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Vlastnosti a význam Cottonova
tensoru

Bachelor’s Thesis

Author: Filip Garaj

Supervisor: prof. RNDr. Ladislav Hlavatý, DrSc.
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Zaměřeńı: Matematická fyzika
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formńı plochosti variety a nulovosti Weylova tensoru je d̊uležitým výsledkem Riemannovy
geometrie. Na tř́ıdimenzionálńı varietě toto neplat́ı, protože Weyl̊uv tensor je za takových
předpoklad̊u identicky rovný nule. Existuje jiný tensor - Cotton̊uv, který slouž́ı jako
obstrukce lokálńı konformńı plochosti tř́ıdimenzionálńı (pseudo-)Riemannovské variety.
Vlastnosti Cottonova tensoru jsou velmi bĺızké vlastnostem Weylova tensoru, obzvláště
d̊uležitá je konformńı invariance Cottonova tensoru (ve třech dimenźıch). Představujeme
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Abstract: The Weyl tensor arises as an invariant of conformal transformations of the
metric tensor and it is a completely trace-less constituent of decomposition of the Riemann
tensor. The vanishing of the Weyl tensor being equivalent to local conformal flatness of
the manifold is an important result of Riemannian geometry. However in three dimensions
this does not hold, for the Weyl tensor vanishes identically. There is another known tensor,
namely the Cotton tensor, that serves as an obstruction to local conformal flatness of a
three-dimensional (pseudo-Riemannian) manifold. The Cotton tensor possesses properties
that are very similar to those of the Weyl tensor, in particular it is conformally invariant
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modern mathematics and theoretical physics and we present a thorough survey of their
properties.
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Introduction

The aim of this thesis is to present a self-contained study of geometric and algebraic
properties of the Weyl and the Cotton tensors on a pseudo-Riemannian manifold in a
unified notation. The Weyl tensor that first appeared in [9] is of great importance to
certain subjects of study in theoretical physics, namely the general theory of relativity
and other theories that include gravity ([11]). The Cotton tensor (first appearance [10])
is a less known object, however it is closely tied to the conformal geometry and the Weyl
tensor by its properties and plays an important role in the Hamiltonian formulation of
general relativity ([12]).

On the background of a pseudo-Riemannian manifold equipped with the Levi-Civita
connection we define a conformal transformation of the metric tensor as well as review
upon some of its basic properties. After doing so, we are to ask, how do fundamental
objects of differential geometry (e.g. the Riemann tensor, its traces and the Levi-Civita
connection) change. This is necessary, for the Weyl tensor most naturally arises as an
invariant of conformal transformations of the metric tensor. The Weyl tensor is a com-
pletely trace-free constituent of decomposition of the Riemann curvature tensor and it
satisfies the same symmetries (e.g. first Bianchi identity) as the Riemann tensor. We give
proofs to all these classical results as well as prove that on a three-dimensional manifold
the Riemann tensor is possible to be expressed solely in terms of the metric tensor, the
Ricci form and the Ricci scalar curvature. This is equivalent to the fact that the Weyl
tensor vanishes identically for three-dimensional manifolds.

The Cotton tensor ([10]) in a general dimension arises as a constituent of the non-zero
right-hand side when we study the first covariant derivatives of the Weyl tensor. We
find all the basic symmetries of the Cotton tensor and show that for the dimensions of
the manifold higher than three (three excluding) the vanishing of the Weyl tensor is a
sufficient condition for the Cotton tensor to vanish. After doing so we prove that the
Cotton tensor is invariant under conformal transformations of the metric tensor.

The vital property of the Weyl tensor is the fact that it is an obstruction (its vanishing
is a necessary and sufficient condition) to local conformal flatness of a pseudo-Riemannian
manifold in dimensions four and higher. The Cotton tensor is an obstruction in a similar
sense on a three-dimensional manifold. We summarize this in a theorem with a rather
involved proof using the Ricci identity as an integrability condition ([4]).

Using the Hodge star we convert the Cotton tensor into an equivalent tensor of lower
order on a three-dimensional manifold. This equivalent tensor, called the Cotton-York
tensor, is due to York ([8]). We study its properties and show that it is divergence-free.
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Chapter 1

Preliminary terms in differential
geometry

In this opening chapter we shall summarize the necessary framework of differential geom-
etry along with notation conventions that we are to use throughout the whole thesis. The
definitions and results that are contained in this chapter are largely standard yet possess
appropriate amount of generality which shall be made use of in the chapters that are to
follow. Unless specified otherwise content of this chapter is courtesy of [1] and [2].

1.1 Differentiable manifolds, vector bundles

Definition 1.1.1. Let M be a topological space.

• Let U◦ = U ⊂M and V ◦ = V ⊂ Rn. A homeomorphism ϕ : U → V is called a (local
coordinate) chart on M . Here the open set U is called a coordinate neighborhood.

• An open covering {Uα}α∈I of the space M equipped with charts ϕα : Uα → Vα is
called an atlas on M .

• We say that atlas {(Uα, ϕα)}α∈I on M is differentiable if all the maps

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are of the class C∞(Rn) for all α, β ∈ I such that Uα ∩Uβ 6= ∅. Compositions of the
type ϕβ ◦ ϕ−1

α are called transition maps.

• A chart is said to be compatible with an atlas if its transition maps for all charts
contained in the atlas with intersecting coordinate neighborhoods are of the class
C∞(Rn).

• An atlas is called a differentiable structure if it contains all the compatible maps.

Definition 1.1.2. A topological space M that is Hausdorff, paracompact and equipped
with a differentiable structure is called a differentiable manifold.

11
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Definition 1.1.3. A tangent vector X on a differentiable manifold M at a point p ∈ M
is a map X : C∞(M)→ R satisfying:

1. X(αf + g) = αXf +Xg ∀f, g ∈ C∞(M),∀α ∈ R

2. ∀f, g ∈ C∞(M) there exists an open neighborhood U of the point p ∈M such that
f |U = g|U implies Xf = Xg

3. X(fg) = (Xf)g(p) + f(p)(Xg) ∀f, g ∈ C∞(M)

Remark 1.1.4. A space of all tangent vectors at a point p is a vector space of the same
dimension n that are the open sets of Rn mapped bijectively by charts. Such space is
called the tangent space at p, denoted by TpM .

Definition 1.1.5. A (differentiable) vector bundle of rank n consists of a total space E,
a base M and a projection π : E →M , where E and M are differentiable manifolds, π is
differentiable, each fiber Ex := π−1(x) for x ∈M carries the structure of an n-dimensional
vector space, and the following local triviality requirement is satisfied:
For each x ∈M , there exists neighborhood U and a diffeomorphism

ϕ : π−1(U)→ U × Rn

with the property that for every y ∈ U

ϕy := ϕ|Ey : Ey → {y} × Rn

is a vector space isomorphism (a bijective linear map). Such pair (ϕ,U) is called a bundle
chart.

Remark 1.1.6. A vector bundle that is globally isomorphic to M ×Rn (n =rank) is called
trivial.

Definition 1.1.7. A tangent bundle is a disjoint union of all TpM, p ∈M :

TM =
∐
p∈M

TpM = {Xp ∈ TpM |p ∈M}

equipped with projection π : TM → M such that π(Xp) = p. An atlas {(Vα, ψα)}α∈I
is on TM constructed from an atlas {Uα, ϕα = {xiα}}α∈I on M for Vα := π−1(Uα) and
ψα := Vα → ϕα(Uα)× Rn as follows

ψα(Xp) = (x1
α(p), ..., xnα(p), X1

α(p), ..., Xn
α(p))

Remark 1.1.8. A tangent bundle is a vector bundle.

Definition 1.1.9. Let (E, π,M) be a vector bundle. A section of E is a differentiable
map s : M → E with π ◦ s = idM . The space of sections of E is denoted by Γ(E).

Definition 1.1.10. A section of the tangent bundle TM of M is called a vector field on
M .
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Definition 1.1.11. Let M be a differentiable manifold, x ∈ M . The vector space dual
to the tangent space TpM is called the cotangent space of M at the point p and denoted
by T ∗pM . The vector bundle over M whose fibers are the cotangent spaces of M is called
the cotangent bundle of M and denoted T ∗M . Sections of T ∗M are called one-forms.

Remark 1.1.12. We shall hold onto the conventional notation and denote the basis vectors
of a tangent bundle by {∂i} ≡

{
∂
∂xi

}
. Thus the coordinate expression of a vector field

becomes X = X i∂i. In a very simmilar manner a basis of a cotangent bundle is {dxi}
and a coordinate expression for an arbitrary one-form becomes ω = ωidx

i. The two bases
{∂i} and {dxi} are dual to each other in a sense that 〈dxi, ∂j〉 = dxi(∂j) = δij for all i, j.
This also defines a bilinear inner product 〈·, ·〉 : T ∗pM × TpM → R as follows:

〈ω, V 〉 = ωiV
j〈dxi, ∂j〉 = ωiV

jδij = ωiV
i ∀ω ∈ T ∗pM,V ∈ TpM

1.2 Tensors, differential forms

Definition 1.2.1. A p times contravariant and q times covariant tensor or a tensor of a
type (p, q) on a differentiable manifold M is a section of

TM ⊗ ...⊗ TM︸ ︷︷ ︸
p times

⊗ T ∗M ⊗ ...⊗ T ∗M︸ ︷︷ ︸
q times

Definition 1.2.2. A tensor T of a type (p, q) is a multilinear map (in stronger sense of
multiplying one of its arguments by a C∞(M) function) that maps p elements of TM and
q elements of T ∗M to R.

Remark 1.2.3. The two definitions of a tensor are equivalent.

Definition 1.2.4. Let M be a differentiable manifold. A pseudo-Riemannian metric g is
a (0, 2) tensor on M such that it is:

• Symmetric g(U, V ) = g(V, U) ∀U, V ∈ Γ(TM)

• Non-degenerate g(U, V ) = 0 ∀V ∈ TM → V = 0

In addition to that, if the metric tensor is:

• Positive definite g(U, V ) ≥ 0 ∀U, V ∈ TM

and the equality holds only for V = 0, it is called a Riemannian metric.

Remark 1.2.5. By gp we shall denote a metric at a particular point p of M . Since gp
is a map TpM ⊗ TpM → R it is possible to define a linear map gp(U, ·) : TpM → R by
V → gp(U, V ). Then gp(U, ·) is identified with a one-form ωU ∈ T ∗pM . Similarly, ω ∈ T ∗pM
induces Vω ∈ TpM by gp(Vω, U) := 〈ω, U〉 for all U ∈ TpM . (Here the inner product 〈·, ·〉
is the one defined in remark 1.1.12.) Thus, the metric gp gives rise to an isomorphism
between TpM and T ∗pM.
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Definition 1.2.6. Let (E, π,M) be a vector bundle. A bundle metric is given by a family
of scalar products on the fibers Ex, depending smoothly on x ∈M .

Theorem 1.2.7. Each vector bundle (E, π,M) of rank n with a bundle metric has struc-
ture group O(n). In particular, there exist bundle charts (f, U), f : π−1(U)→ U×Rn, for
which ∀x ∈ U, f−1(x, (e1, ..., en)) is an orthonormal basis of Ex (e1, ..., en is an orthonormal
basis of Rn).

Theorem 1.2.8. Each vector bundle can be equipped with a bundle metric.

Definition 1.2.9. A local orthonormal basis of TxM of the type obtained in theorem
1.2.7 is called an orthonormal frame field.

Definition 1.2.10. The wedge product ∧ of k one-forms is the totally antisymmetric
tensor product

dxµ1 ∧ ... ∧ dxµk =
∑
π∈Sk

sgn π dxµπ(1) ∧ ... ∧ dxµπ(k)

Remark 1.2.11. We put
Λk
p(M) := T ∗pM ∧ ... ∧ T ∗pM︸ ︷︷ ︸

k times

A vector bundle over M whose fibers are the spaces Λk
p(M) for p ∈M is denoted Λk(M).

Definition 1.2.12. The space of sections of Λk(M) is denoted by Ωk(M) so that Ωk(M) =
Γ(Λk(M)). Elements of Ωk(M) are called (exterior) k-forms.

Remark 1.2.13. Let dimM = n, we put

Λ•p(M) := Λ0
p(M)⊕ Λ1

p(M)⊕ ...⊕ Λn
p (M)

where Λ0
p(M) = C∞(U), p ∈ U ⊂ M and ⊕ denotes the direct sum. A vector bundle

over M whose fibers are the spaces Λ•p(M) for p ∈ M is denoted Λ•(M). The space of
sections of Λ•(M) is denoted by Ω•(M) so that Ω•(M) = Γ(Λ•(M)).

Definition 1.2.14. We define an exterior product for the elements of Λ•p(M) followingly.
Let ω ∈ Λq

p(M), ξ ∈ Λr
p(M) and V1, ..., Vq+r ∈ TpM , we put:

(ω ∧ ξ)(V1, ..., Vq+r) :=
1

q! · r!
∑

π∈Sq+r

sgn π ω(Vπ(1), ..., Vπ(q))ξ(Vπ(q+1), ..., Vπ(q+r))

Theorem 1.2.15 (Properties of exterior product). The exterior product satisfies:

1. linearity (in both arguments)

(αω1 + ω2) ∧ θ = αω1 ∧ θ + ω2 ∧ θ ∀ω1, ω2, θ ∈ Λ•p(M), α ∈ R

2. asociativity
(ω ∧ θ) ∧ τ = ω ∧ (θ ∧ τ) ∀τ, ω, θ ∈ Λ•p(M)
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3. antisymmetry (in the following sense)

ω ∧ σ = (−1)k·mσ ∧ ω ω ∈ Λm
p (M), σ ∈ Λk

p(M)

Definition 1.2.16. The exterior derivative is a linear map d : Ωk(M) → Ωk+1(M)
satisfying:

1. d(σ ∧ ω) = dσ ∧ ω + (−1)kσ ∧ dω σ ∈ Ωk(M), ω ∈ Ω•(M)

2. d2ω = (d ◦ d)ω = 0 ω ∈ Ω•(M)

3. df(X) = Xf f ∈ Ω0(M) = C∞(M), X ∈ Γ(TM)

Definition 1.2.17. A differential form ω ∈ Ω•(M) is said to be:

• closed if dω = 0

• exact if ∃σ ∈ Ω•(M) such that ω = dσ

Remark 1.2.18. A differential form that is exact is closed.

Theorem 1.2.19 (Poincaré lemma). If a coordinate neighborhood U of a manifold M is
contractible to a point p ∈M , any closed r-form on U is also exact.

Remark 1.2.20. Any closed form is by Poincaré lemma exact at least locally (on a certain
coordinate neighborhood).

1.3 Lie algebras, induced maps, Lie groups

Definition 1.3.1. For vector fields X, Y on M , the Lie bracket [X, Y ] is defined as the
vector field:

[X, Y ] := X ◦ Y − Y ◦X

Proposition 1.3.2 (Cartan identity). Let ω ∈ Ω1(M) and X, Y ∈ Γ(TM). Then the
following identity holds:

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ])

Definition 1.3.3. A Lie algebra (over R) is a real vector space V equipped with a bilinear
map l(., .) : V × V → V , satisfying:

1. l(X,X) = 0 ∀X ∈ V

2. l(X, l(Y, Z)) + l(Y, l(Z,X)) + l(Z, l(X, Y )) = 0 ∀X, Y, Z ∈ V

Corollary 1.3.4. The space of vector fields on M , equipped with the Lie bracket is a Lie
algebra.

Definition 1.3.5. Let M,N be two diferentiable manifolds, and let Φ : M → N be a
differentiable map.
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• A tangent map Φ∗ at a point p ∈ M induced by the map Φ is a map Φ∗ : TpM →
TΦ(p)N defined by:

(Φ∗(X))f = X(f ◦ Φ) X ∈ TpM, f ∈ C∞(UΦ(p))

• A cotangent map Φ∗ at a point p ∈ N induced by the map Φ is a map Φ∗ : T ∗Φ(p)N →
T ∗pM defined by:

(Φ∗(ω))X = ω(Φ∗X) X ∈ TpM,ω ∈ T ∗Φ(p)N

• A map Φ∗ : Ω• → Ω• defined for an arbitrary k-form ω ∈ Ωk(N) by:

(Φ∗(ω))(X1, ..., Xk) := ω(Φ(p))(Φ∗(X1|p), ...,Φ∗(Xk|p)) X1, ..., Xk ∈ TM

is called a pullback.

• If the map Φ is a diffemorphism of the manifolds M,N , we define a map Φ∗ : TM →
TM by

(Φ∗X)(Φ(p)) := Φ∗(X|p) X ∈ TM

that is called a pushforward.

Lemma 1.3.6. Let ψ : M → N be a diffeomorphism, X, Y vector fields on M . Then,

[ψ∗X,ψ∗Y ] = ψ∗[X, Y ] (1.1)

Thus, ψ∗ induces a Lie algebra isomorphism.

Definition 1.3.7. A Lie group G is a differentiable manifold which is endowed with a
group structure such that the group operations:

1. · : G×G→ G, (g1, g2)→ g1 · g2

2. −1 : G→ G, g → g−1

are differentiable.

Definition 1.3.8. Let G be a Lie group. For g ∈ G we define the left translation

Lg : G→ G : h→ gh ∀h ∈ G

and the right translation

Rg : G→ G : h→ hg ∀h ∈ G

Remark 1.3.9. The translations Lg and Rg are diffeomorphisms of a Lie group G.

Definition 1.3.10. A vector field X on G is called left invariant if for all g, h ∈ G

Lg∗X|h = X|gh
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Theorem 1.3.11. Let G be a Lie group. For every V ∈ TeG (where e shall denote the
identity element of the group G throughout the rest of the chapter):

X|g = Lg∗V ∀g ∈ G

defines a left invariant vector field on G, and we thus obtain an isomorphism between TeG
and the space of left invariant vector fields on G.

Remark 1.3.12. By lemma 1.3.6 for g ∈ G and vector fields X, Y on G, we have:

[Lg∗X,Lg∗Y ] = Lg∗[X, Y ]

Corollary 1.3.13. The vector space TeG carries the structure of a Lie algebra.

Definition 1.3.14. The Lie algebra g of G is the vector space TeG equipped with the
Lie algebra structure of corollary 1.3.13.

Definition 1.3.15. Let G be a Lie group. A principal G-bundle consists of a base M ,
which is a differentiable manifold and a differentiable manifold P , the total space of the
bundle, and a differentiable projection π : P →M with an action of G on P satisfying:

1. G acts freely on P from the right - (p, g) ∈ P ×G is mapped to pg ∈ P and pg 6= p
for g 6= e. The so-called G-action then defines an equivalence relation on P : q ∼ p
if and only if ∃g ∈ G such that q = pg.

2. M is the quotient of P by this equivalence relation and π : P →M maps p ∈ P to
its equivalence class. By (1.), each fiber π−1(x) can then be identified with G.

3. P is locally trivial in the following sense: For each x ∈ M , there exists a neighbor-
hood U of x and a diffeomorphism

ϕ : π−1(U)→ U ×G

of the form ϕ(p) = (π(p), ψ(p)) which is G-equivariant, i.e.

ϕ(pg) = (π(p), ψ(p)g) ∀g ∈ G

1.4 Miscellaneous tools of tensor analysis

Definition 1.4.1. Let M be a differentiable manifold. We define a totally antisymmetric
Levi-Civita tensor density ε by

εµ1µ2...µm :=


+1 if (µ1µ2...µm) is an even permutation of (12...m)
−1 if (µ1µ2...µm) is an odd permutation of (12...m)

0 otherwise
(1.2)

Remark 1.4.2. Apparently

εµ1µ2...µm = gµ1ν1gµ2ν2 ...gµmνmεν1ν2...νm = det(g−1)εµ1µ2...µm =
1

det g
εµ1µ2...µm



18 CHAPTER 1. PRELIMINARY TERMS IN DIFFERENTIAL GEOMETRY

Lemma 1.4.3. The Levi-Civita tensor density εijk satisfies:

εijkε
imn = δmj δ

n
k − δmk δnj

Remark 1.4.4. It is possible to define a totally antisymmetric Levi-Civita tensor ε with
the same algebraic properties (e.g. lemma 1.4.3) as the Levi-Civita tensor density except
for the fact, that it does transform as a tensor, by putting:

εijk :=
1√
|det g|

εijk and εijk :=
√
|det g|εijk (1.3)

Therefore we have:
εijkε

imn = δmj δ
n
k − δmk δnj (1.4)

Definition 1.4.5. Let (M, g) be a pseudo-Riemannian orientable manifold with dimM =
m. Let us define a linear operation ? : Ωr(M)→ Ωm−r(M) by its action on a basis r-form:

?(dxµ1 ∧ dxµ2 ∧ ... ∧ dxµr) :=

√
|det g|

(m− r)!
εµ1µ2...µrνr+1...νm

dxνr+1 ∧ ... ∧ dxνm

This operation is called the Hodge star (dual).

Remark 1.4.6. For an arbitrary r-form

ω =
1

r!
ωµ1µ2...µrdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµr ∈ Ωr(M)

we have

?ω =

√
|det g|

r!(m− r)!
ωµ1µ2...µrε

µ1µ2...µr
νr+1...νm

dxνr+1 ∧ ... ∧ dxνm (1.5)

Remark 1.4.7. The Hodge star is an isomorphism of Ωr(M) and Ωm−r(M).

Definition 1.4.8. [3] The Kulkarni-Nomizu product of two symmetric (0, 2) tensors H
and Q is the (0, 4) tensor H ?Q given (∀V,X, Y, Z ∈ Γ(TM)) by1:

H?Q(V,X, Y, Z) = H(V, Z)Q(X, Y )+H(X, Y )Q(V, Z)−H(V, Y )Q(X,Z)−H(X,Z)Q(V, Y )

Remark 1.4.9. In coordinates, this becomes:

(H ?Q)lijk = HjlQik +HikQjl −HijQkl −HklQij ∀i, j, k, l (1.6)

Lemma 1.4.10. [3] The Kulkarni-Nomizu product is symmetric

H ?Q = Q?H

Proposition 1.4.11. [3] Let M be a differentiable manifold with dimM > 2. The map
Q? · from Γ(TM ⊗ TM) into Γ(TM ⊗ TM ⊗ TM ⊗ TM) ≡ Γ(

⊗4 TM) defined by

H → Q?H ∀H ∈ Γ(TM ⊗ TM)

is injective.

1Here we adopt a different sign convention than in [3] in order for coordinate expression of the Kulkarni-
Nomizu product to be in line with our overall coordinate notation.



Chapter 2

Connection and canonical tensors

In this chapter we shall develop the theory of connections on (pseudo-)Riemannian mani-
folds. For the chapters on conformal transformations it would suffice to define a connection
on a tangent bundle solely however the theory we build here is more general in a sense
that connections are constructed over vector bundles. Unless specified differently, the
theory presented here is again courtesy of [1] and [2].

2.1 Connection on vector bundle

Definition 2.1.1. Let M be a differentiable manifold, E a vector bundle over M . A
(linear) connection is a map

D : Γ(TM)⊗ Γ(E)→ Γ(E)

with the properties:

1. D is f -linear in V ∈ Γ(TM):

DV+Wσ = DV σ +DWσ ∀W ∈ Γ(TM), σ ∈ Γ(E)

DfV σ = fDV σ f ∈ C∞(M), σ ∈ Γ(E)

2. D is R-linear in σ ∈ Γ(E) :

DV (ασ + τ) = αDV σ +DV τ V ∈ Γ(TM), α ∈ R,∀τ ∈ Γ(E)

and it satisfies the following product rule:

DV (fσ) = V (f) · σ + fDV σ V ∈ Γ(TM), f ∈ C∞(M)

Remark 2.1.2. By a property (1) in the previous definition, we may consider D as a map
from Γ(E) to Γ(E)⊗ Γ(T ∗M) by putting Dσ(V ) := DV σ for all σ ∈ Γ(E).

19
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Definition 2.1.3. Let p0 ∈M and let U be an open neighborhood of p0 such that a chart
for M and a bundle chart for E are defined on U . We then obtain coordinate vector fields
∂1, ..., ∂d (where d = dimM), and through the identification

E|U ∼= U × Rn (n = fiber dimension of E)

a basis of Rn yields a basis µ1, ..., µn of sections of E|U . For a connection D, we define
functions called Christoffel symbols Γkij (j, k = 1, ..., n, i = 1, ..., d) by:

D∂iµj ≡ Diµj =: Γkijµk

Remark 2.1.4. Let now µ ∈ Γ(E); locally, we write µ(y) = ak(y)µk(y). Also let c(t) be a
smooth curve in U . Putting µ(t) := µ(c(t)) we define a section of E along c. Furthermore,
let V (t) = ċ(t) = d

dt
c(t) = [ċ(t)]i∂i. Then by the definition of a connection:

DV (t)µ(t) = Dċi(t)∂i [a
k(c(t))µk(c(t))] = ċi(t)[∂i(a

k(c(t)))µk(t) + ak(c(t))Diµk(t)] =

= ċi(t)
∂ak(c(t))

∂xi︸ ︷︷ ︸
ȧk(t)

µk(t) + ak(c(t))ċi(t)Γjik(c(t))µj(t)

The first memeber is completely independent of D. Christoffel symbols Γjik(c(t)) here
have indices j, k running from 1 to n (where n is the fibre dimension of E) and an index i
running from 1 to d = dimM . The index i describes the application of the tangent vector
ċi(t)∂i. We can thus consider {Γjik}i,j,k as an (n × n)-matrix valued 1-form on U (from
the previous definition) :

{Γjik}i,j,k ∈ Γ(gl(n,R)⊗ T ∗M |U)

Here, Lie algebra gl(n,R) is a space of (n× n)-matrices with real coefficients. In a more
abstract manner, we now write on U

D = d+ A (2.1)

where d is an exterior derivative and A ∈ Γ(gl(n,R)⊗ T ∗M |U). A can be also considered
as an (n × n)-matrix with values in section of the cotangent bundle of M ; A applied to
the tangent vector ∂i becomes {Γjik}i,j,k. The application of A to ajµj is given by ordinary
matrix multiplication. We have:

D(ajµj) = d(aj)µj + ajAµj

Remark 2.1.5. We now write Aµj = Akjµk, where each Akj now is a 1-form Akj = Γkijdx
i. Let

µ∗1, ..., µ
∗
n be the basis dual to µ1, ..., µn on the bundle E∗ dual to E, explicitly (µi, µ

∗
j) = δij

where (·, ·) : E ⊗ E∗ → R is the bilinear pairing1 between E and E∗.

1Here the pairing between a vector bundle and a bundle dual to it is defined in an analogic way to that
of the one between tangent bundle and its dual (see remarks 1.1.12 and 1.2.5). We shall consistently use
two types of brackets - 〈., .〉 for the one on T ∗M × TM and (., .) for the one on E∗ ×E - to differentiate
between them.
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Definition 2.1.6. Let D be a connection on E. The connection D∗ dual to D on the
dual bundle E∗ is defined by the requirement:

d(µ, ν∗) = (Dµ, ν) + (µ,D∗ν∗) ∀µ ∈ Γ(E), ν∗ ∈ Γ(E∗)

Remark 2.1.7. Let us (via D = d+ A) compute :

0 = d(µi, µ
∗
j) = ( dµi︸︷︷︸

=0

+Aki µk, µ
∗
j) + (µi, d

∗µ∗j︸︷︷︸
=0

+(A∗)kjµ
∗
k) = Aki δij + (A∗)kj δik = Aij + (A∗)ji

Hence
A∗ = −AT (2.2)

where upper ”index” T denotes matrix transposition. From this we get:

D∗i µ
∗
j = −Γjikµ

∗
k (2.3)

Definition 2.1.8. Let E1, E2 be vector bundles over M with connections D1, D2 respec-
tively. The induced connection D on E := E1 ⊗ E2 is defined by the requirement:

D(µ1 ⊗ µ2) = (D1µ1)⊗ µ2 + µ1 ⊗ (D2µ2) µi ∈ Γ(Ei), i = 1, 2

Remark 2.1.9. In particular, we obtain an induced connection on End(E) = E ⊗ E∗

denoted by D. Let σ = σijµi ⊗ µ∗j . We compute:

D(σijµi ⊗ µ∗j) = [(d+ A)σijµi]⊗ µ∗j + σijµi ⊗ [(d∗ + A∗)µ∗j ] =

= (dσij)µi ⊗ µ∗j + σij d(µk)︸ ︷︷ ︸
=0

⊗µ∗j + σijA
k
i µk ⊗ µ∗j + σijµi ⊗ d∗µ∗j︸︷︷︸

=0

+σijµi ⊗ (A∗)kjµ
∗
k︸ ︷︷ ︸

=−σijA
j
kµi⊗µ

∗
k

We obtain the following identity:

D(σ) = dσ + [A, σ] ∀σ ∈ End(E) = E ⊗ E∗ (2.4)

Remark 2.1.10. Henceforth we shall write as an abbreviation:

Ωp(E) := Γ(E)⊗ Ωp(M)

where as usual M is a differentiable manifold and E a vector bundle.

2.2 Curvature

Definition 2.2.1. The curvature of a connection D on a vector bundle E is the map

F := D ◦D : Ω0(E)→ Ω2(E)

Definition 2.2.2. The connection is called flat if its curvature satisfies F = 0.
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Remark 2.2.3. We compute by 2.1 for µ ∈ Γ(E)

F (µ) = (d+ A) ◦ (d+ A)µ = (d+ A)(dµ+ Aµ) =

= d2µ︸︷︷︸
=0

+(dA)µ+ (−1)1A ∧ dµ+ A ∧ dµ+ (A ∧ A)µ = (dA+ A ∧ A)µ

Therefore we have the identity:

F = dA+ A ∧ A (2.5)

Remark 2.2.4. We now want to express the identity 2.5 in coordinates. Because A =
Ajdx

j, we have:

F = d(Ajdx
j) + (Aidx

i) ∧ (Ajdx
j) =

=
∂Aj
∂xi

dxi ∧ dxj + AiAjdx
i ∧ dxj =

=

(
∂Aj
∂xi

+ AiAj

)
dxi ∧ dxj =

=
1

2

(
∂Aj
∂xi

+ AiAj

)
dxi ∧ dxj +

1

2

(
∂Ai
∂xj

+ AjAi

)
dxj ∧ dxi =

=
1

2

∂Aj
∂xi
− ∂Ai
∂xj

+ AiAj − AjAi︸ ︷︷ ︸
=[Ai,Aj ]

 dxi ∧ dxj

The identity in coordinates now yields:

F =
1

2

(
∂Aj
∂xi
− ∂Ai
∂xj

+ [Ai, Aj]

)
dxi ∧ dxj (2.6)

Remark 2.2.5. We now want to compute DF . F is a map from Ω0(E) to Ω2(E), i.e.

F ∈ Ω2(E)⊗ (Ω0(E))∗ = Ω2(End(E)) := Ω2(E ⊗ E∗)

We thus consider F as a 2-form with values in End(E). Now we have (by using identities
2.4 and 2.5)

DF = dF + [A,F ] = d(dA+ A ∧ A) + [A, dA+ A ∧ A] =

= d2A︸︷︷︸
=0

+dA ∧ A+ (−1)1A ∧ dA+ A ∧ (dA+ A ∧ A)− (dA+ A ∧ A) ∧ A =

= dA ∧ A− A ∧ dA+ A ∧ dA+ A ∧ A ∧ A− dA ∧ A− A ∧ A ∧ A = 0

Theorem 2.2.6 (Second Bianchi Identity). The curvature of a connection D satisfies

DF = 0
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Remark 2.2.7. We will denote the connection on a tangent bundle TM by ∇ : Γ(TM)⊗
Γ(TM) → Γ(TM). For such connection, the Christoffel symbols are given by ∇∂i∂j ≡
∇i∂j = Γkij∂k .

Remark 2.2.8. In order to find the coordinate expression for the curvature map, we shall
consider F as an element of Ω2(End(E)) and by R denote :

F : Ω0(E)→ Ω2(E)

µ→ R(·, ·)µ

Henceforth, we shall write (for k, l = 1, ..., n and i, j = 1, ..., d ):

Rk
lijµk := R(∂i, ∂j)µl (2.7)

where (by equality 2.6 and remark 2.1.4)

R(·, ·)µl = Fµl =
1

2

(
∂iΓ

k
jl − ∂jΓkil + ΓkimΓmjl − ΓkjmΓmil

)
dxi ∧ dxj ⊗ µk

i.e.
Rk
lij = ∂iΓ

k
jl − ∂jΓkil + ΓkimΓmjl − ΓkjmΓmil (2.8)

which is the coordinate expression of R.

Lemma 2.2.9. The quantity R is a tensor.

2.3 Riemann tensor, connection on tangent bundles

Definition 2.3.1. Let M be a differentiable manifold equipped with a connection D. We
call R the Riemann (curvature) tensor of the connection D on the manifold M .

Theorem 2.3.2. The Riemann curvature tensor R of a connection D satisfies:

R(X, Y )µ = DXDY µ−DYDXµ−D[X,Y ]µ (2.9)

for all vector fields X, Y on M and all µ ∈ Γ(E).

Corollary 2.3.3. The Riemann tensor R satisfies

R(X, Y ) = −R(Y,X) ∀X, Y ∈ Γ(TM)

Corollary 2.3.4. Coordinate expression of Riemann tensor R satisfies:

Rk
lij = −Rk

lji ∀i, j, k, l (2.10)

Remark 2.3.5. Henceforth we shall denote by ∇ a connection on the tangent bundle TM .
For such connection, the Christoffel symbols are given by:

∇∂i∂j ≡ ∇i∂j = Γkij∂k
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Remark 2.3.6. With respect to ∇ on Γ(TM) the Riemann tensor takes form of:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z ∀X, Y, Z ∈ Γ(TM) (2.11)

Remark 2.3.7. In a very similar manner to that of remark 2.1.7 and especially equation
2.3, where a connection D induces a connection D∗ on the dual bundle E∗, the connection
of the previous remark 2.3.5 induces the dual connection (on T ∗M), which we shall denote
∇ as well. Its Christoffel symbols satisfy:

∇idx
j = −Γjikdx

k (2.12)

Remark 2.3.8. For a one-form ω we have the following identity:

∇jωi = ∂jωi − Γkjiωk (2.13)

This arises from the duality pairing by 〈·, ·〉 as follows:

〈∇j(ωpdx
p), ∂i〉 = 〈(∂jωp)dxp − ωpΓpjmdxm, ∂i〉 = (∂jωp) dx

p(∂i)︸ ︷︷ ︸
δpi

−ωpΓpjm dxm(∂i)︸ ︷︷ ︸
δmi

Definition 2.3.9. The torsion tensor of a connection ∇ on TM is defined by:

T (X, Y ) := ∇XY −∇YX − [X, Y ] ∀X, Y ∈ Γ(TM) (2.14)

Definition 2.3.10. The connection ∇ on the tangent bundle TM is called torsion free
if its torsion tensor vanishes identically, i.e.

T ≡ 0

Lemma 2.3.11. The connection ∇ on TM is torsion free if and only if

Γkij = Γkji ∀i, j, k (2.15)

Definition 2.3.12. A connection ∇ on TM is called flat if each point in M possesses
a neighborhood U with local coordinates for which all the coordinate vector fields ∂i are
parallel, that is

∇j∂i = 0 ∀i, j

Theorem 2.3.13. A connection ∇ on TM is flat if and only if its Riemann curvature
tensor and torsion tensor both vanish identically.

2.4 Metric connection, Levi-Civita connection

Definition 2.4.1. Let E be a vector bundle on a differentiable manifold M with bundle
metric 〈·, ·〉. A connection D on E is called metric, if

d〈µ, ν〉 = 〈Dµ, ν〉+ 〈µ,Dν〉 ∀µ, ν ∈ Γ(E)
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Remark 2.4.2. On a tangent bundle, the previous definition is equivalent to the fact that:

∇g = 0

Lemma 2.4.3. Let D be a metric connection on the vector bundle E with bundle metric
〈·, ·〉. Assume that with respect to a metric bundle chart we have the decomposition

D = d+ A

Then for any X ∈ TM , the matrix A(X) is skew symmetric, i.e.

A(X) ∈ o(n)

where n is the rank of E (=dimension of the fiber of E) and o(n) is the Lie algebra of
O(n).

Remark 2.4.4. By Ωp(Ad(E)) we denote the space of those elements of Ωp(End(E)) for
which the endomorphism of each fiber is skew symmetric. Thus, if D = d+A is a metric
connection, we have A ∈ Ω1(Ad(E)).

Theorem 2.4.5 (Fundamental theorem of Riemannian geometry). On a (pseudo-)Riemannian
manifold (M, g) there exists a unique (exactly one) metric and torsion-free connection ∇
(on TM).

Definition 2.4.6. The metric and torsion-free connection ∇ on TM is called the Levi-
Civita connection.

Theorem 2.4.7. For the Levi-Civita connection we have:

Γkij =
1

2
gkl(∂jgil + ∂igjl − ∂lgij) ∀i, j, k (2.16)

Remark 2.4.8. Let us define:

Γmij := gmkΓ
k
ij =

1

2
(∂jgim + ∂igjm − ∂mgij) ∀i, j,m

thus for the Levi-Civita connection, the Riemann curvature tensor takes form of:

ghmR
m
ijk =: Rhijk =

1

2
(∂2
ijghk + ∂2

hkgij − ∂2
ikghj − ∂2

hjgik) + glm(ΓmijΓlhk − ΓmikΓlhj) (2.17)

Lemma 2.4.9. For the Levi-Civita connection, the coordinate expression of R satisfies:

Rklij = −Rklji (2.18)

Rklij = −Rlkij (2.19)

Rklij = Rijkl = Rjilk (2.20)
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2.5 Tensors constructed from Riemann tensor

Definition 2.5.1. Ricci form % is a tensor field of a type (0, 2), which is defined at every
point p ∈M by:

%(Y, Z) :=
n∑
i=1

〈R(∂i, Y )Z, dxi〉 ∀Y, Z ∈ TpM (2.21)

where {∂i} is an arbitrary orthonormal basis of TpM and {dxi} of T ∗pM .

Remark 2.5.2. The Ricci form is symmetric and its definition does not depend on the
choice of basis of TpM and T ∗pM . In coordinates, we have:

%jl = %(∂j, ∂l) := 〈R(∂i, ∂j)∂l, dx
i〉 = Ri

lij (2.22)

In other words the Ricci form is a contraction of the Riemann curvature tensor.

Definition 2.5.3. The trace of the Ricci form:

R :=
n∑
i=1

%(∂i, ∂i)

is called the Ricci scalar (curvature) of (M, g), where {∂i} is an arbitrary orthonormal
basis of TpM .

Remark 2.5.4. This fact is expressed in coordinates as follows:

R = glj%jl = %jj (2.23)

Definition 2.5.5. Let M be a (pseudo-)Riemannian manifold with dimM = n. The
(0, 2) tensor defined by:

S(X, Y ) :=
1

n− 2

(
%(X, Y )− R

2(n− 1)
g(X, Y )

)
∀X, Y ∈ Γ(TM)

is called the Schouten tensor of M .

Remark 2.5.6. In coordinates this becomes

Sij =
1

n− 2

(
%ij −

R
2(n− 1)

gij

)
Proposition 2.5.7. The Schouten tensor is symmetric in its arguments:

S(X, Y ) = S(Y,X)

Theorem 2.5.8 (Second Bianchi Identity). Let R be the Riemann tensor 2.3.6 defined
with respect to Levi-Civita connection. Then R satisfies the following identity:

(∇XR)(Y, Z)V + (∇ZR)(X, Y )V + (∇YR)(Z,X)V = 0 ∀X, Y, Z, V ∈ Γ(TM)

Remark 2.5.9. The equation in the theorem above is a special case of 2.2.6 and is known
under the same name. In coordinates, that becomes:

∇lR
h
ijk +∇jR

h
ikl +∇kR

h
ilj = 0 or equiv. ∇lRhijk +∇jRhikl +∇kRhilj = 0 (2.24)
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2.6 Ricci identities

Lemma 2.6.1. [4] Let f ∈ C∞(M), then the following identity holds:

∇j∇if −∇i∇jf = ∂j∂if − ∂i∂jf = 0

Theorem 2.6.2 (Ricci identity 1). [4] Coordinate expression of the Riemann curvature
tensor satisfies:

Rl
ijkωl = ∇k∇jωi −∇j∇kωi ∀i, j, k ω ∈ Ω1(M)

Remark 2.6.3. [4] In the same way as commuting of partial derivatives arises as an inte-
grability condition for a solution of a certain overdetermined system of partial differential
equations (see Frobenius theorem in e.g. [5] - chapter 6), Ricci identity must be used as
an integrability condition when one treats the same overdetermined system in terms of
covariant derivatives instead of normal partial differentiation.

Theorem 2.6.4 (Ricci identity 2). [4] Let M be a (0, 2) tensor, then its components
satisfy the following identity2:

∇l∇kMij −∇k∇lMij = MihR
h
jkl +MhjR

h
ikl ∀i, j, k, l

2Naturally there is a general formula for a tensor of an arbitrary rank due to Ricci. However in this
text we shall not need other than these special cases.
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Chapter 3

Conformal transformations

In this chapter we shall define a conformal transformation and determine how known
quantities (Riemann curvature tensor, Ricci form, Ricci scalar) behave under such trans-
formation. As a result of our endeavors we shall find a quantity that is invariant under
conformal transformations - the Weyl tensor.

3.1 Conformal transformations, conformal equivalence

Remark 3.1.1. Henceforth (until specified otherwise) we shall make use of a connection
on a tangent bundle ∇ : Γ(TM)⊗ Γ(TM) → Γ(TM) defined in 2.3.5, specifically of the
Levi-Civita connection defined in 2.4.6.

Definition 3.1.2. Let (M, g) be a (pseudo-)Riemannian manifold. A diffeomorphism
φ : M →M is called a conformal transformation if it satisfies:

φ∗gφ(p) = e2σ(p)gp p ∈M,σ ∈ C∞(M) ≡ Ω0(M) (3.1)

Remark 3.1.3. In other words a diffeomorphism φ : M →M is a conformal transformation
if and only if it preserves metric up to a scale.

Remark 3.1.4. The expression 3.1 takes the form of:

gφ(p)(φ∗X,φ∗Y ) = e2σ(p)gp(X, Y ) (3.2)

when a pair of tangent vectors X, Y ∈ TpM is inserted.

Remark 3.1.5. In coordinates we have g̃ij = e2σgij hence the defining equation for the
inverse denoted by g̃ij yields:

g̃ij = e−2σgij (3.3)

Obviously:
g̃ij g̃

jk = e2σgije
−2σgjk = δki

Remark 3.1.6. The set of conformal transformations on M denoted by Conf(M) is a group,
called the conformal group. Obviously for φ, ψ ∈ Conf(M), we have:

ψ∗ acting from the left on φ∗gφ(p) = e2σ(p)gp → ψ∗φ∗gφ(p) = e2%(p)e2σ(p)gp︸ ︷︷ ︸
(e2%(p)+e2σ(p))gp

29
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therefore ψ ◦φ ∈ Conf(M). Associativity for any three elements of Conf(M) is an obvious
consequence of a straightforward equation that is an analogy to the one above and the
fact that the product of exponentials of real functions is associative. Identity element ε
is determined by zero function o(p):

ε∗gε(p) = e2o(p)gp = e0gp = gp

Inverse element ∀φ ∈ Conf(M) is φ−1 acting with the scaling of −2σ(p), we have:

(φ−1)∗φ∗gφ−1φ(p) = e−2σ(p)e2σ(p)gp = gp = ε∗gε(p)

Definition 3.1.7. Angle θ between two tangent vectors X, Y ∈ TpM is defined by:

cos θ =
gp(X, Y )√

gp(X,X)gp(Y, Y )

Proposition 3.1.8. A conformal transformation φ preserves the angle.

Proof. Let X, Y ∈ TpM , then we have:

cos θ
′
=

gp(φ∗X,φ∗Y )√
gp(φ∗X,φ∗X)gp(φ∗Y, φ∗Y )

=
e2σ(p)gp(X, Y )√

e2σ(p)gp(X,X)e2σ(p)gp(Y, Y )
= cos θ

Definition 3.1.9. Let g, g̃ be a pair of metric tensors on a manifold M . The metric g̃ is
said to be conformally equivalent to g if there exists a conformal transformation between
the two metrics.

Remark 3.1.10. An explicit relation for the two metrics is:

g̃p = e2σ(p)gp (3.4)

This is really an equivalence relation among the set of metrics on M . Thanks to the group
properties of Conf(M), we have that the relation is symmetric (with scaling e−2σ(p) corre-
sponding to e2σ(p)), reflexive (with the scaling coefficient e2o(p) = 1, which, as we already
know from remark 3.1.6, exists) and transitive (compositions of conformal transformations
belong to Conf(M) as well).

3.2 Transformation of Levi-Civita connection

Definition 3.2.1. Let K be the difference of the Levi-Civita connections ∇̃ (that is
metric and torsion free) with respect to g̃ and ∇ with respect to g:

K(X, Y ) = ∇̃XY −∇XY ∀X, Y ∈ Γ(TM) (3.5)
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Lemma 3.2.2. [2] Let σ ∈ Ω0 and U be the vector field which corresponds to the one-form
dσ, so that Z(σ) = dσ(Z) = g(U,Z). Then:

K(X, Y ) = X(σ)Y + Y (σ)X − g(X, Y )U ∀X, Y ∈ Γ(TM) (3.6)

Proof. First, let us prove, that K is symmetric K(X, Y ) = K(Y,X). It follows from the
torsion free property of Levi-Civita connection. For all A,B ∈ Γ(TM), we have:

0 = T (A,B) := ∇AB −∇BA− [A,B] → ∇AB = ∇BA+ [A,B]

0 = T̃ (B,A) := ∇̃BA− ∇̃AB − [B,A] → ∇̃BA = ∇̃AB − [A,B]

Now we add these two equations together:

∇AB + ∇̃BA = ∇BA+ ∇̃AB → ∇̃BA−∇BA︸ ︷︷ ︸
=:K(B,A)

= ∇̃AB −∇AB︸ ︷︷ ︸
=:K(A,B)

From the fact, that Levi-Civita connection is metric, it follows that:

X(g̃(Y, Z)) = g̃(∇̃XY, Z) + g̃(Y, ∇̃XZ) (3.7)

and also:

X(e2σ(p)g(Y, Z)) = 2X(σ)e2σ(p)g(Y, Z) + e2σ(p)[g(∇XY, Z) + g(Y,∇XZ)] (3.8)

Now we subtract the first equation from the second (3.8-3.7) and obtain:

0 = 2X(σ)e2σ(p)g(Y, Z) + e2σ(p)[g(∇XY, Z) + g(Y,∇XZ)]− g̃(∇̃XY, Z)︸ ︷︷ ︸
e2σ(p)g(∇̃XY,Z)

− g̃(Y, ∇̃XZ)︸ ︷︷ ︸
e2σ(p)g(Y,∇̃XZ)

and finally after dividing by a non-zero factor e2σ(p):

0 = 2X(σ)g(Y, Z)− g(K(X, Y ), Z)− g(Y,K(X,Z)) (A)

Permutations (X → Y → Z) yield:

0 = 2Y (σ)g(Z,X)− g(K(Y, Z), X)− g(Z,K(Y,X)) (B)

0 = 2Z(σ)g(X, Y )− g(K(Z,X), Y )− g(X,K(Z, Y )) (C)

The combination of (A) + (B)− (C) leads to:

X(σ)g(Y, Z) + Y (σ)g(Z,X)− Z(σ)g(X, Y )− g(K(X, Y ), Z) = 0

and if we make use of the equality Z(σ) = g(U,Z), we get:

g(X(σ)Y, Z) + g(Y (σ)X,Z)− g(g(X, Y )U,Z)− g(K(X, Y ), Z) = 0

This leads to:
g((X(σ)Y + Y (σ)X − g(X, Y )U −K(X, Y ), Z) = 0

Since the equality must hold for every Z, clearly:

K(X, Y ) = X(σ)Y + Y (σ)X − g(X, Y )U

ergo the proof of lemma 3.2.2 is complete.
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3.3 Transformation of Riemann tensor and its traces

Lemma 3.3.1. Let σ ∈ Ω0 and U be the vector field which corresponds to the one-form
dσ, so that Z(σ) = dσ(Z) = g(U,Z). Then the difference of Riemann tensors defined by
the equality 2.3.6 (with respect to ∇̃,∇ corresponding to the two conformally equivalent
metric tensors g̃, g) takes form of:

R̃(X, Y )Z −R(X, Y )Z = −[g(Y, Z)BX − g(BX,Z)Y + g(BY,Z)X − g(X,Z)BY ] (3.9)

where B is a type (1,1) tensor field defined by:

B(X) := −X(σ)U +∇XU +
1

2
U(σ)X (3.10)

Proof. Throughout the whole calculation the term Σ(X, Y ) will denote the symmetric part
of the expression positioned before it (sometimes called symmetrizer), in other words, the
same expression only with interchanged X and Y . We shall make use of 3.5 and now,
from the definition:

R̃(X, Y )Z = ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z =

=
{
∇̃X [K(Y, Z) +∇YZ]

}
− Σ(X, Y )−K([X, Y ], Z)−∇[X,Y ]Z =

=

{
K(X,K(Y, Z) +∇YZ) +∇X [K(Y, Z) +∇YZ︸ ︷︷ ︸]

}
−Σ(X, Y )−K([X, Y ], Z)−∇[X,Y ]Z︸ ︷︷ ︸

The underbraced terms (along with the part in the symmetrizer) are equal to the untilded
tensor R(X, Y )Z. Let us therefore rewrite the equality as follows:

R̃(X, Y )Z−R(X, Y )Z = K(X,K(Y, Z))+K(X,∇YZ)+∇XK(Y, Z)−Σ(X, Y )−K([X, Y ], Z) =

Using the equality 3.6 we get:

R̃(X, Y )Z −R(X, Y )Z = {X(σ)[∇YZ +K(X, Y )] + (∇YZ)(σ)X +K(Y, Z)(σ)X−

−g(X,∇YZ +K(Y, Z))U +∇X [Y (σ)Z + Z(σ)Y − g(Y, Z)U ]} − Σ(X, Y )−

−[X, Y ](σ)Z − Z(σ)[X, Y ] + g(Z, [X, Y ])U =

=

X(σ)∇YZ︸ ︷︷ ︸
β

+X(σ)[Y (σ)Z︸ ︷︷ ︸
γ

+Z(σ)Y︸ ︷︷ ︸
δ

−g(Y, Z)U ]+

+(∇YZ)(σ)X + [Y (σ)Z︸ ︷︷ ︸
δ

+Z(σ)Y − g(Y, Z)U ](σ)X−

− g(X,∇YZ)U︸ ︷︷ ︸
ε

−g(X, Y (σ)Z + Z(σ)Y − g(Y, Z)U)U+
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+X(Y (σ))Z︸ ︷︷ ︸
α

+Y (σ)∇XZ︸ ︷︷ ︸
β

+X(Z(σ))Y + Z(σ)∇XY︸ ︷︷ ︸
T

−

−g(∇XY, Z)U − g(Y,∇XZ)U︸ ︷︷ ︸
ε

−g(Y, Z)∇XU

−
−Σ(X, Y )︸ ︷︷ ︸

α,β,γ,δ,ε,T

− [X(Y (σ))− Y (X(σ))]Z︸ ︷︷ ︸
α

−Z(σ)[X, Y ]︸ ︷︷ ︸
T

+g(Z, [X, Y ])U

Here the terms underbraced with the same greek letter subtract from each other. Terms
underbraced T do not annihilate this way, but they are still zero together, because they
form a zero torsion tensor (under Levi-Civita connection). We can follow with:

R̃(X, Y )Z −R(X, Y )Z =

−X(σ)g(Y, Z)U︸ ︷︷ ︸
ζ

+(∇YZ)(σ)X + Z(σ)Y (σ)X−

−g(Y, Z)U(σ)X − Y (σ)g(X,Z)U︸ ︷︷ ︸
ζ

−Z(σ)g(X, Y )U︸ ︷︷ ︸
η

+g(Y, Z)g(X,U)U +X(Z(σ))Y−

−g(∇XY︸ ︷︷ ︸
T

, Z)U − g(Y, Z)∇XU

− Σ(X, Y )︸ ︷︷ ︸
ζ,η,T

+g(Z, [X, Y ]︸ ︷︷ ︸
T

)U =

=

{
(∇YZ)(σ)X︸ ︷︷ ︸+Z(σ)Y (σ)X − g(Y, Z)U(σ)X+

+g(Y, Z)g(X,U)U +X(Z(σ))Y︸ ︷︷ ︸−g(Y, Z)∇XU

}
− Σ(X, Y )

Due to the duality pairing between U and σ via X(σ) = g(U,X) ∀X ∈ Γ(TM), under-
braced terms together can be rewritten as:

{(∇YZ)(σ)X + (X(Z(σ)))Y } − Σ(X, Y ) =

= g(U,∇YZ)X +X[g(U,Z)]Y − g(U,∇XZ)Y − Y [g(U,Z)]X =

= g(U,∇YZ)X︸ ︷︷ ︸
ϑ

+g(∇XU,Z)Y + g(U,∇XZ)Y︸ ︷︷ ︸
ι

−

− g(U,∇XZ)Y︸ ︷︷ ︸
ι

−g(∇YU,Z)X − g(U,∇YZ)X︸ ︷︷ ︸
ϑ

Now in this last step, where we insert B(X) := −X(σ)U + ∇XU + 1
2
U(σ)X into our

equation, we near the end of the proof. Let us rearrange:

R̃(X, Y )Z −R(X, Y )Z = {Z(σ)Y (σ)X − g(Y, Z)U(σ)X+

+g(Y, Z)X(σ)U − g(Y, Z)∇XU − g(∇YU,Z)X} − Σ(X, Y ) =
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= {−g(Y, Z)[+U(σ)X −X(σ)U +∇XU ] + Z(σ)Y (σ)X︸ ︷︷ ︸
Y (σ)g(U,Z)X

−g(∇YU,Z)X} − Σ(X, Y ) =

= {−B(X)g(Y, Z)− 1

2
U(σ)g(Y, Z)X + g(Y (σ)U,Z)X − g(∇YU,Z)X} − Σ(X, Y ) =

= {−B(X)g(Y, Z)− g(B(Y ), Z)X} − Σ(X, Y )

The fact that B is a tensor (multilinearity with respect to f ∈ C∞(M)) is obvious from
the superseding equation:

B(fX) = −(fX)(σ)U+∇fXU+
1

2
U(σ)(fX) = −fX(σ)U+f∇XU+

1

2
fU(σ)X = fB(X)

where we have made use of the definition of a connection. The proof is now complete.

Remark 3.3.2. Equation 3.9 obtained in the previous lemma becomes by explicit calcu-
lation in coordinate notation (in line with cordinate convention established by equation
2.8):

R̃l
ijk = Rl

ijk + 〈dxl,−g(∂k, ∂i)B(∂j) + g(B(∂j), ∂i)∂k − g(B(∂k), ∂i)∂j + g(∂j, ∂i)B(∂k)〉 =

= Rl
ijk+ 〈dxl,−gik[B(∂j)]

h∂h+g([B(∂j)]
h∂h, ∂i)∂k−g([B(∂k)]

h∂h, ∂i)∂j +gij[B(∂k)]
h∂h〉 =

= Rl
ijk − gikBh

j δ
l
h +Bh

j ghiδ
l
j −Bh

kghiδ
l
j + gijB

h
k δ

l
h

And therefore we have:

R̃l
ijk = Rl

ijk − gikBl
j +Bh

j ghiδ
l
k −Bh

kghiδ
l
j + gijB

l
k (3.11)

In a very similar manner we find coordinate expression of 3.10:

Bl
j = 〈dxl, B(∂j)〉 = 〈dxl,−∂j(σ)Uh∂h +∇∂j(U

h∂h) +
1

2
Uh∂h(σ)∂j〉 =

= −∂j(σ)Uhδlh + (∂jU)l +
1

2
Uh∂h(σ)δlj =

= −∂j(σ)gnl∂n(σ) + glk(∂k∂j(σ)− ∂i(σ)Γikj) +
1

2
gnh∂n(σ)∂h(σ)δlj

Now we have made use of the fact that Z(σ) = dσ(Z) = g(U,Z) for each Z ∈ TpM :

∂h(σ) := g(Un∂n, ∂h) = gnhU
n = Uh → ghl∂hσ = U l

In a rather simpler notation:

Bl
j = −∂jσgnl∂nσ + glk(∂k∂jσ − ∂aσΓakj) +

1

2
gnh∂nσ∂hσδ

l
j (3.12)

Now we lower the upper index:

Bij = −∂iσ∂jσ + ∂i∂jσ − ∂aσΓaij +
1

2
gnh∂nσ∂hσgij (3.13)

From this equation it can be readily seen, that Bij := gilB
l
j = Bji is symmetric.
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Lemma 3.3.3. The relationship between R̃ and R viewed as a (0, 4) tensors can be
expressed in a coordinate-free way through the Kulkarni-Nomizu product:

R̃ = e2σ(p)[R− g ?B] (3.14)

where B is a (0, 2) tensor defined by equation 3.13.

Proof. It is an immediate consequence of lowering the index on 3.11:

e−2σR̃lijk = Rlijk + gijBlk +Bijglk −Bikglj − gikBlj

and recalling the Kulkarni-Nomizu product in coordinates (definition 1.4.8 and equality
1.6).

Remark 3.3.4. If we are to ask how do other tensors or quantities change under conformal
transformation of the metric, the answer is at hand. By contracting the expression 3.11
for l and j we arrive at the following equation:

R̃l
ilk =: %̃ik = %ik − gikBl

l +Bh
l ghiδ

l
k −Bh

kghiδ
l
l + gilB

l
k = %ik − gikBl

l − (n− 2)Bik (3.15)

Here %ik, %̃ik are (from equality 2.22) the Ricci forms and n ∈ N is the dimension of the
manifold. Yet another contraction in this expression leads (because of equality 3.3) to:

g̃ik%̃ik =: R̃ = e−2σgik[%ik−gikBl
l−(n−2)Bik] = e−2σ[R−nBl

l−(n−2)Bl
l ] = e−2σ[R−2(n−1)Bl

l ]

where R, R̃ are (by equality 2.23) the Ricci scalar curvatures. We shall rewrite this for
the future convenience as follows:

g̃ikR̃ = gik[R− 2(n− 1)Bl
l ] (3.16)

Now we shall be able to factor out expressions for Bl
l and Bik. From the equation 3.16

we have:

Bl
l = − g̃ikR̃

2(n− 1)gik
+

R
2(n− 1)

and 3.15 yields:

Bik =
%ik − %̃ik − gikBl

l

n− 2
=

1

n− 2
(%ik − %̃ik)−

1

2(n− 1)(n− 2)
(Rgik − R̃g̃ik)

3.4 Weyl tensor

Lemma 3.4.1. Coordinate expression 3.11 can be substituted in and rearranged so that
it is possible to separate tilded and untilded coordinate expressions of the same quantity
on the two sides of the resulting equation.
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Proof. Let us insert equations for Bik and Bj
j (found above) into 3.11 after lowering the

indices at all coordinate expressions of B:

R̃l
ijk = Rl

ijk − gikgnlBnj +Bijδ
l
k −Bikδ

l
j + gijg

nlBnk =

= Rl
ijk − gikgnl

[
1

n− 2
(%nj − %̃nj)−

1

2(n− 1)(n− 2)
(Rgnj − R̃g̃nj)

]
+

+

[
1

n− 2
(%ij − %̃ij)−

1

2(n− 1)(n− 2)
(Rgij − R̃g̃ij)

]
δlk−

−
[

1

n− 2
(%ik − %̃ik)−

1

2(n− 1)(n− 2)
(Rgik − R̃g̃ik)

]
δlj+

+gijg
nl

[
1

n− 2
(%nk − %̃nk)−

1

2(n− 1)(n− 2)
(Rgnk − R̃g̃nk)

]
After separating tilded and untilded terms on different sides of the equation, we arrive at:

LHS = R̃l
ijk +

1

(n− 2)
[%̃ijδ

l
k − %̃ikδlj + gijg

nl%̃nk − gikgnl%̃nj] +
R̃

(n− 1)(n− 2)
[g̃ikδ

l
j − g̃ijδlk]

RHS = Rl
ijk +

1

(n− 2)
[%ijδ

l
k − %ikδlj + gijg

nl%nk − gikgnl%nj] +
R

(n− 1)(n− 2)
[gikδ

l
j − gijδlk]

Because gijg
nl = gije

2σe−2σgnl = g̃ij g̃
nl, it is obvious that on both sides of the equation is

the same quantity expressed in the means of g̃ and g respectively.

Definition 3.4.2. The coordinate expression

W l
ijk := Rl

ijk +
1

(n− 2)
[%ijδ

l
k − %ikδlj + gijg

nl%nk − gikgnl%nj] +
R

(n− 1)(n− 2)
[gikδ

l
j − gijδlk]

(3.17)
defines a tensor on (M, g), called the Weyl tensor (conformal curvature tensor1).

Proposition 3.4.3. Weyl tensor is indeed a tensor.

Proof. Follows from the fact that on the right hand side of equation 3.17 figure only
tensors or products of tensors.

Theorem 3.4.4. Weyl tensor W is an invariant of conformal transformations of the
metric tensor.

Proof. Follows immediately as a corollary of remark 3.3.4 and the result of lemma 3.4.4,
that:

W̃ l
ijk = W l

ijk

1The reason why the Weyl tensor is sometimes reffered to as the conformal curvature tensor is obvious
from some of its properties that we are to prove in chapter 4.



Chapter 4

Weyl and Cotton tensors

In the previous chapter we found a quantity invariant under conformal transformations,
namely the Weyl tensor. Here we shall probe deeper into its properties as well as come
across another quantity that bears a strong resemblance to it - the Cotton tensor.

4.1 Properties of Weyl tensor, Riemann curvature

tensor decompostition

Lemma 4.1.1. The Weyl tensor of (M, g) satisfies

W l
ijk = −W l

ikj ∀i, j, k, l (4.1)

Proof. As follows from corollary 2.10 the Riemann curvature tensor is anti-symmetrical
in the last two indices. Let us now explicitly write the right hand side of equation 4.1
that we are to prove:

−W l
ikj = −Rl

ikj︸ ︷︷ ︸
=Rlijk

− 1

(n− 2)
[%ikδ

l
j−%ijδlk+gikg

nl%nj−gijgnl%nk]−
R

(n− 1)(n− 2)
[gijδ

l
k−gikδlj]

In comparison with the definition 3.4.2 this right hand side is equal to W l
ijk.

Remark 4.1.2. Let us compute the coordinate expression for the (0, 4) Weyl tensor. From
the definition:

Wlijk : = glmW
m
ijk =

= glm

{
Rm
ijk +

1

n− 2

[
(%ijδ

m
k − %ikδmj + gij%

m
k − gik%mj ) +

R
n− 1

(gikδ
m
j − gijδmk )

]}
=

= Rlijk +
1

n− 2

[
(%ijgkl − %ikgjl + gijδ

n
l %nk − gikδnl %nj) +

R
n− 1

(gikglj − gijglk)
]

and finally

Wlijk = Rlijk+
1

n− 2
(%ijgkl−%ikgjl+gij%lk−gik%lj)+

R
(n− 1)(n− 2)

(gikglj−gijglk) (4.2)

37
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Lemma 4.1.3. Coordinate expression of the (0, 4) Weyl tensor satisfies:

Wklij = −Wklji (4.3)

Wklij = −Wlkij (4.4)

Wklij = Wijkl = Wjilk (4.5)

Proof. Starting from the Weyl tensor in the form of 4.2 the proof is being lead in a very
simmilar manner to that of lemma 4.1. Using the fact, that for the Levi-Civita connection1

the Riemann tensor has the symmetries we are lookig for (see lemma 2.4.9), it is trivial
to check from the coordinate expression that the same holds true for W .

Lemma 4.1.4. The Weyl tensor W is trace-free.

Proof. By a straightforward calculation, we have from defining equation 3.17 where we
contract indices l and j:

W l
ilk = Rl

ilk +
1

(n− 2)
[%ilδ

l
k − %ikδll + gilg

nl%nk − gikgnl%nl] +
R

(n− 1)(n− 2)
[gikδ

l
l − gilδlk] =

= %ik +
1

(n− 2)
[%ilδ

l
k − n%ik + δni %nk − gikR] +

R
(n− 1)(n− 2)

[ngik − gik]︸ ︷︷ ︸
=(n−1)gik

=

= %ik +
1

(n− 2)
[%ik − n%ik + %ik]︸ ︷︷ ︸

=−(n−2)%ik

= 0

The same is true for setting the indices l and k in definition 3.4.2 equal by the previous
lemma 4.1.1. The last remaining non-trivial trace would be l = i however under this
contraction the Weyl tensor vanishes as well due to its antisymmetry in the first two
indices (equation 4.4).

Theorem 4.1.5. The (0, 4) Riemann curvature tensor of (M, g) can be decomposed as
follows:

R = W + g ? S (4.6)

where W is the (0, 4) Weyl tensor and S is the (0, 2) Schouten tensor defined in 2.5.5 as

S(V, Z) =
1

n− 2

[
%(V, Z)− R

2(n− 1)
g(V, Z)

]
Proof. It is an obvious fact, once we take into account the equation 4.2 and the definition
of the Kulkarni-Nomizu product 1.4.8.

1Starting from remark 3.1.1 we have been working with the Levi-Civita connection.
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Lemma 4.1.6. Under the conformal transformation of the metric tensor g → e2σ(p)g = g̃
the (0, 4) Weyl tensor transforms as follows:

e−2σ(p)W̃ (V,X, Y, Z) = W (V,X, Y, Z) ∀V,X, Y, Z ∈ Γ(TM)

Proof. In theorem 3.4.4 we found that the (1,3) Weyl tensor is an invariant of conformal
transformations of the metric. Now if we apply g̃lh = e2σglh to the equation

W̃ h
ijk = W h

ijk

we obtain
g̃lhW̃

h
ijk = W̃lijk = e2σWlijk

This is an equality in tensors, thus it does not depend on the choice of the basis and we
can rewrite it in the coordinate-free manner.

Remark 4.1.7. The decomposition of

R(V,X, Y, Z) = W (V,X, Y, Z) + (g ? S)(V,X, Y, Z)

and the trace-free property of the Weyl tensor (lemma 4.1.4) is the reason why the Weyl
tensor is sometimes reffered to as the trace-free part of the Riemann tensor.

Theorem 4.1.8. [7] Let (M, g) be a (pseudo-)Riemannian manifold with dimM = 3
then the Riemann tensor of M can be expressed as follows:

Rl
ijk = −%ijδlk + %ikδ

l
j − gijgnl%nk + gikg

nl%nj +
R
2

(gikδ
l
j − gijδlk)

Proof. First, let us raise the second index on the expression that we are to prove. We
arrive at an equivalent expression:

Rlm
jk︸ ︷︷ ︸

LHS

= −%mj δlk + %mk δ
l
j − δmj gnl%nk + δmk g

nl%nj −
R
2

(δmk δ
l
j − δmj δlk)︸ ︷︷ ︸

RHS

(R)

By our assumption (M, g) is a three-dimensional manifold and thus at least two of the
indices l,m, j, k has to be equal. We shall verify, that the equality (R) holds for the
following cases:

• Let l = m, then:

RHS = −%ljδlk + %lkδ
l
j − δljgnl%nk + δlkg

nl%nj −
R
2

(δlkδ
l
j − δljδlk)︸ ︷︷ ︸

=0

=

= −%ljδlk + %lkδ
l
j − δlj%lk + δlk%

l
j = 0

The LHS of (R) is zero as well, because of the antisymmetry of the Riemann tensor
(equality 2.19) which implies Rlljk = −Rlljk = 0. This remains true after raising
the first two indices.
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• Let l = j, then:

RHS = −%ml δlk + %mk δ
l
l − δml gnl%nk + δmk g

nl%nl −
R
2

(δmk δ
l
l − δml δlk) =

= −%mk + 3%mk − δml %lk + δmk R−
R
2

(3δmk − δmk ) =

= %mk + δmk R−
R
2

(2δmk ) = %mk

For the LHS we have Rlm
lk = gmnRl

nlk = gmn%nk = %mk and therefore the equality
(R) holds.

• Let l = k, then

RHS = −%mj δll + %ml δ
l
j − δmj gnl%nl + δml g

nl%nj −
R
2

(δml δ
l
j − δmj δll) =

= −3%mj + %mj − δmj R+ %mj −
R
2

(δmj − 3δmj ) = −%mj

and the LHS = Rlm
jl = −gmhRl

hlj = −%mj .

• Let m = j, then

RHS = −%mmδlk + %mk δ
l
m − δmmgnl%nk + δmk g

nl%nm −
R
2

(δmk δ
l
m − δmmδlk) =

= −Rδlk + %lk − 3%lk + %lk −
R
2

(δlk − 3δlk) = −%lk

For the LHS = Rlm
mk = −glhRm

hmk = −glh%hk = −%lk the equality (R) holds.

• Let m = k, then

RHS = −%kj δlk + %kkδ
l
j − δkj gnl%nk + δkkg

nl%nj −
R
2

(δkkδ
l
j − δkj δlk) =

= −%lj + δljR− %lj + 3%lj −
R
2

(3δlj − δlj) = %lj

and the LHS = Rlk
jk = gkhgilRihjk = gkhgilRhikj = gil%ij = %lj.

• Let j = k, then

RHS = −%mj δlj + %mj δ
l
j − δmj gnl%nj + δmj g

nl%nj −
R
2

(δmj δ
l
j − δmj δlj) = 0

For the LHS we have Rlm
jj = −Rlm

jj = 0.

Now let us consider the cases where three of the four indices l,m, j, k are equal. The left-
hand side of the Riemann tensor is always zero in these cases because of the antisymmetries
(lemma 2.4.9) Rlllk = −Rlllk and similarly for the Riemann tensor with the first two indices
raised. We shall only verify the vanishing of the right-hand sides. We have:



4.1. PROPERTIES OFWEYL TENSOR, RIEMANN CURVATURE TENSORDECOMPOSTITION41

• Let l = m = j, then the RHS is zero because of the case l = m above.

• Let l = m = k, then the RHS is zero because of the case l = m above.

• Let l = k = j, then the RHS is zero because of the case j = k above.

• Let m = k = j, then the RHS is zero because of the case j = k above.

We have verified the equality (R) ergo the proof of 4.1.8 is finished.

Lemma 4.1.9. Let (M, g) be a (pseudo-)Riemannian manifold with a dimM = 3. Then
the Weyl tensor vanishes identically.

Proof. This lemma is equivalent to the previous theorem, for the Riemann tensor decom-
postition (theorem 4.1.5) on a threedimensional manifold takes exactly the form from the
theorem 4.1.8 if and only if the Weyl tensor is identically zero.

Theorem 4.1.10. The (0, 4) Weyl tensor satisfies the first Bianchi identity:

W (V,X, Y, Z) +W (V, Z,X, Y ) +W (V, Y, Z,X) = 0 ∀V,X, Y, Z ∈ Γ(TM) (4.7)

Proof. Because of the decomposition W = R − g ? S (theorem 4.1.5) and the fact, that
the Riemann curvature tensor satisfies the first Bianchi identity it clearly suffices to prove
that also the Kulkarni-Nomizu product (definition 1.4.8) of two symmetric (0, 2) tensors
satisfies the first Bianchi identity. By direct computation (for all V,X, Y, Z ∈ Γ(TM)):

H ?Q(V,X, Y, Z) +H ?Q(V, Z,X, Y ) +H ?Q(V, Y, Z,X) =

= H(V, Z)Q(X, Y ) +H(X, Y )Q(V, Z)︸ ︷︷ ︸
α

−H(V, Y )Q(X,Z)−H(X,Z)Q(V, Y )︸ ︷︷ ︸
β

+

+H(V, Y )Q(Z,X) +H(Z,X)Q(V, Y )︸ ︷︷ ︸
β

−H(V,X)Q(Z, Y )−H(Z, Y )Q(V,X)︸ ︷︷ ︸
γ

+

+H(V,X)Q(Y, Z) +H(Y, Z)Q(V,X)︸ ︷︷ ︸
γ

−H(V, Z)Q(Y,X)−H(Y,X)Q(V, Z)︸ ︷︷ ︸
α

= 0

where the terms underbraced by the same greek letter subtract with each other.

Proposition 4.1.11. [4] Coordinate expression of the (1, 3) Weyl tensor satisfies:

∇hW
l
ijk+∇jW

l
ikh+∇kW

l
ihj =

1

n− 2

(
δlhCijk + δljCikh + δlkCihj + gikC

l
jh + gihC

l
kj + gijC

l
hk

)
where

Cijk = ∇k%ij −∇j%ik +
1

2(n− 1)
(gik∇jR− gij∇kR)
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Proof. We start by explicitly calculating the action of the connection on components of
the Weyl tensor:

∇hW
l
ijk = ∇hR

l
ijk +

δlj∇h%ik − δlk∇h%ij + gik∇h%
l
j − gij∇h%

l
k

n− 2
+

δlkgij − δljgik
(n− 1)(n− 2)

∇hR

∇jW
l
ikh = ∇jR

l
ikh +

δlk∇j%ih − δlh∇j%ik + gih∇j%
l
k − gik∇j%

l
h

n− 2
+

δlhgik − δlkgih
(n− 1)(n− 2)

∇jR

∇kW
l
ihj = ∇kR

l
ihj +

δlh∇k%ij − δlk∇k%ih + gij∇k%
l
h − gih∇k%

l
j

n− 2
+

δljgih − δlhgij
(n− 1)(n− 2)

∇kR

By summing these three equations and making use of 2.24, we obtain:

∇hW
l
ijk +∇jW

l
ikh +∇kW

l
ihj =

=
1

n− 2


δlj∇h%ik︸ ︷︷ ︸

Cikh

−δlk∇h%ij︸ ︷︷ ︸
Cihj

+gik∇h%
l
j − gij∇h%

l
k+

+ δlk∇j%ih︸ ︷︷ ︸
Cihj

−δlh∇j%ik︸ ︷︷ ︸
Cijk

+gih∇j%
l
k − gik∇j%

l
h+

+δlh∇k%ij︸ ︷︷ ︸
Cijk

−δlk∇k%ih︸ ︷︷ ︸
Cikh

+gij∇k%
l
h − gih∇k%

l
j

+

+
2

2(n− 1)

δlk gij∇hR︸ ︷︷ ︸
Cihj

−δlj gik∇hR︸ ︷︷ ︸
Cikh

+δlh gik∇jR︸ ︷︷ ︸
Cijk

−δlk gih∇jR︸ ︷︷ ︸
Cihj

+δlj gih∇kR︸ ︷︷ ︸
Cikh

−δlh gij∇kR︸ ︷︷ ︸
Cijk


 =

=
1

n− 2

(
δlhCijk + δljCikh + δlkCihj

)
+

+
1

n− 2


gik∇h%

l
j︸ ︷︷ ︸

Cljh

−gij∇h%
l
k︸ ︷︷ ︸

Clhk

+gih∇j%
l
k︸ ︷︷ ︸

Clkj

−gik∇j%
l
h︸ ︷︷ ︸

Cljh

+gij∇k%
l
h︸ ︷︷ ︸

Clhk

−gih∇k%
l
j︸ ︷︷ ︸

Clkj

+

1

2(n− 1)

gij δlk∇hR︸ ︷︷ ︸
Clhk

−gik δlj∇hR︸ ︷︷ ︸
Cljh

+gik δ
l
h∇jR︸ ︷︷ ︸
Cljh

−gih δlk∇jR︸ ︷︷ ︸
Clkj

+gih δ
l
j∇kR︸ ︷︷ ︸
Clkj

−gij δlh∇kR︸ ︷︷ ︸
Clhk




We made use of the defining equation for Cijk as well as

Ci
jk = gisCsjk = ∇k%

i
j −∇j%

i
k +

1

2(n− 1)
(δik∇jR− δij∇kR)
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4.2 Properties of Cotton tensor

Definition 4.2.1. The coordinate expression

Cijk = ∇k%ij −∇j%ik +
1

2(n− 1)
(gik∇jR− gij∇kR) (4.8)

defines a (0, 3) tensor on (M, g), called the Cotton tensor.

Remark 4.2.2. The Cotton tensor of M with dimM = n can be expressed in terms of the
Schouten tensor (definition 2.5.5):

Cijk = (n− 2)(∇kSij −∇jSik)

Lemma 4.2.3. The Cotton tensor C is anti-symmetric in the last two indices, i.e.

Cijk = −Cikj ∀i, j, k

Proof. Follows immediately from the defining equation 4.14.

Proposition 4.2.4. The Cotton tensor satisfies the following identity:

Cijk + Ckij + Cjki = 0

Proof. Using remark 4.2.2, we can write:

1

n− 2
(Cijk + Ckij + Cjki) =

= ∇kSij︸ ︷︷ ︸
α

−∇jSik︸ ︷︷ ︸
β

+∇jSki︸ ︷︷ ︸
β

−∇iSkj︸ ︷︷ ︸
γ

+∇iSjk︸ ︷︷ ︸
γ

−∇kSji︸ ︷︷ ︸
α

= 0

where we have employed the symmetry of the Schouten tensor.2

Lemma 4.2.5. [4] The Ricci form and the Ricci scalar are related by:

∇l%
l
j =

1

2
∇jR (4.9)

Proof. Let us start from the Second Bianchi Identity 2.24:

∇l R
h
ijk︸︷︷︸

=−Rhikj

+∇jR
h
ikl + ∇kR

h
ilj︸ ︷︷ ︸

=ghm∇kRmilj

= 0

where we have made use of the equality 2.10. Now we shall contract the obtained equation
for h and k and use equation 2.19:

−∇l%ij +∇j%il + gkm∇k Rmilj︸ ︷︷ ︸
=−Rimlj

= 0

2Later on we shall prove that Cijk = 0 identically on a manifold with dimM < 3 therefore this
proposition holds even for n = 2 where the previous line of proof does not make sense.
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In order to complete the proof, we multiply the equation by gil and sum for i and l:

−∇l%
l
j +∇jR− gkm∇k%mj︸ ︷︷ ︸

=∇k%kj

= 0 → 2∇k%
k
j = ∇jR

After dividing by 2 this results in the sought-after identity.

Lemma 4.2.6. The Cotton tensor is trace-free.

Proof. We have after raising the index and contracting

Ci
ik = gisCsik = ∇k%

i
i −∇i%

i
k +

1

2(n− 1)
(δik∇iR− δii∇kR) =

= ∇kR−
1

2
∇kR︸ ︷︷ ︸

by lemma 4.2.5

+
1

2(n− 1)
(∇kR− n∇kR) =

=
1

2
∇kR−

n− 1

2(n− 1)
∇kR = 0

The same would be true for setting the indices i and k equal Ck
jk = gikCijk.

Proposition 4.2.7. Let (M, g) be a (pseudo-)Riemannian manifold with n = dimM > 3.
The coordinate expressions of the Weyl tensor and the Cotton tensor are related by:

∇hW
h
ijk =

n− 3

n− 2
Cijk (4.10)

Proof. We start by contracting the equation obtained in proposition 4.1.11 for h and l:

∇hW
h
ijk+∇jW

h
ikh+∇kW

h
ihj =

1

n− 2

(
δhhCijk + δhjCikh + δhkCihj + gikC

h
jh + gihC

h
kj + gijC

h
hk

)
Now using the trace-free properties of the Weyl tensor and the Cotton tensor from lemmas
4.1.4 and 4.2.6 we have:

∇hW
h
ijk +∇jW

h
ikh︸ ︷︷ ︸

=0

+∇kW
h
ihj︸ ︷︷ ︸

=0

=
1

n− 2
(nCijk + Cikj + Cikj + gik C

h
jh︸︷︷︸

=0

+ gihC
h
kj︸ ︷︷ ︸

=Cikj

+gij C
h
hk︸︷︷︸

=0

)

If we employ the anti-symmetry from lemma 4.2.3 we arrive at:

∇hW
h
ijk =

1

n− 2
(nCijk − Cijk − Cijk − Cijk) =

n− 3

n− 2
Cijk

Corollary 4.2.8. Let (M, g) be a (pseudo-)Riemannian manifold with n = dimM > 3.
If the Weyl tensor is a zero tensor, then the Cotton tensor is a zero tensor.

Proposition 4.2.9. Let (M, g) be a (pseudo-)Riemannian manifold with dimM = 2.
Then the Cotton tensor of M vanishes identically.



4.3. COTTON TENSOR UNDER CONFORMAL TRANSFORMATIONS 45

Proof. On a two-dimensional manifold, the Cotton tensor (after raising the first index)
takes form of:

Ci
jk = gisCsjk = ∇k%

i
j −∇j%

i
k +

1

2
(δik∇jR− δij∇kR) i, j, k ∈ {1, 2}

As an obvious consequence at least two indices must be equal. Components with i equal
to j or k vanish because of the trace-free property of the Cotton tensor (lemma 4.2.6). If
j = k then we have by the anti-symmetry of C (lemma 4.2.3) the equality Ci

jj = −Ci
jj

ergo components for which is this satisfied vanish as well. All its components vanish,
hence the Cotton tensor is a zero tensor if dimM = 2.

4.3 Cotton tensor under conformal transformations

Theorem 4.3.1. Let (M, g) be a (pseudo-)Riemannian manifold with dimM = n ≥ 3.
Then under a conformal transformation g̃ij = e2σgij of the metric tensor the Cotton tensor
of M transforms as follows:

C̃ijk = Cijk − (n− 2)(∂aσ)W a
ijk

Proof. We start from the equation from remark 4.2.2:

C̃ijk = (n− 2)(∇̃kS̃ij − ∇̃jS̃ik) = (n− 2)(∂kS̃ij − Γ̃akiS̃aj − Γ̃akjS̃ai)− Σ(j, k) (4.11)

where we have made use of the symmetrizer.3 In order to advance further, we need to
find the transformational properties of S̃aj and Γ̃aki first. Shall we do that, we are to prove
a couple of lemmas.

Lemma 4.3.2. Let (M, g) be a (pseudo-)Riemannian manifold. Then under a conformal
transformation g̃ij = e2σgij of the metric tensor Christoffell symbols transform as follows:

Γ̃aki = Γaki + ∂kσδ
a
i + ∂iσδ

a
k − gikgah∂hσ ∀a, i, k (A)

Proof. From the defining equation 3.5 and lemma 3.2.2 we already know, how the Levi-
Civita connection changes under a conformal transformation of the metric tensor. Now
it is necessary to express the equality

∇̃XY = ∇XY +X(σ)Y + Y (σ)X − g(X, Y )U ∀X, Y ∈ Γ(TM), U l = ghl∂hσ

in coordinates. We do that by using the duality pairing of TM and T ∗M with their
respective bases {∂i} and {dxj}:

Γ̃aki = Γ̃ckiδ
a
c = 〈Γ̃cki∂c, dxa〉 = 〈∇̃k∂i, dx

a〉 =

= 〈∇k∂i + ∂k(σ)∂i + ∂i(σ)∂k − g(∂k, ∂i)U
l∂l, dx

a〉 =

= 〈Γcki∂c + ∂k(σ)∂i + ∂i(σ)∂k − gkighl∂hσ∂l, dxa〉 =

= Γaki + ∂kσδ
a
i + ∂iσδ

a
k − gikgah∂hσ

We have proved the desired equality (A).

3The symbol Σ(j, k) represents the symmetric part of the whole expression (from the last equality =)
positioned in front of it; i.e. the same expression only with interchanged j and k.
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Lemma 4.3.3. Let (M, g) be a (pseudo-)Riemannian manifold. Then under a conformal
transformation g̃ij = e2σgij of the metric tensor the (0, 2) Schouten tensor S transforms
as follows:

S̃aj = Saj −Baj (B)

where B is the (0, 2) tensor whose components are defined by equation 3.13 followingly:

Baj = −∂aσ∂jσ + ∂a∂jσ − ∂cσΓcaj +
1

2
gnh∂nσ∂hσgaj

Proof. Let us start from the definition 2.5.5. Using known transformational behaviors of
the Ricci form and the Ricci scalar (equalities 3.15 and 3.16 respectively), we can write:

S̃aj =
1

n− 2

(
%̃aj −

R̃
2(n− 1)

g̃aj

)
=

=
1

n− 2

(
%aj − gajBl

l︸ ︷︷ ︸−(n− 2)Baj −
1

2(n− 1)
e−2σ[R− 2(n− 1)Bl

l︸ ︷︷ ︸]e2σgaj

)
=

=
1

n− 2

(
%aj − (n− 2)Baj −

R
2(n− 1)

gaj

)
= Saj −Baj

The proof of the equality (B) is now complete.

Now we shall be able to continue in our endeavors to prove the theorem 4.3.1. Let us
substitute from (A) and (B) into the equation 4.11.

C̃ijk =(n− 2)(∇̃kS̃ij − ∇̃jS̃ik) = (n− 2)(∂kS̃ij − Γ̃akiS̃aj − Γ̃akjS̃ai)− Σ(j, k) =

=(n− 2)

∂kSij︸ ︷︷ ︸
C

−∂kBij −

− ( Γaki︸︷︷︸
C

+∂kσδ
a
i + ∂iσδ

a
k − gikgah∂hσ)( Saj︸︷︷︸

C

−Baj)−

− ( Γakj︸︷︷︸
C

+∂kσδ
a
j + ∂jσδ

a
k − gjkgah∂hσ)( Sai︸︷︷︸

C

−Bai)

− Σ(j, k)

Here the underbraced terms form together the Cotton tensor Cijk therefore we can rewrite
(any term symmetric in j and k cancels out with respective term in the symmetrizer):

1

n− 2
(C̃ijk − Cijk) =
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=− (∂kσδ
a
i + ∂iσδ

a
k − gikgah∂hσ)Saj + (Γaki + ∂kσδ

a
i + ∂iσδ

a
k − gikgah∂hσ)Baj−

− (∂kσδ
a
j + ∂jσδ

a
k − gjkgah∂hσ)Sai + (Γakj + ∂kσδ

a
j + ∂jσδ

a
k − gjkgah∂hσ)︸ ︷︷ ︸

symmetric j ↔ k

Bai−

− ∂kBij − Σ(j, k) =

=− ∂kσSij − ∂iσSkj︸ ︷︷ ︸
α

+gikS
h
j ∂hσ − ∂kσSji︸ ︷︷ ︸

β

− ∂jσSki︸ ︷︷ ︸
β

+ gjkS
h
i ∂hσ︸ ︷︷ ︸
γ

+

+ (Γaki + ∂kσδ
a
i + ∂iσδ

a
k − gikgah∂hσ)(−∂aσ∂jσ + ∂a∂jσ − ∂cσΓcaj +

1

2
gnh∂nσ∂hσgaj)+

+ ∂k∂iσ∂jσ + ∂iσ∂k∂jσ︸ ︷︷ ︸
δ

− ∂k∂i∂jσ︸ ︷︷ ︸
ε

+∂k∂cσΓcij + ∂cσ∂kΓ
c
ij−

− 1

2
(∂kg

αβ∂ασ∂βσgij + gαβ∂k∂ασ∂βσgij + gαβ∂ασ∂k∂βσgij + gαβ∂ασ∂βσ∂kgij)− Σ(j, k)︸ ︷︷ ︸
α,β,γ,δ,ε

We have substituted for the tensor B and canceled the terms symmetric in j and k against
the symmetrizer. Further manipulations yield4:

1

n− 2
(C̃ijk − Cijk) =

=− ∂kσSij + gikS
h
j ∂hσ − ∂aσ∂jσΓaki + ∂a∂jσΓaki︸ ︷︷ ︸

µ

−∂cσ ΓcajΓ
a
ki︸ ︷︷ ︸

R

+
1

2
gnh∂nσ∂hσgajΓ

a
ki−

− ∂iσ∂jσ∂kσ︸ ︷︷ ︸
ζ

+ ∂i∂jσ∂kσ︸ ︷︷ ︸
λ

−∂cσΓcij∂kσ +
1

2
gnh∂nσ∂hσgij∂kσ − ∂kσ∂jσ∂iσ︸ ︷︷ ︸

η

+ ∂k∂jσ∂iσ︸ ︷︷ ︸
ϑ

−

− ∂cσΓckj∂iσ︸ ︷︷ ︸
ι

+
1

2
gnh∂nσ∂hσgkj∂iσ︸ ︷︷ ︸

κ

+∂aσ∂jσgikg
ah∂hσ − ∂a∂jσgikgah∂hσ+

+ ∂cσΓcajgikg
ah∂hσ −

1

2
(∂σ)2gajgikg

ah∂hσ + ∂k∂iσ∂jσ︸ ︷︷ ︸
λ

+ ∂k∂aσΓaij︸ ︷︷ ︸
µ

+∂cσ ∂kΓ
c
ij︸ ︷︷ ︸

R

−

− 1

2
(∂kg

αβ∂ασ∂βσgij + gαβ∂k∂ασ∂βσgij + gαβ∂ασ∂k∂βσgij︸ ︷︷ ︸
=2gαβ∂k∂ασ∂βσgij

+(∂σ)2∂kgij)− Σ(j, k)︸ ︷︷ ︸
ζ,η,ϑ,ι,κ,λ,µ,R

Here the terms denoted by R do not cancel the way the terms denoted by greek letters
do, rather they represent (along with the terms in the symmetrizer) the Riemann tensor:

−∂cσRc
ijk = +∂cσ∂kΓ

c
ji − ∂cσΓcjaΓ

a
ki − Σ(j, k)

Using this fact, we have:

1

n− 2
(C̃ijk − Cijk) + ∂cσR

c
ijk + ∂kσSij︸ ︷︷ ︸

=∂cσSijδck

−gikScj∂cσ − ∂jσSik︸ ︷︷ ︸
=∂cσSikδ

c
j

+gijS
c
k∂cσ =

4Henceforth we will somewhat loosely use the notation (∂σ)2 := gαβ∂ασ∂βσ in order to simplify the
expression.
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=− ∂aσ∂jσΓaki︸ ︷︷ ︸
%

+
1

2
(∂σ)2gajΓ

a
ki − ∂cσΓcij∂kσ︸ ︷︷ ︸

%

+
1

2
(∂σ)2gij∂kσ︸ ︷︷ ︸

ξ

+

+ ∂jσgik(∂σ)2︸ ︷︷ ︸
ξ

− ∂a∂jσgikgah∂hσ︸ ︷︷ ︸
ν

+∂cσΓcajgikg
ah∂hσ −

1

2
(∂σ)2gik∂jσ︸ ︷︷ ︸

ξ

−

− 1

2
∂kg

αβ∂ασ∂βσgij − gαβ∂k∂ασ∂βσgij︸ ︷︷ ︸
ν

−1

2
(∂σ)2∂kgij − Σ(j, k)︸ ︷︷ ︸

%,ξ,ν

Now because:

∂cσR
c
ijk − Sikδcj∂cσ − Scjgik∂cσ + Sckgij∂cσ + Sijδ

c
k∂cσ = ∂cσW

c
ijk

where W c
ijk is the (1,3) Weyl tensor, we can rewrite our equality:

1

n− 2
(C̃ijk − Cijk) + ∂cσW

c
ijk =

=
1

2
(∂σ)2gajΓ

a
ki −

1

2
(∂σ)2∂kgij + ∂cσΓcajgikg

ah∂hσ −
1

2
∂kg

ch∂cσ∂hσgij − Σ(j, k)

For the Levi-Civita connection the equality 2.16 holds and thus we obtain:

1

n− 2
(C̃ijk − Cijk) + ∂cσW

c
ijk =

=
1

2
(∂σ)2gaj

1

2
gah(∂kghi − ∂ighk − ∂hgki)−

1

2
(∂σ)2∂kgij+

+ ∂cσΓcajgikg
ah∂hσ −

1

2
∂kg

ch∂cσ∂hσgij − Σ(j, k) =

=
1

4
(∂σ)2(∂kgji − ∂igjk︸︷︷︸

τ

−∂jgki)−
1

2
(∂σ)2∂kgij+

+ ∂cσΓcajgikg
ah∂hσ −

1

2
∂kg

ch∂cσ∂hσgij − Σ(j, k)︸ ︷︷ ︸
τ

=

= ∂cσΓcajgikg
ah∂hσ −

1

2
∂kg

ch∂cσ∂hσgij − Σ(j, k)+

+
1

4
(∂σ)2(∂kgji − ∂jgki − ∂jgki + ∂kgji)−

1

2
(∂σ)2∂kgij +

1

2
(∂σ)2∂jgik =

= ∂cσΓcajgikg
ah∂hσ −

1

2
∂kg

ch∂cσ∂hσgij − Σ(j, k)

In order to finish the proof of the theorem 4.3.1 we shall prove one last lemma.

Lemma 4.3.4. [4] For the Levi-Civita connection the following identity holds:

∂lg
im = −

(
gjmΓilj + gijΓmlj

)
∀i, l,m (C)
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Proof. Let us calculate:

Γjkl + Γkjl =
1

2
(∂kgjl + ∂lgjk − ∂jgkl + ∂jgkl + ∂lgjk − ∂kgjl) = ∂lgjk (E)

Using the partial derivative ∂l on the equality gijgkj = δik we arrive at:

(∂lg
ij)gkj + gij(∂lgkj) = 0

Now we multiply this equation by the inverse metric gkm:

∂lg
ijδmj + gijgkm∂lgkj

Substituting from (E) and rearranging we have:

∂lg
im = −gijgkm∂lgkj = −gijgkm(Γjkl + Γkjl) = −(gkmΓikl + gijΓmjl )

Therefore lemma 4.3.4 has been proved.

If we make use of the identity (C) in our transformation formula, we arrive at the
following:

1

n− 2
(C̃ijk − Cijk) + ∂cσW

c
ijk =

= ∂cσΓcajgikg
ah∂hσ +

1

2

(
gcaΓhka + gahΓcka

)
∂cσ∂hσgij − Σ(j, k) =

= ∂cσΓcajgikg
ah∂hσ +

1

2
gcaΓhka∂cσ∂hσgij︸ ︷︷ ︸
ghaΓcka∂hσ∂cσgij

+
1

2
gahΓcka∂cσ∂hσgij − Σ(j, k) =

=
(
Γcajgik + Γcakgij

)︸ ︷︷ ︸
symmetric j ↔ k

gha∂cσ∂hσ − Σ(j, k) = 0

This can be finally rewritten as:

C̃ijk = Cijk − (n− 2)∂cσW
c
ijk

hence the proof of the theorem 4.3.1 is now complete.

Theorem 4.3.5. Let (M, g) be a (pseudo-)Riemannian manifold with dimM = 3 then
the (0, 3) Cotton tensor is an invariant of conformal transformations of the metric tensor.

Proof. Follows as an immediate consequence of the transformation formula from the pre-
vious theorem:

C̃ijk = Cijk − (n− 2)∂cσW
c
ijk

and the fact that the Weyl tensor is a zero tensor (see lemma 4.1.9) on a three-dimensional
(pseudo-)Riemannian manifold. All together we have:

C̃ijk = Cijk



50 CHAPTER 4. WEYL AND COTTON TENSORS

4.4 Obstructions to local conformal flatness

Definition 4.4.1. [3] A (pseudo-)Riemannian manifold (M, g) is locally conformally flat
if for any p ∈ M , there exists a neighborhood V of p and a C∞(V ) function σ such that
(V, g̃ = e2σg) is flat.

Theorem 4.4.2 (Obstructions to conformal flatness). A (pseudo-)Riemannian manifold
(M, g) with dimM = n is locally conformally flat if and only if

• for n ≥ 4 the Weyl tensor of M vanishes

• for n = 3 the Cotton tensor of M vanishes

Proof. We shall prove this theorem in two implications.

(→) We assume the conformal flatness of (M, g), therefore we have that for any p ∈ M ,
there exists a neighborhood V of p and a C∞(V ) function σ such that (V, g̃ = e2σg) is
flat. Therefore the Riemann curvature tensor R̃ vanishes. Using the decomposition of
the Riemann tensor (theorem 4.1.5) and the transformation formula for the (0, 4) Weyl
tensor from lemma 4.1.6:

R̃− g̃ ? S̃ = W̃ = e2σ(p)W

Since R̃ = 0 the Schouten tensor S̃ must be a zero tensor as well because it constitutes of
the traces of R̃, namely the %̃ Ricci form and the R̃ Ricci scalar curvature. These traces
are zero. Therefore

0 = e−2σ(p)W̃ = W

If dimM = 3 then using remark 4.2.2 and the fact that in three dimensions the Cotton
tensor is conformally invariant (theorem 4.3.5) we have:

∇̃kS̃ij − ∇̃jS̃ik = C̃ijk = Cijk

Now by the same reasoning as in the previous case the Schouten tensors S̃ vanish and
thus:

0 = C̃ijk = Cijk

This implication is now proved.

(←) Let the Weyl tensor be a zero tensor. The condition for (V, g̃ = e2σg) (where we have
to show that such function σ ∈ C∞(V ) = Ω0(V ) exists) to be flat is the vanishing of the
Riemann tensor

R̃(V,X, Y, Z) = 0 ∀V,X, Y, Z ∈ Γ(TM)

Using the knowledge of the behavior of the Riemann curvature tensor under conformal
transformations of the metric tensor (lemma 3.3.3), this is equivalent to:

0 = R̃ = R−B ? g
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where B is the (0, 2) tensor whose components are defined in lemma 3.13 as

Bij = −∂iσ∂jσ + ∂i∂jσ − ∂aσΓaij +
1

2
gnh∂nσ∂hσgij

Because of the decomposition R = W + S ? g (theorem 4.1.5) and our initial assumption
that W is a zero tensor this can be equivalently rewritten yet again:

0 = W︸︷︷︸
=0

+S ? g −B ? g → (S −B) ? g = 0

By proposition 1.4.11 the Kuklarni-Nomizu product is possible to be viewed as a map
from Γ(TM ⊗TM) to Γ(

⊗4 TM) that is injective. We have by definition that the metric
is non-degenerate and therefore thanks to the injectivity of g ? · the tensor (S − B) has
to be a (0, 2) zero tensor. Ergo the condition for (V, g̃) to be flat is now S = B. Here S is
the Schouten tensor (definition 2.5.5) and B is defined by Bij above. That is additionally
possible to be rewritten as

Bij = −∇iσ∇jσ +∇i∇jσ +
1

2
gnh∇nσ∇hσgij

All together we have:

Sij = Bij = −∇iσ∇jσ +∇i∇jσ +
1

2
gnh∇nσ∇hσgij

We have to prove that there is indeed such function σ ∈ Ω0(V ) that satisfies the last
equality. That suffices for (V, g̃) to be flat and therefore for the manifold M to be locally
conformally flat. Before we shall proceed with the proof of the theorem 4.4.2 we are to
find an equivalent condition.

Lemma 4.4.3. A function σ ∈ Ω0(V ) being a solution to

Sij = −∇iσ∇jσ +∇i∇jσ +
1

2
gnh∇nσ∇hσgij (A)

is equivalent to ω ∈ Ω1(V ) being a solution to

Sij = −ωiωj +∇iωj +
1

2
gnhωnωhgij (B)

Proof. If σ is a solution of (A) then certainly ω := dσ solves (B). Conversely, let ω ∈ Ω1(V )
be a solution of (B). We can rewrite that as

∇iωj = Sij + ωiωj −
1

2
gnhωnωhgij

Now by the symmetry of the Schouten tensor, we see that the right-hand side of this
equation is symmetric. Hence the left-hand side must be symmetric as well and we have

∇iωj = ∇jωi ∀i, j (C)
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We are to find dω using the Cartan identity 1.3.2 on the coordinate vector fields.

dω(∂i, ∂j) = ∂i(ω(∂j))− ∂j(ω(∂i))− ω(∂i∂j − ∂j∂i︸ ︷︷ ︸
=0

) =

= ∇iωj + ωaΓ
a
ij −∇jωi − ωaΓaji − ω(0) =

= ∇iωj −∇jωi

We have made use of the symmetry of Christoffel symbols in the two lower indices for the
Levi-Civita connection. Because (C) holds, we have dω = 0. Ergo ω is a closed one-form
and by Poincaré lemma 1.2.19 it is locally exact. More specifically around an arbitrary
point p ∈M there exists a neighborhood V such that ω is exact. This implies that there
exists σ ∈ Ω0(V ) = C∞(V ) such that ω = dσ. If we substitute ω = dσ into (B) we obtain
(A). Proof of the lemma 4.4.3 is now complete.

We can continue in our efforts to prove the theorem 4.4.2. In order to prove the local
conformal flatness of M , we have to find a one-form ω such that

∇iωj = ωiωj + Sij −
1

2
gnhωnωhgij (4.12)

This is a differential equation in terms of the Levi-Civita connection (its extension as
covariant derivative). For a solution ω to exist the integrability condition of the Ricci
identity 2.6.2 must be satisfied (see remark 2.6.3). Shall we compute the integrability
condition, we are to find ∇k∇jωi first. Substituting from the equation 4.12:

∇k∇jωi = ∇k(ωjωi + Sji −
1

2
gnhωnωhgji) =

= (∇kωj)ωi + ωj(∇kωi) +∇kSij −
1

2
gαβgij[(∇kωα)ωβ + ωα(∇kωβ)] =

= (∇kωj)ωi + ωj(∇kωi) +∇kSij − gαβgij(∇kωα)ωβ

Now we substitute from 4.12 yet again:

∇k∇jωi = (Skj + ωkωj −
1

2
ω2gkj)ωi + ωj(Ski + ωkωi −

1

2
ω2gki)+

+∇kSij − gαβgij(Skα + ωkωα −
1

2
ω2gkα)ωβ

where we denote gαβωαωβ ≡ ω2. Expanding all terms, we shall substitute this into the
Ricci identity, exploiting the properties of the symmetrizer5 in a very simmilar manner to

5The symbol Σ(j, k) represents the symmetric part of the whole expression (from the last equality =)
positioned in front of it; i.e. the same expression only with interchanged j and k.
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that included in the proof of lemma 3.3.1.

Rl
ijkωl = Skjωi︸ ︷︷ ︸

κ

+ωkωjωi︸ ︷︷ ︸
λ

−1

2
ω2gkjωi︸ ︷︷ ︸

µ

+Skiωj + ωkωiωj︸ ︷︷ ︸
ν

−1

2
ω2gkiωj−

− gαβgijωβSkα − gαβgijωβωkωα +
1

2
gαβgijωβω

2gkα +∇kSij − Σ(j, k)︸ ︷︷ ︸
κ,λ,µ,ν

=

= Skiωj −
1

2
ω2gkiωj − gαβgijωβSkα − ω2gijωk︸ ︷︷ ︸

ι

+
1

2
gijωkω

2︸ ︷︷ ︸
ι

+∇kSij − Σ(j, k) =

= Skiωj −
1

2
ω2gkiωj︸ ︷︷ ︸

ϑ

−gαβgijωβSkα +∇kSij −
1

2
gijωkω

2︸ ︷︷ ︸
ϑ

−Σ(j, k)︸ ︷︷ ︸
ϑ

=

= Skiωj − gijωβSβk +∇kSij − Σ(j, k)
(4.13)

Let us now expand the left-hand side of the equation using the decomposition of the
Riemann tensor 4.1.5 with the first index raised:

Rl
ijkωl = (W l

ijk +−Sijδlk + Sikδ
l
k − Slkgij + Sljgik)ωl =

= W l
ijkωl − Sijωk + Sikωj − Slkgijωl + Sljgikωl

Now we substitute this into the left-hand side of the left-hand side of our integrability
condition and after all the terms cancel out and we employ the initial assumption of
vanishing of the Weyl tensor, what remains is:

∇kSij −∇jSik = 0

Comparing this with remark 4.2.2 it is obvious that after multiplying the equation by
(n − 2) the left-hand side becomes exactly the Cotton tensor of M . We arrived at the
vanishing of the Cotton tensor as an integrability condition for the manifold to be locally
conformally flat. In dimensions dimM = n ≥ 4 this is ensured by the corollary 4.2.8
because there when the Weyl tensor vanishes, the Cotton tensor vanishes as well (and the
vanishing of the Weyl tensor was our initial assumption). In dimension n = 3 vanishing of
the Cotton tensor is the integrability condition itself and therefore the proof of vanishing
of W and C being the sufficient condition for M to be locally conformally flat in respective
dimensions is now complete.

4.5 Cotton-York tensor

Remark 4.5.1. Let (M, g) be a Riemannian manifold with dimM = 3. It is possible to
percieve Cijk as a vector-valued 2-form thanks to its anti-symmetry in the last two indices
(see lemma 4.2.3). Symbolically:

Ci =
1

2
Cijkdx

j ∧ dxk i, j, k = 1, 2, 3
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Now we are to use the Hodge star ? on this 2-form on a three-dimensional Riemannian
manifold. Using the equality 1.5:

Yi := ?(Ci) =

√
|det g|

2
Cijkε

jk
hdx

h =
1

2
Cijkg

αjgβk
√
|det g|εαβh︸ ︷︷ ︸

εαβh

dxh =
1

2
Cijkε

jklglhdx
h

where we have employed the definition (see equality 1.3) of the Levi-Civita tensor as well.
The value of Yi on a basis element ∂n ∈ TpM :

Yin := Yi(∂n) =
1

2
Cijkε

jklglh dx
h(∂n)︸ ︷︷ ︸
δhn

=
1

2
Cijkε

jklgln

is a (0, 2) tensor. Finally we rewrite (by the anti-symmetry of ε):

Yin =
1

2

[
∇k%ij −∇j%ik +

1

4
(gik∇jR− gij∇kR)

]
εjklgln =

=
1

2

[
(−1)∇k

(
%ij −

1

4
gijR

)
εkjl −∇j

(
%ik −

1

4
gikR

)
εjkl
]
gln

By renaming the summing indices j ↔ k in the first part of the expression Yin we obtain
the following:

Yin = −εjklgln∇j

(
%ik −

1

4
gikR

)
Now we raise both indices of Yin:

Y αβ = −εjklδβl ∇j

(
%αk −

1

4
δαkR

)
= −εjkβ∇j

(
%αk −

1

4
δαkR

)
Definition 4.5.2. [8] The coordinate expression

Y ij = εikl∇k

(
%jl −

1

4
Rδjl

)
(4.14)

defines a (2, 0) tensor on (M, g) with dimM = 3, called the Cotton-York tensor (some-
times called the Cotton form).

Proposition 4.5.3. [6] The (2, 0) Cotton-York tensor is symmetric, i.e.

Y ij = Y ji

Proof. First let us prove the following lemma:

Lemma 4.5.4. Let Aijk be a (0, 3) tensor antisymmetric in i and j and M ij be a general
(2, 0) tensor. Then

AijkM
ij = 0

if and only if M ij is symmetric in i and j.
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Proof. We shall prove this lemma in two implications
(→) Let AijkM

ij = 0. We can then rewrite this condition by the antisymmetry of Aijk
followingly:

1

2
AijkM

ij − 1

2
AjikM

ij = 0

Now we rename the summing indices on the second term i↔ j and therefore obtain:

Aijk(M
ij −M ji) = 0 → M ji = M ij

(←) Let M ij be a symmetric (2, 0) tensor. We have:

AijkM
ij =

1

2
AijkM

ij − 1

2
AjikM

ji = 0

which proves the lemma.

Now we are to apply the obtained lemma in the proof of proposition 4.5.3. We shall
multiply the (2, 0) tensor with the totally antisymmetric (0, 3) Levi-Civita tensor εijk:

εijkY
ij = εijkε

isl∇s

(
%jl −

1

4
Rδjl

)
= (δsjδ

l
k − δljδsk)∇s

(
%jl −

1

4
Rδjl

)
=

= ∇j%
j
k −

1

4
∇kR−∇k%

j
j +

1

4
δjl δ

l
j︸︷︷︸

=dimM=3

∇kR

Making use of the fact that ∇j%
j
k = 1

2
∇kR (lemma 4.2.5) we find:

εijkY
ij =

1

2
∇kR−

1

4
∇kR−∇kR+

3

4
∇kR =

(
1

4
− 1 +

3

4

)
∇kR = 0

Using the lemma 4.5.4 vanishing of εijkY
ij is equal to the fact that Y ij is a symmetric

(2, 0) tensor.

Proposition 4.5.5. [6] The (2, 0) Cotton-York tensor is trace-less, i.e.

gijY
ij = 0

Proof. By direct calculation (making the use of the total antisymmetry of εikl and the
symmetry of the Ricci form and the metric tensor)

gijY
ij = gijε

ikl∇k

(
%jl −

1

4
Rδjl

)
= εikl∇k

(
%il −

1

4
Rgil

)
=

= εlik︸︷︷︸
−εlki
∇k

(
%li −

1

4
Rgli

)
= −εikl∇k

(
%il −

1

4
Rgil

)
In the last step, we have renamed the indices i↔ l. From this it can be readily seen that

gijY
ij = −gijY ij

and that is only possible when gijY
ij = 0.
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Proposition 4.5.6. The (2, 0) Cotton-York tensor satisfies:

∇jY
ij = 0

Proof. Computing, we have:

∇jY
ij = εikl∇j∇k

(
%jl −

1

4
Rδjl

)
= εiklgβj∇j∇k%βl −

1

4
εikl∇l∇kR =

= εiklgβj∇j∇k%βl −
1

8
εikl (∇l∇k −∇k∇l)R︸ ︷︷ ︸

=0

We have made use of the anti-symmetry of εikl and renamed the indices k ↔ l. The second
term must vanish because of lemma 2.6.1. By using the Ricci identity for the (0, 2) Ricci
form (theorem 2.6.4), our expression becomes:

∇jY
ij = εiklgβj∇j∇k%βl =

= εiklgβj(∇k∇j%βl + %βhR
h
lkj + %hlR

h
βkj) =

= εikl∇k ∇j%
j
l︸ ︷︷ ︸

= 1
2
∇lR

+εiklgβj(%βhR
h
lkj + %hlR

h
βkj)

where the equality from lemma 4.2.5 has been employed. The first term in this last equality
can be therefore rewritten (making use of the anti-symmetry of εikl and renaming indices)
as:

1

2
εikl∇k∇lR =

1

4
εikl(∇k∇l −∇l∇k)R = 0

which is again zero by lemma 2.6.1. Now, on a three-dimensional manifold the Riemann
curvature tensor is possible to be expressed in terms of Ricci forms and Ricci scalars (see
theorem 4.1.8), hence the equality becomes:

∇jY
ij = εiklgβj(%βhR

h
lkj + %hlR

h
βkj) =

= εiklgβj
{
%βh

[
%ljδ

h
k − %lkδhj︸ ︷︷ ︸+glj%

h
k − glk%hj︸ ︷︷ ︸+

R
2

(
glkδ

h
j︸︷︷︸−gljδhk

)]
+

+ %hl

[
%βjδ

h
k − %βkδhj + gβj%

h
k − gβk%hj +

R
2

(
gβkδ

h
j − gβjδhk

)]}
Here any term symmetric in l and k vanishes, for it is multiplied by the totally anti-
symmetric Levi-Civita tensor. Expanding all terms we obtain:

∇jY
ij = εiklgβj(%βhR

h
lkj + %hlR

h
βkj) =

=εikl
{
gβj%βh%ljδ

h
k + gβj%βhglj%

h
k −
R
2
gβj%βhgljδ

h
k+

+ gβj%hl%βjδ
h
k − gβj%hl%βkδhj + gβj%hlgβj%

h
k−

−gβj%hlgβk%hj +
R
2
gβj%hlgβkδ

h
j −
R
2
gβj%hlgβjδ

h
k

}
=
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After simplifications:

∇jY
ij = εikl

{
%jk%lj + %lh%

h
k −
R
2
%lk︸ ︷︷ ︸+R%kl︸︷︷︸−%jl%jk + 3%hl%

h
k − %hl%hk +

R
2
%lk︸ ︷︷ ︸− 3

2
R%kl︸ ︷︷ ︸

}
=

= 4εikl%lh%
h
k = 4εiklgαh%lh%αk = 2εiklgαh%lh%αk − 2εilkghα%lα%hk︸ ︷︷ ︸

2εiklghα%kα%hl

= 0

We have proved the desired equality.
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Conclusion

We have studied conformal transformations of the metric tensor on a pseudo-Riemannian
manifold. As a consequence of finding transformation formulas for the Levi-Civita connec-
tion, the Riemann curvature tensor and its traces we encountered and defined the Weyl
tensor. We have described and proved all fundamental properties of the Weyl tensor and
as a result of searching for further symmetries in its derivatives we have found the Cotton
tensor. We have shown that this tensor is closely tied by its properties to the Weyl tensor
and the overall conformal geometry of the manifold. The proof of the essential theorem
regarding the Weyl and Cotton tensors acting as an obstruction to local conformal flat-
ness of the manifold was given using the integrability condition argument. We have used
the Hodge star to convert the Cotton tensor to an equivalent tensor of lower order on a
three-dimensional manifold and studied its agebraic properties.
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