantity invariant under conformal transformations,
namely the Weyl tensor. Here we shall probe deeper into its properties as well as come
across another quantity that bears a strong resemblance to it - the Cotton tensor.

4.1 Properties of Weyl tensor, Riemann curvature
tensor decompostition

Lemma 4.1.1. The Weyl tensor of (M, g) satisfies

?, (2

Proof. As follows from corollary the Riemann curvature tensor is anti-symmetrical
in the last two indices. Let us now explicitly write the right hand side of equation
that we are to prove:

1 R
W= —RL . ——— (0.0 — 0::0% + Gir 0™ 0ni — Gii g™ O] — 0L — gindl
ikj \/zﬁ]/ (n_Q)[Qk] Oij k+gkg Onj — 9ij9 Qk} (n—l)(n—Q)[g]k gk]]
=RL.
ijk
In comparison with the definition m this right hand side is equal to Wll]k O]

Remark 4.1.2. Let us compute the coordinate expression for the (0,4) Weyl tensor. From
the definition:

F— m  __
VVlijk L= glmW’jk =

)

= Gim {Rijk + —F [(Qij5k — 005" + gijon — 9ik@;') + ———(gir0;" — gijo )} } =

n—2 n—1
1 " n R
= Ruiji, + S (0ij9kt — 0ikGjt + 9307 Onk — Gik0y Onj) + m(gikglj = 9ijgu)
and finally
Wiijk = Ruiji + ! ( + )+ R ( ) (4.2)
lijk = fijk n— 9 Qij 9kl — Oik 941 T Gij 01k — Gik Olj (n _ 1)(77, — 2) 9ik 915 — Gij ik .

37
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Lemma 4.1.3. Coordinate expression of the (0,4) Weyl tensor satisfies:

Wi = —Whaji (4.3)
Wiiij = =Wk (4.4)
Whaij = Wij = Wi (4.5)

Proof. Starting from the Weyl tensor in the form of the proof is being lead in a very
simmilar manner to that of lemmald.1] Using the fact, that for the Levi-Civita connection|
the Riemann tensor has the symmetries we are lookig for (see lemma , it is trivial
to check from the coordinate expression that the same holds true for W. O

Lemma 4.1.4. The Weyl tensor W is trace-free.

Proof. By a straightforward calculation, we have from defining equation [3.17] where we
contract indices [ and j:

1 R
Wl :Rl —iél_iél inln_inln iél_i(sl:
ilk zlk+(n_2)[Qlk 0ik0] + Gitg" Onk — gikg Qz]+(n_1)(n_2)[9kz gu0y]
1
Qk+—(n_2)[glk NQik + 0; Onk — Yik ]+(n_1)<n_2)[n9(k )gk]
=(n—1)gix

1
Qk+(n_2)\[9k noik + Oik]

=—(n—2)oix

The same is true for setting the indices [ and & in definition equal by the previous
lemma [4.1.1} The last remaining non-trivial trace would be [ = 7 however under this
contraction the Weyl tensor vanishes as well due to its antisymmetry in the first two

indices (equation [4.4)). O

Theorem 4.1.5. The (0,4) Riemann curvature tensor of (M, g) can be decomposed as
follows:

R=W+gnS (4.6)
where W is the (0,4) Weyl tensor and S is the (0,2) Schouten tensor defined in as

SW.2) = o,z - -

n—9 mg(v,z)

Proof. It is an obvious fact, once we take into account the equation |4.2 and the definition

of the Kulkarni-Nomizu product 0

!Starting from remark we have been working with the Levi-Civita connection.
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Lemma 4.1.6. Under the conformal transformation of the metric tensor g — €2 g = g
the (0,4) Weyl tensor transforms as follows:

e POW(V, XY, Z) =W (V,X,Y,Z) VV,X,Y,Z e T(TM)

Proof. In theorem we found that the (1,3) Weyl tensor is an invariant of conformal
transformations of the metric. Now if we apply g, = €27 gy, to the equation

h _ 1x/h
Wh = Wi
we obtain
~ 117h T 20
glhm]’k = VVh’jk =e€ M/lijk

This is an equality in tensors, thus it does not depend on the choice of the basis and we
can rewrite it in the coordinate-free manner. O]

Remark 4.1.7. The decomposition of
R(\V,X,Y,Z) =W(V.X,Y,Z) + (g © S)(V. X,Y, Z)

and the trace-free property of the Weyl tensor (lemma [4.1.4)) is the reason why the Weyl
tensor is sometimes reffered to as the trace-free part of the Riemann tensor.

Theorem 4.1.8. [7] Let (M, g) be a (pseudo-)Riemannian manifold with dim M = 3
then the Riemann tensor of M can be expressed as follows:

n T R
Réjk = — 0,0, + Qikfsé' — 939" 0nk + gixg" 0nj + 5(91‘1#5; — 4:;0},)

Proof. First, let us raise the second index on the expression that we are to prove. We
arrive at an equivalent expression:

m m m m N m N R m m
LHS RHS

By our assumption (M, g) is a three-dimensional manifold and thus at least two of the
indices [,m, j, k has to be equal. We shall verify, that the equality (R) holds for the
following cases:

e Let [ =m, then:

. T R
RHS = — 06} + 04,6 — 6L9™ opr, + 019" 00 — 5 (56% — oLaL) =
=0
= —0;0), + 0405 — 850} + 6.0, =0
The LHS of (R) is zero as well, because of the antisymmetry of the Riemann tensor

(equality [2.19) which implies Ryjr = —Ryjr = 0. This remains true after raising
the first two indices.
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e Let [ = j, then:

R
RHS = —"d} + "0} — 679" 0wk + 07'9" 0w — = (5761 — 67°6}) =
R
— —of + 30" — 0"k + PR — (30 — ) =

R
— o + R — S (207) = of

For the LHS we have R"™, = g™ Rl = g™ 0., = o and therefore the equality
(R) holds.

o Let [ =k, then

m m m n m _n R m m
RHS = —07"5 + 0]} — 679" 0t + 6 gl@nj—g(@ 05— 07'0;) =
R
= —=30]" + 0" = 6)'R+ o' — ()" — 307") = =o'

and the LHS = R"™ ;; = —g™" R}, = — 0.

e Let m = j, then
m gl m Sl m _nl m _nl R m Sl m Sl
RHS = — 00, + 01'0,, — 6" 9™ 0k + 01' 9™ Opim, — 5(6/,c o — o) =
R
= —RO + 0 — 30} + 0, — 5 (0 — 30,) = —d}
For the LHS = R™ . = —¢""R}" . = —¢"onr, = — 0}, the equality (R) holds.

e Let m =k, then

R
5

RHS = —06;, + 016} — 059™ on + 059™ 0nj — 57 (550} — 655}) =

R
! IR ! ! 1 1 !
and the LHS = R'* k= gkhgilRihjk = gkhgithqjkj = gilQij = Qé-.

e Let j =k, then

RHS = — 00} + 0]} — 87" 0nj + 079" 05 — = (670} — 67°8;) = 0

J 7

R
2

Ilm _ Im _
For the LHS we have R i = —-R = 0.

Now let us consider the cases where three of the four indices [, m, j, k are equal. The left-
hand side of the Riemann tensor is always zero in these cases because of the antisymmetries
(lemmal2.4.9) Ry, = — Ry and similarly for the Riemann tensor with the first two indices
raised. We shall only verify the vanishing of the right-hand sides. We have:
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e Let [ =m = j, then the RHS is zero because of the case [ = m above.
e Let [ =m = k, then the RHS is zero because of the case [ = m above.
e Let [ =k = j, then the RHS is zero because of the case j = k above.
e Let m = k = j, then the RHS is zero because of the case j = k above.
We have verified the equality (R) ergo the proof of is finished. ]

Lemma 4.1.9. Let (M, g) be a (pseudo-)Riemannian manifold with a dim M = 3. Then
the Weyl tensor vanishes identically.

Proof. This lemma is equivalent to the previous theorem, for the Riemann tensor decom-
postition (theorem [4.1.5)) on a threedimensional manifold takes exactly the form from the
theorem if and only if the Weyl tensor is identically zero. O]
Theorem 4.1.10. The (0,4) Weyl tensor satisfies the first Bianchi identity:

WV, XY, Z)+ WV, Z,X,Y)+W((V,Y,Z,X) =0 VW X,Y,Z e (TM) (4.7)
Proof. Because of the decomposition W = R — g ® S (theorem [4.1.5)) and the fact, that
the Riemann curvature tensor satisfies the first Bianchi identity it clearly suffices to prove
that also the Kulkarni-Nomizu product (definition [1.4.8)) of two symmetric (0, 2) tensors
satisfies the first Bianchi identity. By direct computation (for all V, X, Y, Z € I'(T'M)):

HoQWV, XY, Z)+ HOQ(V, 2, X,Y)+ HO Q(V.Y, Z, X) =

-

=H(V, Z2)Q(X,Y) + H(X,Y)Q(V, Z) —H(V,Y)Q(X, Z) — H(X, Z)Q(V,Y) +

g

a B
T+ H(V,Y)QUZ X) + H(Z, X)Q(V,Y) ~H(V, X\)Q(Z,Y) - H(Z,Y)Q(V, X) +
B 5
+H(V, X)Q(Y, Z) + H(Y, 2)Q(V, X) —H(V, 2)Q(Y, X) — H(Y, X)Q(V, Z) = 0
e o
where the terms underbraced by the same greek letter subtract with each other. O

Proposition 4.1.11. [4] Coordinate expression of the (1,3) Weyl tensor satisfies:

1
th'ljk_ijWiZkh_'—kailhj — m (520ij -+ (S;Clkh + 5201-;”- + gikC]l-h -+ gihC,ij -+ gijC}Lk)

1,

where

Cijk = Vi0ij — V;0i + (9 VR — 9:;ViR)

1
2(n—1)
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Proof. We start by explicitly calculating the action of the connection on components of
the Weyl tensor:

1 1 l l l l
VWL, = ViR, + 0;Vroi — 0, Vi0ij + 9ikVr0; — 9i5 Vo), 019ij — 0;9ik

ViR
n—2 D2 "
0, V0 — 0,V 0i + ginV,0, — 9xVid, | 09k — 04 gin
vwl ZVRZ kY J&r h Y J&r th ¥V JCk kY JER hJt kIt V. R
iWikh i ien T n_2 (n—1)n—-2)""
61, Vi0ij — 0LV koin + 9i5Vi0h — 9 Vids  8hgin — 6},9i
VW =, R TREW Tk J T ECh J J MY g, R
Wing = Vieting + n—2 T D=2 "
By summing these three equations and making use of [2.24] we obtain:
! ! 1
VWi + VWi, + VW, =
1 ! 1 ! !
=3 0; Vnoir, =0y, Vi0ij +9iVn0; — GijVaoy+
Cikh Cihj
+ 8}, Vi0in —6), V0 +9inV 0k — 91V 05+
—— ~——
Cing Cijk
+(5§l V50ij —5/2 Vi0in +gijka§1 — gihkaé‘ +
\/—/ W—/
Cijk Cikh
2
+— (5,16 githR —(Sé glthR +5£L giijR —52 githR +5§ gzhka —52 ngkR =
2(7’L — 1) N—— N—— N—— N—— N—— N——
Cinj Cikn Cijk Cing Cikh Cijk
1
=— (8, Cijic + 05Cin + 0,.Cinj) +
1 ! ! ! ! ! !
+——— | | 9ik Vn0; —9i5 Vnoy +9in V0, —9ir V0p +9i5 Vioy, —9in Vi0; | +
n—2 J J
1
— | 9 6,ZCVhR —0ik 6§Vh72 +0ik 5£LV]R —UJin 5LV]R +gin 5§VkR —Gij (%VkR
2(” - 1) N~—— —— N—— ~—— ~—— N—
Chi Céh C]l'h, Czlfj C,ij Chi,

We made use of the defining equation for Cjj;, as well as

Ch = 9°Cyjr = Vi0;, — Vo), + (6: VR — 8 VkR)

1
2(n—1)
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4.2 Properties of Cotton tensor

Definition 4.2.1. The coordinate expression

Cijk = Vi0i; — V;0i + (it ViR — gi;ViR) (4.8)

1
2(n—1)
defines a (0, 3) tensor on (M, g), called the Cotton tensor.

Remark 4.2.2. The Cotton tensor of M with dim M = n can be expressed in terms of the
Schouten tensor (definition [2.5.5)):

Cijk = (n —2)(ViSij — V;Sik)
Lemma 4.2.3. The Cotton tensor C' is anti-symmetric in the last two indices, i.e.
Cijk = —Cikj Vi, j, k
Proof. Follows immediately from the defining equation [4.14] O
Proposition 4.2.4. The Cotton tensor satisfies the following identity:
Cijk + Crij + Cjri = 0
Proof. Using remark we can write:

1
5 (Cije + Clij + Cji) =

= VkSij — V]Sm + V]S]m — VlSkj + VZS]k — VkSﬂ =0
@ ~ 5 @

where we have employed the symmetry of the Schouten tensorE] O

Lemma 4.2.5. [4] The Ricci form and the Ricci scalar are related by:
l 1
Proof. Let us start from the Second Bianchi Identity
Vi Rl +ViRL+ ViRL =0
~~~ S——

—=—Rh

ik =g""mV Rt

where we have made use of the equality [2.10, Now we shall contract the obtained equation
for h and k and use equation [2.19

~Vi0i; + Viou + """ Vi Rya; =0
——

=—Rimi;

2Later on we shall prove that Cjj, = 0 identically on a manifold with dim M < 3 therefore this
proposition holds even for n = 2 where the previous line of proof does not make sense.
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In order to complete the proof, we multiply the equation by ¢” and sum for i and I:
—Vidi + ViR = ¢""Viom; =0 = 2Vl =V,R
———
:ngf
After dividing by 2 this results in the sought-after identity. O]
Lemma 4.2.6. The Cotton tensor is trace-free.

Proof. We have after raising the index and contracting

Cip = ¢"Cyip = Vol — Vol + (5iV,R — §iV,R) =

2(n—1)

1
= VkR — §ka +m(vk7—\’, - ndR) =

——

by lemma [£.2.5]
~lor- Tl gr=0
T2 MY o) T
The same would be true for setting the indices ¢ and &k equal C’fk = g*Cijs. O]

Proposition 4.2.7. Let (M, g) be a (pseudo-)Riemannian manifold with n = dim M > 3.
The coordinate expressions of the Weyl tensor and the Cotton tensor are related by:
n—3

h
v, Wh =
kT

jcijk (4.10)

Proof. We start by contracting the equation obtained in proposition for h and [:

1
VWAV Wi+ VW = — (0hCijic + 67 Cirn + 04 Cing + girClh, + 9inClry + 9:;Chi)

Now using the trace-free properties of the Weyl tensor and the Cotton tensor from lemmas

(4.1.4] and 4.2.6| we have:

h
VWi, i

N——
=0 =0 =0 =Ci; =0

1
+ VWl + VW = —2(ncijk + Cirj + Cirg + gir. C} + 9inCr; +9i5 Chy)
— n— ~ N ~~

If we employ the anti-symmetry from lemma [4.2.3| we arrive at:

1 n—3
VhWZ-};-k = m(n@jk — Cijie — Cije — Ciji) = n—2

Cijk
O

Corollary 4.2.8. Let (M, g) be a (pseudo-)Riemannian manifold with n = dim M > 3.
If the Weyl tensor is a zero tensor, then the Cotton tensor is a zero tensor.

Proposition 4.2.9. Let (M, g) be a (pseudo-)Riemannian manifold with dim M = 2.
Then the Cotton tensor of M vanishes identically.
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Proof. On a two-dimensional manifold, the Cotton tensor (after raising the first index)
takes form of:

;k - gzscsjk - vk@; - V]Q;c + 5(6;6ij - (5;ka) 1,7, k € {17 2}

As an obvious consequence at least two indices must be equal. Components with i equal
to j or k vanish because of the trace-free property of the Cotton tensor (lemma . If
j = k then we have by the anti-symmetry of C' (lemma @ the equality C%; = —C;
ergo components for which is this satisfied vanish as well. All its components vanish,
hence the Cotton tensor is a zero tensor if dim M = 2. O]

4.3 Cotton tensor under conformal transformations

Theorem 4.3.1. Let (M, g) be a (pseudo-)Riemannian manifold with dim M = n > 3.
Then under a conformal transformation g;; = €7 g,; of the metric tensor the Cotton tensor
of M transforms as follows:

éijk = Cyjr — (n — 2)(940)
Proof. We start from the equation from remark [4.2.2}
Cijie = (0 — 2)(ViSij — V;Six) = (n — 2)(04Si; — TS0 — TSw) — 2(j, k) (4.11)

a
ijk

where we have made use of the symmetnzerﬁ In order to advance further, we need to
find the transformational properties of S,; and F%z first. Shall we do that, we are to prove
a couple of lemmas.

Lemma 4.3.2. Let (M, g) be a (pseudo-)Riemannian manifold. Then under a conformal
transformation g;; = €**g;; of the metric tensor Christoffell symbols transform as follows:

[ =T + 0,00% + ;008 — ging™ Ono Ya,i,k (A)

Proof. From the defining equation and lemma we already know, how the Levi-
Civita connection changes under a conformal transformation of the metric tensor. Now
it is necessary to express the equality

VxY =VxY + X(0)Y +Y(0)X —g(X,Y)U VXY e (TM),U' = "0
in coordinates. We do that by using the duality pairing of TM and T*M with their
respective bases {0;} and {dz’}:
[ = ot = (T8, da®) = (Vi da) =

= (Vi + 0(0)0; + 0,(0) Ok — 9(Op, 0,)U' D), da®) =

= (I'¢,0, + 0k(0)0; + 0;(0) O — grig™ Ono 0y, dz®) =

=T + 0,00 + 0,007 — ging™"Ono
We have proved the desired equality (A). O

3The symbol X(j, k) represents the symmetric part of the whole expression (from the last equality =)
positioned in front of it; i.e. the same expression only with interchanged j and k.
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Lemma 4.3.3. Let (M, g) be a (pseudo-)Riemannian manifold. Then under a conformal
transformation g;; = €7g;; of the metric tensor the (0,2) Schouten tensor S transforms
as follows:

Saj = Saj — Baj (B)

where B is the (0, 2) tensor whose components are defined by equation followingly:

1

Proof. Let us start from the definition [2.5.5] Using known transformational behaviors of
the Ricci form and the Ricci scalar (equalities and respectively), we can write:

ST R\
9T 2 \% T o)) T

1 1 N )
= 9 <Qaj - gajBll _(n - 2)Baj — m@ 2 [R _ 2<n _ 1)Bll]62 ga]) _
1 R
= =By — —~ g ) = S.. — B..
n—z(gf (n —2)By; 2(n—1)93) i — B
The proof of the equality (B) is now complete. 0

Now we shall be able to continue in our endeavors to prove the theorem [4.3.1} Let us
substitute from (A) and (B) into the equation [4.11]

Cije =(n — 2)(ViSij — V;8i) = (n = 2)(0Sij — T4, — Ty Sw) — £(j, k) =

:(n — 2) 6’kSU —8kBij —
——

C
— ( Fiz —|—0ka<5f —+ 810'5;; — gikg“hﬁha)( Saj —Baj)—
vl vl

— (T4 +0k005 + 0,007 — gjrg™" On0)( Sui, —Bai) | — E(j, k)

C C

Here the underbraced terms form together the Cotton tensor Cjj;, therefore we can rewrite
(any term symmetric in j and k cancels out with respective term in the symmetrizer):

1
n—2

(éijk - Cijk) =
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= — (8,@(5,“ + aiaé,‘; — gikg“hﬁha)Saj + (F%z + akaéﬁ + @ad,‘i — gikg“haha)Baj—
- (8;47(5? + @0’5,‘? - gjkg“haha)Sm- + (Fij + 8k05? + 8ja<5,‘j - gjkgah(?ha) Bm'—

N J/
-~

symmetric j <> k

— OBij — X(j, k) =
= — akUSij — &-aSkj +gikS§‘0hcr — 8kUSji — ajUS]m‘ + gijf(‘?ha +
a v
1
+ (D%, + Opo 08 + 0,068 — ging " 0n0)(—0a00j0 + 0,0;0 — 0ol + §g”h(‘)n00hagaj)+
+ &ﬁiaﬁja + @cr@kaja — 8k8i8j0 +3kﬁcoffj + 8008kaj—
—_——— ——
6 €
1 .
— 5(8kga58a0850gij + go‘ﬁﬁkaaaaﬁagij + g”‘ﬁﬁaaakagagij + g”‘ﬁaaaagaakgij) — E(], k)
B,7,0
,B,7,0,e

We have substituted for the tensor B and canceled the terms symmetric in j and k against
the symmetrizer. Further manipulations yieldE]:

1
n—2

(éijk — Cijk) =

1
= —0,0S;; + gikS]haha — 0,00;01'; + 0,0;01'%,; —0.0 ngin —i——g”h@naahagajfzi—
" R

J
¢ A n 9

1
— 0,00,000 + 0;0;00,0 —0.01';,0r0 + —g”hanaﬁhagijaka — 0,00;00,0 + 0,,0;00;0 —
—_— — 2 —_——— —

1
— 0.01;0,0 + §g”h8n08hagkj8ia +8a08jagikgah6ha - 8a8jagikg“h8ha—l—
A,—/ e J

-~

L
K

1
+ 0.0l Gir g™ O — —(80)anjgikg“h8h0 + 010,000 + 00,01, +0.0 Ok L5, —
J 2 ——— J J
A I R

1
= 5(%9&6@!03509@ +gaﬁak3a03ﬂ09ij + ¢*° 0,004,050 9:; +(00)*Okgi;) —  X(j. k)

~~ S——
ZQQQﬁakaaUaﬂO'gij QYRR WTN 1
Here the terms denoted by R do not cancel the way the terms denoted by greek letters
do, rather they represent (along with the terms in the symmetrizer) the Riemann tensor:

—0.0R; . = +0603kr§i - acO'F;aFZi — X(j, k)

ijk
Using this fact, we have:

1 ~
(Cijk — Ciji) + 0.0 R, + 0k Sij —ginSj0.0 — 0;0Six +0ijSp0.0 =
~—— S~——

=BCUSZJ§,$ :8605“66]‘

n—2

“Henceforth we will somewhat loosely use the notation (90)? := ¢*?0,09s0 in order to simplify the
expression.
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1 1
= — 0,00;00%, +=(00)go; T — 0.0T;0k0 + =(00)g;;0,0 +
—
0 0
3
1
+ ?jagik(ﬁa)i — ?aajagikg“hﬁha —l—@CUFngikgah@ha — 5(80)29¢k8j0 —
€ v —

1 1 .
— 53199&6%03609@ - gaﬁakacfaﬁagii—5(30)231&;‘ — X(J, k)

v g7£7V

Now because:

acO'jok — Szk(sjcﬁc(f — Sjcg@kaca -+ Sﬁgijﬁca -+ Sijé;;ﬁc(f = acO'W-Cjk

)

where W, is the (1,3) Weyl tensor, we can rewrite our equality:
ijk y

1 ~ c
5 (Cligi = Cigre) + 0o Wiy, =
1 2 a 1 2 c ah 1 ch .
= 5(80’) gaiji — 5(80’) 8kgij + acafajgikg 0h0 — iakg 800'8hdgij — E(], k)
For the Levi-Civita connection the equality holds and thus we obtain:

1 ~ C
m(cijk — Cij) + 0o W), =
1 ) 1 2
= 5(80) gaj§g (Okgni — Oignik — Ongri) — 5(30) Okgij+
1 .
+ 860Ffljgikgah8h0 — §8kgCh8008hagij —X(j, k) =

1 1
= 1(80)2(@9;1 — 0,955 —0;gri) — =(00)*Opgij+
~ 2

1
+ 00T ging™" Ono — = 0kg™ 00000 gi; — X(j, k) =
2 2. 5)

T

1
= 0Cal“gjgikg“h6ha - iﬁkg‘:hﬁcaahagij —X(j,k)+
1 2 1 2 1 2
+ 1(30) (Okgji — Oigri — Ojgi + Ongji) — 5(50) Ogij + 5(30) 0 Gir =
1 .
= 3cargjgik9ahah0 - éakgChaco—aho—gij —X(J, k)
In order to finish the proof of the theorem we shall prove one last lemma.

Lemma 4.3.4. [4] For the Levi-Civita connection the following identity holds:

0™ == ("L} +97Ty)  Vidm ©
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Proof. Let us calculate:
D + i = %(akgjl + 01gjk — 09k + 09w + Ogjk — Okgji) = OiGjk (E)
Using the partial derivative 9, on the equality ¢ gr; = 0}, we arrive at:
(29" grj + 9" (Drgrs) = 0
Now we multiply this equation by the inverse metric ¢*™:
019”87 + 9" 9" D9
Substituting from (E) and rearranging we have:
Ag™ = —g" 9" Ogr; = —g" 9" (Tjr + Tigr) = —(¢""Thy + " T7)
Therefore lemma has been proved. O
If we make use of the identity (C) in our transformation formula, we arrive at the
following:

1 -
(Ciji — Ciji) + 0coWiy =

n—2

= acafgjgikg“haha + = (gcafza + gahfza) 0.00,06:;; — X(j, k) =

N — DN~

1
gC“FZaacaahUgij —i——gahf‘iaacaahagij — E(], k) =

= Gcafgjgikg“haha + 5

-

gh‘ll"za()haaeagij
= (V%9 + Torgi) 9" 0,000 — £(j,k) = 0

symmetric j <> k

This can be finally rewritten as:
éijk = Ciji, — (n —2)0.0 zcjk

hence the proof of the theorem is now complete.
[l

Theorem 4.3.5. Let (M, g) be a (pseudo-)Riemannian manifold with dim M = 3 then
the (0,3) Cotton tensor is an invariant of conformal transformations of the metric tensor.

Proof. Follows as an immediate consequence of the transformation formula from the pre-
vious theorem: )

Cijr = Ciji, — (n —2)0.0 1§k
and the fact that the Weyl tensor is a zero tensor (see lemmad.1.9)) on a three-dimensional
(pseudo-)Riemannian manifold. All together we have:

Ciji = Ciji
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4.4 Obstructions to local conformal flatness

Definition 4.4.1. [3] A (pseudo-)Riemannian manifold (M, g) is locally conformally flat
if for any p € M, there exists a neighborhood V' of p and a C*°(V') function ¢ such that
(V,§ = e*g) is flat.

Theorem 4.4.2 (Obstructions to conformal flatness). A (pseudo-)Riemannian manifold
(M, g) with dim M = n is locally conformally flat if and only if

e for n > 4 the Weyl tensor of M vanishes
e for n = 3 the Cotton tensor of M vanishes

Proof. We shall prove this theorem in two implications.

(—) We assume the conformal flatness of (M, g), therefore we have that for any p € M,
there exists a neighborhood V' of p and a C*(V) function ¢ such that (V,g = €27¢g) is
flat. Therefore the Riemann curvature tensor R vanishes. Using the decomposition of
the Riemann tensor (theorem and the transformation formula for the (0,4) Weyl
tensor from lemma 1.6}

R—GgpS=W=e*®w

Since R = 0 the Schouten tensor S must be a zero tensor as well because it constitutes of
the traces of R, namely the ¢ Ricci form and the R Ricei scalar curvature. These traces
are zero. Therefore

0= 2 — 1y

If dim M = 3 then using remark and the fact that in three dimensions the Cotton
tensor is conformally invariant (theorem [4.3.5)) we have:

@kgij - @]gm = C@'jk = Cijk

Now by the same reasoning as in the previous case the Schouten tensors S vanish and
thus:

0 = Cijx = Cyji;

This implication is now proved.

(+) Let the Weyl tensor be a zero tensor. The condition for (V, g = €**g) (where we have
to show that such function o € C*°(V) = Q°(V) exists) to be flat is the vanishing of the
Riemann tensor

RV, X,Y,Z)=0 VV,X,Y,Z e T(TM)
Using the knowledge of the behavior of the Riemann curvature tensor under conformal
transformations of the metric tensor (lemma [3.3.3)), this is equivalent to:

0=R=R—B®g
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where B is the (0,2) tensor whose components are defined in lemma as
1
B,Lj = —@U@-U + (Zaja — aaUF?j + §gnhanaahagij

Because of the decomposition R = W + S ® g (theorem {4.1.5) and our initial assumption
that W is a zero tensor this can be equivalently rewritten yet again:

0= I:Ig +S®g—B®g — (S—B)®g=0

By proposition the Kuklarni-Nomizu product is possible to be viewed as a map
from T(TM @ TM) to T'(®* T'M) that is injective. We have by definition that the metric
is non-degenerate and therefore thanks to the injectivity of g ® - the tensor (S — B) has
to be a (0, 2) zero tensor. Ergo the condition for (V,g) to be flat is now S = B. Here S is
the Schouten tensor (definition and B is defined by B;; above. That is additionally

possible to be rewritten as
B;j = =V,0V,0 +V,;Vjo + %g”hvnavhagij
All together we have:
Sij = Bij = =V,oVjo +V,;V o + %g”hvnavhagij
We have to prove that there is indeed such function o € Q°(V) that satisfies the last
equality. That suffices for (V, g) to be flat and therefore for the manifold M to be locally

conformally flat. Before we shall proceed with the proof of the theorem we are to
find an equivalent condition.

Lemma 4.4.3. A function o € Q°(V) being a solution to
1
Sij = _VZ'O'VJ'O' + Vz‘v]’O' + §g"hvnavhagij (A)
is equivalent to w € Q'(V) being a solution to

1
Sij = —wiwj + Viw]' + §g"hwnwhgij (B)

Proof. 1f o is a solution of (A) then certainly w := do solves (B). Conversely, let w € Q'(V)
be a solution of (B). We can rewrite that as

Viw; = Sij + wiw; — §gnhwnwhgij

Now by the symmetry of the Schouten tensor, we see that the right-hand side of this
equation is symmetric. Hence the left-hand side must be symmetric as well and we have

Viw; = V,w; Vi, j (©)
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We are to find dw using the Cartan identity on the coordinate vector fields.

dw(9;,0;) = 0i(w(0;)) — 9;(w(0i)) — w(9;0; — 0;0;) =
=0
= Viw;j + wal'f; — Vjw; — w I, —w(0) =
== Viwj — iji

We have made use of the symmetry of Christoffel symbols in the two lower indices for the
Levi-Civita connection. Because (C) holds, we have dw = 0. Ergo w is a closed one-form
and by Poincaré lemma [1.2.19] it is locally exact. More specifically around an arbitrary
point p € M there exists a neighborhood V' such that w is exact. This implies that there
exists o € Q°(V) = C>(V) such that w = do. If we substitute w = do into (B) we obtain
(A). Proof of the lemma is now complete. O

We can continue in our efforts to prove the theorem [£.4.2] In order to prove the local
conformal flatness of M, we have to find a one-form w such that

1
Viwj = Wil + Sij — §g”hwnwhgij (412)

This is a differential equation in terms of the Levi-Civita connection (its extension as
covariant derivative). For a solution w to exist the integrability condition of the Ricci

identity must be satisfied (see remark [2.6.3). Shall we compute the integrability
condition, we are to find V;Vw; first. Substituting from the equation .12}

1
ViVjw; = Vi(wjw; + Sji — §g”hwnwhgji) =

1
= (Viw;j)wi + w;(Viw;) + Vi Sij — §gaﬁgij[(vkwa)wﬁ + wa(Viws)] =

= (Viw;)wi + w;(Viw;) + ViSi; — 9°° 91 (Viwa)ws
Now we substitute from yet again:
1, 1,
ViVw; = (Skj + wrpw; — v Grj)wi + w;i(Ski + wiw; — v Jki)+
+ ViSij — 9°°9ii(Ska + WkWa — %w2gka)w5

where we denote g*’w,ws = w?. Expanding all terms, we shall substitute this into the

Ricci identity, exploiting the properties of the symmetrizelﬂ in a very simmilar manner to

®The symbol X(j, k) represents the symmetric part of the whole expression (from the last equality =)
positioned in front of it; i.e. the same expression only with interchanged j and k.
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that included in the proof of lemma [3.3.1]

1 1
! 2 2
Rijkwl = Skjwi + Wpwjw; — = W Grjw; +SkiW; + Wrwiw; — =W griw;j —

K A o v
1

af af af 2 ; _

— 9" 9ijwpSka — 9V Gijwpwrwa + =9 Gijwpw gra + ViSij — X(J, k) =
¥hattl J&B 9 ¥hattl J ( )
D WIRY

1 1 .
= Spiw; — §w29kiwj — 9% gijwpSka — W gijwr + §gijwkw2 +ViSi; — X4, k) =
N—— <

L
L

1 1 _
= Spiw; — §W2gkiwj _gaﬁgijwﬁska + Vi Si; — EgijWkWQ —X(j,k) =
9 b v

= Skiw]- — gijw/gS,f + VkSZ] — Z(], k?)
(4.13)
Let us now expand the left-hand side of the equation using the decomposition of the
Riemann tensor 1.5 with the first index raised:

RLw = (W + —5Sii0 + Sikd), — Spgij + Shgin)wr =

[ ! L
= Wijnwr = Sijwi 4 Siew; — Spgijwr + Sjginw

Now we substitute this into the left-hand side of the left-hand side of our integrability
condition and after all the terms cancel out and we employ the initial assumption of
vanishing of the Weyl tensor, what remains is:

VkSij - V]SZk — O

Comparing this with remark it is obvious that after multiplying the equation by
(n — 2) the left-hand side becomes exactly the Cotton tensor of M. We arrived at the
vanishing of the Cotton tensor as an integrability condition for the manifold to be locally
conformally flat. In dimensions dim M = n > 4 this is ensured by the corollary
because there when the Weyl tensor vanishes, the Cotton tensor vanishes as well (and the
vanishing of the Weyl tensor was our initial assumption). In dimension n = 3 vanishing of
the Cotton tensor is the integrability condition itself and therefore the proof of vanishing
of W and C' being the sufficient condition for M to be locally conformally flat in respective
dimensions is now complete. O

4.5 Cotton-York tensor

Remark 4.5.1. Let (M, g) be a Riemannian manifold with dim M = 3. It is possible to
percieve Cjj;, as a vector-valued 2-form thanks to its anti-symmetry in the last two indices

(see lemma [4.2.3). Symbolically:

1 ,
Cz’ = 5 ijkd.Tj A\ dl’k i,j,k = 1,2,3
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Now we are to use the Hodge star x on this 2-form on a three-dimensional Riemannian
manifold. Using the equality

\/ |det ; 1 , 1 .
Y; = %(C;) = —| 5 g|Cijk8]khd:ch =35 Z-jkg‘”gﬁk V|det gleagn da" = 3 k€ g da”

€aBh

where we have employed the definition (see equality of the Levi-Civita tensor as well.
The value of Y; on a basis element 0,, € T),M:

1 . 1 '
Y;'n = Y;(an) = — Z'jkejklglh dxh(an) - _ ijkejklgln
ok

is a (0,2) tensor. Finally we rewrite (by the anti-symmetry of €):

1 1 ,
Yin = 5 |:ka1']‘ — V0i, + 1 (9 V,;R — gijka):| M g =

1 1 . 1 4
= 5 |:(_1)vk (Qz] - ZQUR> ekjl _ vj (‘sz . ZngR) Ejk‘l:| Gin

By renaming the summing indices j <> k in the first part of the expression Y;, we obtain
the following:

- 1
Yin = _Ejklglnvj (Qik - zlgikR)

Now we raise both indices of Yj,:

Ya,B jkl(sﬁ e 1 ey ik e 1 o

= =0V Qk_zl(sk = ="V Qk—zék
Definition 4.5.2. [§] The coordinate expression
ij ikl j 1 J

defines a (2,0) tensor on (M, g) with dim M = 3, called the Cotton-York tensor (some-
times called the Cotton form).
Proposition 4.5.3. [6] The (2,0) Cotton-York tensor is symmetric, i.e.

Proof. First let us prove the following lemma:

Lemma 4.5.4. Let A;j; be a (0,3) tensor antisymmetric in ¢ and j and M% be a general
(2,0) tensor. Then B
Aijle] - O

if and only if M%¥ is symmetric in i and j.
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Proof. We shall prove this lemma in two implications
(=) Let A;;M“ = 0. We can then rewrite this condition by the antisymmetry of A;j;

followingly:
1 s 1

Now we rename the summing indices on the second term ¢ <+ 7 and therefore obtain:
A (MY — M7 =0 — M7 = MY
(+) Let M¥ be a symmetric (2,0) tensor. We have:

- 1 - 1 .
AijkMZ] = §A,ijMU - §A]Z]€Mﬂ - O

which proves the lemma. O

Now we are to apply the obtained lemma in the proof of proposition [4.5.3] We shall
multiply the (2,0) tensor with the totally antisymmetric (0, 3) Levi-Civita tensor €;j:

y . 1 , 1] )
€Y " = €ijk€wlvs (Qg - ZR(SZJ) = (5;(% - 5é51i)vs (Q? - ZR(SZJ) =
1 1 .
=V,0.— ViR = Vi + 7 80, ViR
1 E NG
=dim M=3

Making use of the fact that Vo), = sViR (lemma D we find:

1 1 3 1 3
€Y = §VkR— kaR— ViR + kaR = (Z — 1+ Z) ViR =0

Using the lemma vanishing of €Y% is equal to the fact that Y is a symmetric
(2,0) tensor. O

Proposition 4.5.5. [6] The (2,0) Cotton-York tensor is trace-less, i.e.
g; Y7 =0

Proof. By direct calculation (making the use of the total antisymmetry of ¢*' and the
symmetry of the Ricci form and the metric tensor)

) . 1 . 1
lik 1 ikl 1
=" Vilou— ZR% = -V | 01— ZRgz‘z
_lki

In the last step, we have renamed the indices i <> [. From this it can be readily seen that
9i Y7 = —gi; YV

and that is only possible when g;;Y" = 0. O
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Proposition 4.5.6. The (2,0) Cotton-York tensor satisfies:
VY7 =0
Proof. Computing, we have:
| ) X 1 . ) ) 1 .
VY = MY,V (g{ — Z_LR61]> = M gPiv V.08 — Ze’leleR =

N I
= gV Vs — gﬁml (ViV = ViVi)R

=0
We have made use of the anti-symmetry of ¢/ and renamed the indices k <+ [. The second
term must vanish because of lemma [2.6.1] By using the Ricci identity for the (0, 2) Ricci

form (theorem [2.6.4)), our expression becomes:

ijij = €iklg’8jvj'vk@ﬁl =
= M gPI(V V08 + 0sn Rl + o RhE:) =
308l T OphiYg; T Ohl gy
="V Vo +¢™ g% (0anRly; + o Ry;)
~
=1VIR

where the equality from lemmal4.2.5 has been employed. The first term in this last equality
can be therefore rewritten (making use of the anti-symmetry of ¢ and renaming indices)
as: ) .

§e““leVlR = Zﬁikl(vkvl - Vle)R =0
which is again zero by lemma Now, on a three-dimensional manifold the Riemann
curvature tensor is possible to be expressed in terms of Ricci forms and Ricci scalars (see
theorem , hence the equality becomes:

ijij _ Eiklgﬁj(gﬁthhkj + thngj) —
. R
= ¢kl ghi {Qﬁh |:Qlj51}cl — ol +gi00 — g} t3 (guc(sjh _glj(s]};):| +
—— —~— ~—~—

R
+ onl {Qﬁﬂ;’;‘ — 080 + gsj0k — garol + 5 (98600 — 95;'51}5)} }

Here any term symmetric in [ and k vanishes, for it is multiplied by the totally anti-
symmetric Levi-Civita tensor. Expanding all terms we obtain:

vjyij _ Eiklgﬁj(gﬁthhkj + thngj) —

=kl {gﬁj 0810130 + 9™ 0sngiiol — 59ﬁ]95h9lj52+

+ 9% on0p;0f — gﬁthzQBk@h + 9% ongs;on—

—g” th%k@? + EQ’B] thgﬁkfsj‘l - EQ’B] thgﬁjalicl} =
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After simplifications:

VY = ¢k {Q?ngj + omof — 5 + Row
—— v

= 46™ o1 0} = 4™ g 014,001, = 2¢

We have proved the desired equality.

Goh o 0

— 0,00 + om0l — ool

k_2€

2

ilk  ho

9 01aOnk
——

eklgheopqon

2
——

=0

3

R
+ —ou — zRou

2
——

}

S7
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Conclusion

We have studied conformal transformations of the metric tensor on a pseudo-Riemannian
manifold. As a consequence of finding transformation formulas for the Levi-Civita connec-
tion, the Riemann curvature tensor and its traces we encountered and defined the Weyl
tensor. We have described and proved all fundamental properties of the Weyl tensor and
as a result of searching for further symmetries in its derivatives we have found the Cotton
tensor. We have shown that this tensor is closely tied by its properties to the Weyl tensor
and the overall conformal geometry of the manifold. The proof of the essential theorem
regarding the Weyl and Cotton tensors acting as an obstruction to local conformal flat-
ness of the manifold was given using the integrability condition argument. We have used
the Hodge star to convert the Cotton tensor to an equivalent tensor of lower order on a
three-dimensional manifold and studied its agebraic properties.

39



60



Bibliography

[1] J. Jost: Riemannian Geometry and Geometric Analysis. Springer-Verlag Berlin Hei-
delberg, 978-3-642-21297-0, 2011.

[2] M. Nakahara: Geometry, Topology and Physics. CRC Press, 978-0-750-30606-5, 2003.

[3] A. L. Besse: Einstein Manifolds. Springer-Verlag Berlin Heidelberg, 978-3-540-74120-
6, 1987.

[4] L. P. Eisenhart: Riemannian Geometry. Princeton, 978-0-691-02353-3, 1997.

[5] M. Spivak: A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish
or Perish, 978-0-914-09870-6, 2005.

[6] P. Horava: Quantum Gravity at a Lifshitz Point. arXiv:0901.3775v2, 2009.

[7] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov: Modern Geometry - Methods and Ap-
plications, Part I. The Geometry of Surfaces, Transformation Groups, and Fields.
Springer-Verlag New York, 978-0-387-97663-1, 1992.

[8] J. W.York: Gravitational Degrees of Freedom and the Initial- Value Problem. American
Physical Society, Phys. Rev. Lett. 26 (1971)) 1656-1658.

[9] H. Weyl: Reine Infinitesimalgeometrie. Springer-Verlag, Mathematische Zeitschrift. 2
(1918) 384-411.

[10] E. Cotton: Sur les variétés a trois dimensions. Annales de la faculté des sciences de
Toulouse (II). 1 (1899) 385-438.

[11] A. Garcia, F.W. Hehl, C. Heinicke, A. Macias: The Cotton tensor in Riemannian
spacetimes. arXiv:gr-qc,/0309008, 2004

[12] R. Arnowitt, S. Deser, C.W. Misner: The Dynamics of General Relativity. In: Gravi-
tation: An Introduction to Current Research, L. Witten (Editor). John Wiley & Sons,
Inc., New York, 1962

61


arXiv:0901.3775v2

	Introduction
	Preliminary terms in differential geometry
	Differentiable manifolds, vector bundles
	Tensors, differential forms
	Lie algebras, induced maps, Lie groups
	Miscellaneous tools of tensor analysis

	Connection and canonical tensors
	Connection on vector bundle
	Curvature
	Riemann tensor, connection on tangent bundles
	Metric connection, Levi-Civita connection
	Tensors constructed from Riemann tensor
	Ricci identities

	Conformal transformations
	Conformal transformations, conformal equivalence
	Transformation of Levi-Civita connection
	Transformation of Riemann tensor and its traces
	Weyl tensor

	Weyl and Cotton tensors
	Properties of Weyl tensor, Riemann curvature tensor decompostition
	Properties of Cotton tensor
	Cotton tensor under conformal transformations
	Obstructions to local conformal flatness
	Cotton-York tensor

	Conclusion

