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Introduction

Non-diffracting fields are relatively new topic in contemporary optics. Since the mile-
stone Durnin’s article was published in 1987, it has been subject of vivid research:
google scholar responds with over 30 000 results while finding the keyword "non-
diffracting beams". These fields can yield special properties which have not been
observed before, such as resistance against divergence, non-rectilinear propagation
or self-healing property after they pass an obstacle. This peculiar behaviour has
found many applications, however, its potential is far from being exhausted.

In this work, we turned our interest onto possibilities of these beams in optical
metrology. Finding new methods of measurements is required task in case of very
precise experiments held in CERN. Especially, large-scale experiments are the very
demanding challenge that has no parallel in any other engineering practice. Imple-
menting approaches based on laser technology seems to be an ideal candidate for
this purpose, however, they facing significant limits caused by a beam spreading.
Non-diffracting beams might be useful tool for mitigating limiting factors and so
they are in the particular interest of The Experiment Metrology unit under Large
Scale Metrology section in CERN.

Activity under this thesis was aimed onto the interferometry with Bessel beams
and the long-range non-diffracting field generation. The work includes theoretical
and experimental analysis of given topic supported by optical simulations made in
software VirtualLab Fusion. We are dealing with the brand new field of interest,
so the most of the physical assumptions are authorial and has not been published
before.

The thesis is organised as follows:

• Chapter 1 is devoted to the theoretical background of Bessel beams - the best-
known representative of non-diffracting beams. We present basic equations and
we put side by side conventional Gaussian beam with the Bessel beam.

• Chapter 2 deal with the interference of a Bessel beam with a Gaussian beam
and further of two Bessel beams. We present simulations and the physical
explanation of results observed by experiments.

• Chapter 3 propose a new approach to an understanding of long-range non-
diffracting beams generator by means of optical aberrations, with the help of
established theory of Zernike polynomials.
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Chapter 1

Optical beams

1.1 Introduction to Non-diffracting waves

When considering the light wave propagation it is convenient to investigate whether
there can exist a light wave which is spatially limited and propagates in one signifi-
cant direction. In that case, we call them light beams. For example the well-known
plane wave can not be considered as a beam even though it propagates in only
one direction; its energy is infinite and it is not spatially limited. In contrast, a
spherical wave comes from a single point, but "diverges" in all directions. We are
interested in the waves which have the normal of the weave-fronts oriented in some
given direction, such waves are called paraxial waves and they have to come from
the solution of the wave equation. The best known paraxial beam is Gaussian beam
and its higher modes [1].

Beams or light pulses are subject to the phenomena of diffraction. In the modern
treatment, any wave propagating in a media is affected by the diffraction causing its
spatial broadening. That has shown to be a natural property of every wavefield. For
the application in optics it means that wherever transverse localization is needed,
this effect is limiting. That is a case of image forming, free space communications,
optical lithography or optical tweezers.

In optics, there exist several ways how to preserve transversal shape over long dis-
tances, for example by bonding light into a waveguide. However, it is convenient to
ask how this behaviour can be mitigated or even suppressed in the free-space prop-
agation. This concept has been investigated both theoretically and experimentally
and solutions fulfilling these conditions are called non-diffracting beams. It has been
presented solutions with various peculiar behaviour such as non-rectilinear spreading
(Airy beams), diffraction-free spreading Bessel beam etc [2].
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1.2 General wave equation

Every existing physical wave can be described by the differential equation known as
homogeneous wave equation [2].

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2

∂2

∂t2

)
ψ(x, y, z; t) = 0 (1.1)

Which can be written in the cylindrical co-ordinates (ρ,Φ, z; t) and assuming axially
symmetric solutions (ρ, z; t) then the equation becomes:

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2
− 1

c2

∂2

∂t2

)
ψ(ρ, z; t) = 0 (1.2)

Where ρ2 = x2 + y2 The solution in the free space can be written in terms of a
Bessel-Fourier transform of the variable ρ, and two Fourier transforms of variables
z, t [2].

ψ(ρ, z, t) =

∫ ∞
0

dkρ

∫ ∞
−∞

dkz

∫ ∞
−∞

dνkρAn(kρ, kz, ν)Jn(kρρ)eikzzeiνt (1.3)

where Jn(kρρ) are n-order Bessel functions and An(kρ, kz, ν) is the Fourier trans-
form of ψ(ρ, z; t). The relation among kρ, kz, ν can be derived by the substitution of
Eq.(1.3) to Eq.(1.2).

ν2

c2
= k2

ρ + k2
z (1.4)

With this condition becomes Eq.(1.3) into the general solution to the wave equation
Eq.1.2

ψ(ρ, z, t) =

∫ ν
c

0

∫ ∞
−∞

kρJn(kρρ)eiz
√
ν2/c2−k2ρe−iωtS(kρ, ν)dkρdν (1.5)

where S(kρ, ν) is the chosen spectral function typical for each solution. This general
solution is frequency dependent so it yields to an expression for both beams or pulses.
In this thesis we are particularly interested in the frequency independent solutions
which are further elaborated in Sections 1.4 and 1.5

1.2.1 Spectral function

Behaviour of optical beams can be described by mean of so-called angular spectrum.
Under angular spectrum representation, we understand the series expansion of an
arbitrary field in terms of plane waves with variable amplitudes and propagation
directions [3]. This idea is convenient as it reveals physical behaviour and it is
unique for each solution .

14



Figure 1.1: Vectorial relations

The Gaussian spectral function

In laser physics a very common shape of the beam is the Gaussian beam, which can
be described by the spectral function [2]:

S(kρ, ν) = 2A2e−A
2k2ρδ(ν − ν0) (1.6)

Where A is a positive constant related to the initial boundary condition.

Fig.1.2a shows up the graphical interpretation of the solution Eq.1.5 with the Gaus-
sian spectral function as a superposition of plane waves. It corresponds with the
fact, that the Gaussian beam has its most intense part along the axis of propaga-
tion. However waves are spreading into all directions (always with (kz ≥ 0). Fig.1.2b
Illustrates the angular spectral function which is in the case of Gaussian function
(and only) same as its intensity distribution. Features of the Gaussian beam will be
further discussed in the Section 1.4

The Bessel beam spectral function

Let us consider the spectral function [2]:

S(kρ, ν) =
δ(kρ − ν

c
sinα)

kρ
δ(ν − ν0) (1.7)

The solution of Eq.1.5 with the spectral function Eq.1.7 comply to the graphical
interpretation illustrated on Fig.1.2c. It is shown, that the Bessel beam is the result
of the superposition of plane waves whose wave vectors draw the surface of a cone.
The angular spectrum of the beam can be then described as a ring function Fig.1.2b.
The coherent superposition of such plane waves arises as an interference field whose
relative phase differences remains unchanged during the propagation and thus the
transverse profile remains the same. More comprehensive description of the Bessel
beam will be given in the Section 1.5.
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Figure 1.2: a) Gaussian beam decomposition to k-vectors ; b) the angular spectrum
of a Gaussian beam); c) Bessel beam decomposition to k-vectors ; d) the angular
spectrum of a Bessel beam

1.3 Light field propagation - VirtualLab Fusion

This section describes the basics of modelling methods used in software VirtualLab
Fusion [4] [5]. The software is well suited for modelling of nondiffracting fields since
it considers all features of light given by physical optics. The software was launched
in 2014 by the company Wyrowski Photonics UG and provide a new technology,
promising a fast electromagnetic field solver.

1.3.1 Ray tracing

In optics, we often seek for the field properties in space. It has been a longstanding
experience to use geometrical optics for the purpose of propagation between two
points. Regarding rays, we mathematically give them only two qualities: direction
vector and position. The fundamental nature of rays can be concluded from the
Fermat’s principle. The propagation in a homogeneous media follows straight lines
and it undergoes the basic laws of reflection and refraction between two different
media. We assume that a ray wavelength is infinitely small and thus we neglect the
wave properties of light. It has been presented a few software which uses so-called ray
tracing approach conveniently for a variety of problems (Zemax, Code V, OSLO).

1.3.2 Field tracing

Recently, it is growing demand for more comprehensive propagation models. The
wave character of light is a key factor to the final form of the field. The limitations
of ray optics have become more apparent together with new possibilities and more
complex components.

Maxwell’s equations

The basic formulation of light like any other electromagnetic field is given by Maxwell’s
equations. We assume wave in the dielectric medium which is optically linear,

16



isotropic and non-magnetic. Then the equations have the form [1]

∇× E(r) = −iω0µ0H(r) (1.8)

∇×H(r) = −iω0ε0εr(ω0)E(r) (1.9)

∇ ·B(r) = 0 (1.10)

∇ · E(r) = 0 (1.11)

Where E(r) stands for a complex amplitude of harmonic electric field with the
frequency ω0, correspondingly for the magnetic field H(r). Dielectric features are
described by relative permittivity εr.

Under given conditions, all electromagnetic components of the field can be derived
once we determine the field vector [5].

f(r) = [Ex(r),Ey(r)] (1.12)

It rises from the combination of Eq.1.8-1.11.

For the comprehensive optical design, the model has to provide access to all param-
eters of the field, also taking into consideration polarisation, coherence or spectral
features. It also should work with wave phenomena of the light such as interfer-
ence and diffraction. Further, it should take into account Fresnel laws at boundaries
between two media.

We noted that the problem of the field determination converges to the problem
of finding the vector Eq.1.12. It still carries an information about whole 3D space,
albeit one is usually interested in the distribution in transversal subsets of this space
[5]. An example is given by the Figure 1.3. Basically, we have two types of problems:
propagating in the homogeneous media and the second: modification caused by
intersections when one media changes to another in an optical component. It is
convenient to introduce propagation operators which mathematically describe how
the field is influenced by its propagation between two subsets of the space [4].

Figure 1.3: Propagation of the field through an optical system
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Propagating through a homogeneous medium

Propagation through a homogeneous medium, which might be for example free
space, is illustrated between planes z0 - zj and zj+1-zj+2 of the Figure 1.3. It can be
mathematically expressed by the operator equation:

f(x, y, zj) = P∆zf(x, y, z0) (1.13)

Where the P∆z is 2× 2 matrix operator. Thanks to isotropy of homogeneous media
it leads to a diagonal matrix which mathematically represents there are no preferred
directions or the field components crosstalks. Formulation of P∆z depends on the
applied models developed from the scalar theory [3] and it can be fitted for certain
situations [4].

• The Spectrum Plane Waves (SPW) integral

• The Rayleigh-Sommerfeld integral

• The Fresnel integral - only for paraxial fields

• The far-field approximation of SPW

• Geometrical optics - ray tracing with the field representation of complex am-
plitudes

Propagation through components

Now, we are investigating the influence of the area between zj and zj+1. The en-
trance field is modified by the intersection between two media of different index of
refraction - for example, one side of the lens. We can use the similar mathematical
expression for the problem as was noted in Eq.1.13. In this situation we can not
use the simplification of isotropy and the operator P is generalised to full 2 × 2
matrix form. Consequently, we get too many variables and a determination of the
field become too heavy.

One example of a representation of such operator could be the Jones matrix, then
components influence only a polarisation state and the matrix consists of complex
numbers. In the case of more general components for an evaluation, we would need
rigorous techniques based on the grating theory or finite elements which are numer-
ically very demanding and time-consuming.

A novel approach used by the software VirtualLab Fusion is based on smart ray
tracing. It combines advantages of ray tracing with physical optics in the concept
called smart rays [4].

• Smart rays held the full electromagnetic field information at their position -
amplitudes and phases of all electric and magnetic components, thus also the
polarisation.
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• Smart rays are indexed since they leave the source plane. It keeps the in-
formation about its neighbours which is convenient for a proper wave-front
evaluation. It also makes possible to model partially spatially coherent light.

• Smart rays include wavelength information, so the temporal coherence can be
taken into consideration.

The great importance of this concept lies in the capability of fast evaluation while
maintaining the complexity of physical optics features.

1.4 Gaussian beam

The electric field amplitude profile of a Gaussian beam can be described by the
Gaussian function. We can assume it as a transverse electromagnetic mode. It can
be derived by several ways, for example by inducing the proper spectral function
Eq.1.6 to the Eq.1.5 and assuming paraxial approximation we can get the following
expression for a complex amplitude [1]:

E(ρ, z) = E0
w0

w(z)
exp

(
−ρ2

w(z)2

)
exp

(
−ikz − ik ρ2

2R(z)
− iΦ(z)

)
(1.14)

This equation can be determined with the knowledge of three parameters: the beam
amplitude E0 , the Rayleigh range zR (or the beam waist w0) and wavelength λ
which are given by initial condition.

For this expression, it was used a paraxial approximation. It fails when wavefronts
do not suppress approximation condition when they are tilted by more than about
30◦, as it is in the case of highly focused beams .

1.4.1 Parameters of the Gaussian beam

Parameters of the Gaussian beam can be derived from following relations which are
encoded in Eq.1.14.

Gaussian beam intensity

Intensity is the function of a radial distance ρ and a propagation distance z.

I(ρ, z) = I0

(
w0

w(z)

)2

exp

(
−2ρ2

w2(z)

)
(1.15)

where I0 = |E0|2

With the propagation distance the axial intensity decrease due to the beam spread-
ing.
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Figure 1.4: Gaussian Beam propagation scheme; w0 beam waist size, zR Rayleigh
range, w(z) beam width

Gaussian beam width

The beam profile is bounded by the value where a decrease of the beam intensity
meets 1/e2. This area include about 86% of the overall power. It evolves with the
propagation as:

w(z) = w0

√
1 +

(
z

zR

)2

(1.16)

w0 - beam waist, determines the smallest value of the beam width. We usually set
coordinates as w(0) = w0.

Depth of focus and Rayleigh range

zR in Eq.1.16 stands for the Rayleigh range.

zR =
πw2

0

λ
(1.17)

Interval 2zR around the waist is also called focal depth of the Gaussian beam. At the
edges of the interval the beam radius has width w(zR) =

√
2w0 and the intensity is

on half of its maximal value. It also determines the tolerance where we assume the
beam maintain its waist profile.

Gaussian beam divergence

For the distance z >> zR the parameter w(z) increases linearly. We can assume
asymptotes as shown at Fig.1.4 forming a cone like shape. The angle between axis
of propagation and the asymptote is called the divergence of the beam.

β ' λ

πw0

(1.18)
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Thus for the small divergence we would need as large waist w0 dimension as possible.

Gaussian beam phase and wavefront

The phase is given by the Eq.1.14 members:

exp

(
−ikz − ik ρ2

2C(z)
− iΦ(z)

)
(1.19)

It can be regarded as the phase of a plane wave −ikz which is modified by the phase
delay Φ and by the curvature of the wavefront:

C = C(z) = z

(
1 +

(
z

z0

)2
)

(1.20)

The radius of curvature is the greatest in the waist w0 (infinite), it takes a minimum
in the Rayleigh distance and then it is converging to the radius of spherical waves.

The last member of Eq.1.19 stands for so called Gouy phase shift, which can be
written for beams focused in both transversal dimensions as following:

Φ(z) = arctan

(
z

zR

)
(1.21)

All waves passing through focus undergo this effect. It results in a slightly increased
distance between wavefronts compared with the wavelength as defined for a plane
wave. The overall phase delay for the Gaussian beam from −∞ to ∞ is π.

Figure 1.5: Gaussian Beam simulation of the longitudinal phase distribution. (Made
in VirtualLab)
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1.5 Bessel beam as mathematical construct

1.5.1 Introduction to Bessel beams

Bessel beams are the first of the family of non-diffracting beams which was investi-
gated. Bessel beams, as a mathematical construct, was first mentioned by Durnin in
the pioneering article from 1987 [6]. It was referred that there exist an exact solution
of the homogeneous Helmholtz equation representing the beam which does not un-
dergo transverse intensity profile spreading while propagating in a free space. Above
that, they can exhibit sharply defined intensity distribution in every transverse plane
on the propagation axis with the diameter of several wavelengths. Durnin’s article
was the milestone, it uncovered interesting field behaviour by using the scalar ap-
proximation analysis. In the same year, Durnin and his group published even exper-
imental realisation by using the annular slit [7]. A lot of steps have been made since
then - the theory has been supported by more comprehensive vectorial approaches
which are exactly fulfilling the Maxwell’s equations [8] and it has been described
new ways of generation.

1.5.2 Scalar solution of a Bessel Beam

The general solution of the wave equation was derived in the Section 1.2, Eq.1.5
and it was stated that every existing wave must yields the set of solutions and the
Bessel beam is not an exception. The solution comes up in the system of cylindrical
coordinates [6] [8].

The temporally independent general solution consists of a linear combination of
Bessel and Neumann functions [8]. We are interested in a solution with an axial
symmetry and physical meaning. Substituting the Bessel spectral function Eq.1.7
into Eq.1.5 we can get a following solution for the Bessel beam:

ψ(ρ, z, t) = exp[i(ν0t− kzz)]Jm(kρρ) (1.22)

It rises up that the shape of the transverse amplitude is described by the Bessel
function and it is independent on the z-axis position, see Fig.1.6a.

Integral representation of a Bessel Beam

An exact solution can be written in an integral representation [6] as:

ψ(ρ, t) = exp[i(ν0t− kzz)]

∫ 2π

0

exp[ikρ(x cosφ+ y sinφ)]
dφ

2π
(1.23)

The expression in the integral describes the angular spectrum which was pointed
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Figure 1.6: a) Generation of J0 beam by spatially unlimited plane waves; b) Gener-
ation of J0 beam by spatially limited plane waves

at the Section 1.2.1; k-vectors lay on the surface of the cone with an axial angle
dependant on kρ. The non-diffracting solution comes up when the kρ 6= 0.

The mathematical features of Jm function also predicts parameters of the Bessel
beam, we assume the zeroth order J0. The function is not squared integrable, so
for the physical realization of the Bessel beam over entire plane, we would need an
infinite energy Fig.1.6a. It can be shown by the scalar diffraction theory, that we are
able to generate such a beam, but over a finite area and with some concessions to
the ideal one. Scheme of the generation is captured at Fig.1.6b. Physically realizable
beams are also called quasi -Bessel beams (or pseudo).

1.5.3 Parameters of a Bessel beam

Bessel beam intensity

Normalised intensity for the J0 is proportional to the Bessel function and it is the
propagation invariant. First, observing Fig.1.8a illustrating intensity profile, one can
see concentric rings around the sharp core. The amount of energy in each ring is
equal.

I(ρ, z) = |A0|2J2
0 (kρρ) (1.24)

The transverse intensity profile of higher modes is given by the profile of Jm func-
tions.

In the far field region, where the intensity pattern converges into a shape given by
the angular spectrum, we can observe ring-shaped beam.

Bessel beam width

The central intensity spot radius ∆ρ is dependent on the vertex angle α. It can be
derived from the first zero point of the Bessel function.

∆ρ/ = 2.405
λ

π sinα
(1.25)
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It follows, that by increasing the vertex angle of the plane waves, see Fig.1.7 one
gets the smaller diameter of produced beam.

Figure 1.7: a)Bessel beam propagation scheme, ∆ρ central core radius, zmax length
of a Bessel beam, α vertex angle; b) Longitudinal intensity profile;

Depth of focus - Bessel beam existence range

The realizable Bessel beam can exist only in the range of plane waves cross-section
Fig.1.6. That can be geometrically given as:

zmax =
R

tanα
(1.26)

Where R is the radius of the initial circular aperture.

Bessel beam phase distribution

The phase distribution is illustrated at the figure 1.8b). The coherent superposition
of plane waves arises as an interference field whose relative phase differences remains
unchanged during the propagation. It gives a rise to the planar phase distribution.
Comparing with the intensity profile one can observe a π phase delay in neighbouring
intensity rings. Circles with zero intensity belong to parts of phase jumps where the
phase is not defined.
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Figure 1.8: a) Bessel beam transversal intensity profile b) Bessel beam transversal
phase profile. (Made in VirtualLab)
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Chapter 2

Interferometry with Non-diffracting
beams

An interferometer is a device for very precise measurements which are in principle
based on an interference of light. Interferometers are usually used for a distance mea-
surement, a determination of an index of refraction or to determine the fine structure
of spectral lines in the case of interference spectroscopy. The phenomenon of inter-
ference is based on a wave summation and it is given by mutual phase differences
and angles between contributing waves. An interferometry device usually compares
reference beam with the signal beam which holds the information. Interference of
non-diffracting beams has not been sufficiently examined and described. In 2012,
it was referred on the interference of two angularly misaligned Bessel beams [16].
Further was examined the interference of two Bessel beams with a different apex an-
gle [17]. Some work has been done with the interference light patterning for optical
manipulations [18] [19]. In [20] it is shown a wave-front measurement by means of
two collinear Bessel beams produced by concentric annular slits. To our best knowl-
edge combining non-diffracting beam in a purpose of distance measurement has not
been referred so far. First, we describe generation of a Bessel beam supported by
simulations. Then, we investigated two types of interactions: Bessel beam + Plane
wave and Bessel beam + Bessel beam.

2.1 Bessel beam generation

In the previous chapter, we discussed the theory of novel beams with some immunity
to diffraction. Their peculiar behaviour has its origin in the special arrangement of
the plane wave spectrum, which in the case of a Bessel beam lies on the surface of
the cone. Therefore, the key to the realisation of such a beam is in assuring proper
directions of contributing rays.
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Annular aperture

Just after Durnin had published his theoretical article [6],he came up with a sugges-
tion of realisation [7]. The illustration of the experiment is caught on Fig.2.1. The
idea behind comes from the relation of a 2D Bessel function with a ring function
through the Fourier transformation. The Fourier transformation can be optically
realised by placing a transparent with an original function into the back focal plane
of the lens, its Fourier image is then formed in the front focal plane.

This method of generation is rather inefficient as the most of an initial energy would
not pass the transparent. In [7] it was also reported that on-axis intensity fluctuate
and after the distance zmax it falls off rapidly. The intensity oscillation is caused
by the ring slit width, as it can not be perfect ring-delta function it is subject to
additional diffraction on corners.

Figure 2.1: Creation of a Bessel beam with an annular slit and lens

Axicon

The Bessel beam may be created by a cone shape refraction element called an axicon
Fig.2.2 [10] [11]. Axicon can be regarded as rotationally symmetric optical wedge -
incoming beam is bent into directions with circular symmetry. This approach provide
us with a far more efficiency than the annular slit.

Other methods

There are a few other efficient methods of producing Bessel beams. The Beam can
be transformed by passing through a holographic mask which can be static or made
by spatial light modulators [12] [13]. Some other approaches benefit from circular
symmetry of output from Fabry-Perot cavity [14] or special designed fiber tips [15].
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Figure 2.2: Creation of a Bessel beam with an axicon

2.1.1 Bessel beams generated by an axicon

Following section refers to simulations and experiments with Bessel Beams. We have
verified theoretical predictions supported by simulations in software VirtualLab Fu-
sion. A wavelength of light used in the simulation is λ = 600 nm. In our experiments
we use the axicon Thorlabs - AX252-A α = 2, 0◦. The He-Ne laser λ = 632, 8nm
and the diameter of the incoming beam is increased by a beam expander to the
D = 1, 27cm.

Axicon has become the most widely used way of the Bessel beam generation. It has a
significant advantage in its energy conversion ratio and a quality of produced beam.
Moreover, an axicon is easily reachable by several commercial vendors in various
modifications of diameters and cone angles.

Figure 2.3: The scheme of Bessel beam created by an axicon

The top angle of the cone of plane waves depends on an architecture of an axicon.
See the Fig.2.3

α = (n− 1)γ = 0.91◦ (2.1)

Where n stands for the index of refraction of the material. The existence range of
the Bessel beam is given by a radius of an input beam R and the axicon angle γ.
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zmax ≈
R

tan(α)
≈ 40 cm (2.2)

The size of the central spot depends on angle α of intersecting plane waves and thus
on the axicon apex angle γ.

∆ρ = 2.405
λ

2πα
≈ 15 µm (2.3)

2.1.2 Transversal characteristic

Simulation

Initial conditions for the axicon and input wave are following:

Input wave: Gaussian w0 = 6, 35 mm, λ = 632.8 nm, linear polarisation
Axicon: γ = 2◦, D = 25 mm, material: Fused Silica n ≈ 1.45

First, at the area straight after the axicon contributing waves overlap only partially
and the Bessel-like interference pattern arises only in the centre. Fig. 2.4a) We
expect constant Bessel-like transversal profile over the whole range of the beam
existence zmax Fig. 2.4b). After the area of the waves overlap the shape converge to
the far field image, which is given by the angular spectrum. In the case of the Bessel
beam we observe ring-like shape.Fig. 2.4c),d)

The size of the central bright core maintains its shape which is around 17 µm

Experiment

We experimentally verified previous simulations on the set-up similar to Fig.2.3.
First image Fig.2.5a) shows the area where waves start overlapping. On the second
picture Fig.2.5b) is the middle of the beam range existence. Experimental observa-
tion suffers from the limited dynamic range of the camera. Thus, we are not able to
catch up sharply the bright core subsequently with much lower intense outer rings.
Fig.2.5c) stands for the area where waves leaving their intersection area. On the
Fig.2.5d) is the picture of the beam after 2 m and its trace on the graph paper.
The last Fig.2.5e) shows the result on chip after instaling an objective focused on
infinity, such arrangement reveals the angular spectrum.

The experimentally measured bright core belongs to 3-4 pixels which match with
the size of 15− 20 µm.

Further, on the Fig.2.5b) we can observe additional circular interference pattern
which might be caused by the diffraction on the circular aperture during the beam
collimation or by the imperfection of the axicon.
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Figure 2.4: Simulation of the transversal intensity distribution of the Bessel beam
generated by the Axicon and incoming Gaussian beam. When output from the axicon
z=0 cm then a) z=1 cm , b) z=25 cm c) z=50 cm d) z=100 cm
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Figure 2.5: Experimental investigation of the transversal intensity distribution of
the Bessel beam generated by the Axicon and incoming Gaussian beam. Further
description is given in the text.
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2.1.3 Longitudinal characteristic

Simulation

We are interested in the shape of the resulting structured beam in the x-z (or y-z )
plane. The field is calculated in the transversal planes with a step on the z-axis
and the resulting field is stitched from the line selections in the each result. Initial
conditions for the simulation are following:

Input wave: Gaussian w0 = 6, 35 mm, λ = 632.8 nm, linear polarisation
Axicon: γ = 2◦, D = 25 mm, material: Fused Silica n ≈ 1.45

Distance: z = 0− 500 mm, step=2 mm

The output of the simulation Fig.2.6 reveals the Bessel beam generated on the
finite area. The bright core of the Bessel function profile propagates at this distance
without spreading, forming the shape of "the light-needle".

The intensity profile of the needle is given by the overlapping of input waves. If we
switch the incoming beam from Gaussian beam to Plane wave, we will get the result
such as in Fig. 2.7

Figure 2.6: Simulation of the longitudinal intensity distribution of the Bessel beam
generated by the Axicon and incoming Gaussian beam.

Figure 2.7: Simulation of the longitudinal intensity distribution of the Bessel beam
generated by the Axicon and incoming Plane wave.
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Experiment

The experimental set-up consist of the axicon Thorlabs - AX252-A = 2◦. The He-
Ne laser = 632,8 nm and the diameter of the incoming beam is increased by a
beam expander to the D = 1,27 cm. In purpose of revealing the longitudinal beam
parameters (plane x-z, y-z ) we caught the transversal picture on the z-axis with
1 mm step moving from the tip of the axicon. The result Fig.2.8 is stitched in
MATLAB from the line selection in each snapshot.

We observed an obvious intensity fluctuation along the axis of propagation. This
phenomenon is well described in [11]. The origin is in imperfect cone tip which can
be regarded in the micro-scale rather like small lens than the sharp tip. Fluctuations
represent the spatial incoherence and can be decreased by the proper circular spectral
filter (analogy with pinhole spatial filtering).

Figure 2.8: Experimental investigation of the longitudinal intensity distribution of
the Bessel beam generated by the Axicon and incoming Gaussian beam.

2.2 Conclusions and beams comparison

The difference in the origin of both beams has the significant impact on its behaviour.
In the Section 1.2.1 we noted angular spectra; Gaussian beams can be emitted by an
optical resonator with the spectrum of Gaussian function; Bessel beams are formed
by wave vectors which lay on the surface of a cone. Gaussian beams can be also
regarded as a superposition of Bessel beams with different cone angles.

Intensity profiles are given by the superposition of all contributing plane waves and
give rise to the Gaussian function intensity distribution for Gaussian beams and the
Bessel function intensity distribution in the case of Bessel beams.

Gaussian beams are the naturally subject to diffraction which causes the beam
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spreading. It contains the most of its energy in the area where it is defined, the
overall transversal energy remains the same and so with the beam spreading the
point energy density decrease. In opposite Bessel beams, thanks to their special
wave vector spectrum, can maintain its intensity profile over a distance of their
existence. The overall beam energy is spread forming enclosing concentric rings and
only a few percent contribute to the bright core, however, this enveloping energy
then "feeds" the central part causing its constant profile.

In the Fig.2.9 we present the simulation of both beams propagation with the same
initial radius size of 22 µm.

• The Gaussian beam keep its transversal profile over the Rayleigh range which
is 600 µm and then diverges quickly into the cone of light having after 30 cm
about 5.5 mm - the beam increase its width 500 times.

• The Bessel beam keep its transversal profile over the entire range of existence.
In our simulation we use the cone angel of α = 2◦ and the initial diameter
R = 6.35 cm, the Bessel beam length is then around 37 cm.
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Figure 2.9: Comparison of Gaussian and Bessel beams
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2.3 Plane - Plane interferometry

Gaussian beam is often approximated by plane waves which is convenient for con-
sideration of phase behaviour. Electromagnetic plane wave is characterized by two
orthogonal vector components of electric and magnetic field, oscillating in space and
time. An electric plane wave is mathematically described:

Ei(r, t) = Ei cos(ωt− ki · r + φi)êi (2.4)

where Ei represents the amplitude, ω stands for the time frequency, φ is the spatial
phase, ki is the wavevector and êi represents the linear polarization vector, and
i = 1, 2... are indexes of waves.

Fig. 2.10 illustrates the interference of two plane waves with propagating vectors
k1, k2, linearly-polarized in ê1, ê2, monochromatic with λ, incident with angle θ re-
spectively to the axis of propagation.

Figure 2.10: Scheme of the interference of two plane waves.

We are seeking expression for time-independent intensity distribution I(r) at the
intersection of two waves E1 and E2. Such expression can be written: I(r) = |E1(r)+
E2(r)|2 Substituting Eq. 2.4 into previous relation we can get following interference
term for fully coherent light[1]:

I(r) = I0

[
1 +

2E1E2(ê1ê2)

I0

cos(Φ(x, y)

]
(2.5)

where the intensity term I0 = 1
2
(E2

1 + E2
2)

The theory stated above reveals degrees of freedom of interferometry measurement
given by changes induced by various misalignment. It is sensitive to the relative
phase shift on the axis of waves propagation Fig. 2.11a),b) - the highest intensity
value occurs while beams are in-phase Fig. 2.11a), on the other hand the minimum
intensity value belongs to the out of phase intersection Fig. 2.11b). The angular
detuning Fig. 2.11c) shows as the fringe pattern mathematically given by the Eq.2.5.
Plane waves are theoretically characterised over entire space thus their intersection
is insensitive to the transversal misalignment Fig. 2.11d).
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Figure 2.11: Interference of two plane waves; a) in-phase interference b) out of phase
interference (longitudinal misalignment) c) angular misalignment d) transversal mis-
alignment

2.3.1 Simulation

Intensity profile depends on the relative phase shift of interfering beams Eq. 2.5.
While the beams are co-linear and a reference beam is phase delayed in the range
of 0− 1.5 µm the point intensity profile follows sin function Fig. 2.12. For mutually
tilted beams the sinusoidal fringe pattern occurs and with the reference wave phase
delay, the whole pattern laterally shifts Fig. 2.13.

Figure 2.12: Interference of two co-linear plane waves
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Figure 2.13: Interference of two tilted plane waves

2.3.2 Experiment

Plane - plane interference is the usual case of the classical interferometry. There
are a few variations of set-ups for interferometry measurement which are commonly
based on dividing wave by a beam splitter. One of the beam signal is influenced
by a measured sample and then re-encounter with the reference beam, the intensity
distribution carries the information. The most common areMichelson interferometer
or Mach-Zehnder interferometer. We experimentally verified previous statements
and it shows sinusoidal intensity change while the relative phase shift is induced into
one arm of a Michelson interferometer. Relative phase shift was due to piezoelectric
actuator movement and the results was captured by the video camera. Information
was further processed in MATLAB with result in the Fig. 2.14.

Figure 2.14: Interference of two tilted plane waves with different relative phase shift;
a) Michelson interferometer b) camera image c) Intensity in the single point while
inducing relative phase shift
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2.4 Bessel - Plane interference

Previously, it was noted that a Bessel beam can be regarded as the superposition of
waves which wave vectors lay on a surface of a cone Sec.1.5. We use this image for
an illustration of Bessel beam interaction with the plane wave Fig. 2.15.

Figure 2.15: Interference of a Bessel beam and plane wave; a) Bessel - plane inter-
ference b) Bessel - shifted plane interference (longitudinal misalignment) c) angular
misalignment

The resulting interference pattern is given by the phase characteristic of both beams.
The simulation of Bessel beams phase distribution is shown on Fig. 2.15. A special
feature of such beam is in λ/2 phase difference between neighbouring bright circles
which is kept over the entire range of the beam existence. Thus, we have something
like a beam with two z-axis orthogonal equi-phase plane waves which are mutually
delayed by π.

Figure 2.16: a) Longitudinal and b) transversal phase characteristic of a Bessel beam
c) Interference of artificial plane waves

2.4.1 Simulation

Collinear interaction

While the reference plane wave encounters, it interacts in result of different intensity
depending on a circle index Fig.2.19. Odd indexed circles including bright core have
its maximal value at 0 nm and reach the minimum value at 300 nm, for even circles
it is opposite. Inducing linear phase shift to the plane wave 0 − 1.5 µm it results
in the longitudinal intensity pattern which changes its character twice as often as
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common (plane - plane) interference Fig.2.18. A minimal and maximal value of the
intensity in a single point keep changing with a period corresponding to the classical
interference. However, the overall intensity pattern changes its character with a
double frequency. That is the new concept of a synthetic wavelength offered by the
non-diffraction beams. The integral value of the overall pattern intensity is conserved
since there is just opposite trend in intensity development between adjacent rings.
But, if we put a threshold into our sensor, we are able to detect just the moment
when the integral intensity reaches some value, and that is within twice frequency.

Figure 2.17: Camera image in false colors. Bessel - Collinear Plane interference
transversal intensity profile.

Figure 2.18: Simulation Bessel - Collinear Plane interference longitudinal intensity
profile. Plane wave phase delay 0− 1.5 µm.

Angular misalignment

Angular misalignment leads to the fringe pattern with a double frequency respec-
tively to the common plane - plane interference of the same tilt Fig. 2.20. Image
taken by the camera is an evidence of the special phase distribution noted before on
Fig. 2.16.
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Figure 2.19: Simulation Bessel - Collinear Plane interference transversal intensity
profile. Relative phase delay 0− λ = 600nm.

Figure 2.20: a) Simulation Bessel - Tilted Plane interference. b) Camera image of
Bessel - Tilted Plane interference c) Simulation Plane - Tilted Plane interference
with the same angular tilt.
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Interference contrast

A contrast (visibility) of interference reveals the measure of intensity fluctuation. It
shows the effect on the intensity of each electrical field onto resulting interference.
In the case of spatially and temporally coherent waves with the same polarisation,
we can write a term of ideal interference contrast dependent on the mutual intensity
ratio.

Contrast(ideal) =
2
√
I1I2

I1 + I2

(2.6)

Plane wave intensity distribution is homogeneous. On the other hand in Sec.2.1.2
we referred on a Bessel beam intensity profile which is far from homogeneous. Thus,
the contrast of the interference will be coordinate dependent. The ratio between
intensities of the plane wave and the Bessel beam predicts the part of the Bessel
beam which will be influenced the most Fig. 2.21. The best overall contrast occurs
at the ratio 92:8, which corresponds to the situation when the plane wave has the
same intensity as the outer rings of the Bessel beam.

Figure 2.21: Integral value of the interference contrast for different Bessel:Plane
intensity ratios. Coordinate dependant interference contrast.

Integral intensity fluctuation

The transversal interference pattern changes its character twice as often as in the
case of plane - plane interference. This behaviour will be the most significant for the
Bessel:Plane intensity ratio of 92:8 Fig. 2.22. Different ratios lead to a decrease of
the contrast of the integral intensity fluctuations. Due to the Bessel beam transversal
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intensity inhomogeneity, we can not avoid parts which will not interfere with the
sufficient contrast, hence the contrast of the integral intensity fluctuations will be
low. For the ratio 50:50 the phenomenon is almost unobservable - amplitude of
integral changes are beaten by the bright core fluctuations.

Figure 2.22: Simulation Bessel - Plane interference. Point amplitude fluctuation and
Integral amplitude fluctuation for different input beams intensity ratio.
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2.4.2 Experiment

The experimental set-up is a classical Mach - Zehnder interferometer with an axicon
in one of its arm Fig. 2.23. The reference mirror is equipped by a piezo-actuator for
accurate induce of a relative phase shift. The result is captured on the camera and
further processed in MATLAB.

Figure 2.23: Modified Mach - Zehnder interferometer for the Bessel+Plane interfer-
ence.

Measured results correspond with the simulated data. The integral intensity changes
its value twice as often as the point intensity. The point intensity keeps changing
within the period of the wavelength. That is a proof of potentially new concept of
synthetic wavelength based on the proper light structuring.

Figure 2.24: Measured Bessel Plane interference point intensity fluctuation while the
relative phase shift is induced.

Figure 2.25: Measured Bessel Plane interference integral intensity fluctuation while
the relative phase shift is induced.
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2.5 Bessel - Bessel interference

Interference of two Bessel beams can provide another degree of freedom to our
measurement Fig. 2.26. Relative phase shift and angular misalignment are the ones
which we experienced even in the case of plane - plane interference. Additionally,
due to the central symmetry of the Bessel beam, we can obtain another information
about the offset of bright cores (or tips of cones in the spatially spectral domain).
This kind of transversal shift can not be revealed in the case of plane waves where the
intensity pattern is not subject to any change since plane waves are mathematically
defined over the entire space.

Figure 2.26: Interference of two Bessel beams. a) relative phase shift on the axis of
propagationb) angular misalignment c) off-set of cone tips (bright cores)

2.5.1 Degrees of freedom

Relative phase shift

The first degree of freedom is relative phase shift on the axis of propagation. We
made the simulation of two Bessel beams with inducing a relative phase shift 0− λ.
The intensity of each part changes its value with sin dependence which is the same
behaviour we observed in the case of plane - plane interference.

Figure 2.27: Simulation of the interference of two collinear Bessel beams with induc-
ing relative phase shift 0− λ

Angular misalignment

The angular misalignment has a very similar effect to what we experienced in the
case of plane - plane interference. For the cone tips laying in the same position
interference fringes are straight with the frequency related to the mutual tilt.
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Figure 2.28: Simulation of Interference of two mutually tilted Bessel beams a) tilt
in one dimension b) double tilt in both dimensions

Cone tips offset

A special feature of the Bessel beam interference is the possibility to distinguish
a distance between bright cores. The area of intersection gives a rise to intensity
fringes which number depends on the distance between bright cores and apex angles
of Bessel beams. Origin of these fringes is not in the mutual tilt but in the wavefront
dislocations; the same situation to the Bessel beam transversal profile where dark
circles belong to spots where the phase is not defined. The first singularity and thus
intensity minima occur while beams are at the distance where cores stop overlapping
Fig.2.29. Other fringes appear with further distancing as more singularities from
outer rings fits between cores. The position and number of fringes minima are given
by the width of the Bessel beam rings and can be revealed from the Bessel function
property. Λf gives us the distance of bright cores for relevant minima number k.

Λf = 2J0(x)
λ

π sinα
(2.7)

where the J0(x) is the position of the Bessel function zeros.

Table 2.1: Bessel Function Zeros
k 1 2 3 4 5
J0(x) 2.405 5.520 8.654 11.792 14.931

As a conclusion, the number of fringes between two interfering bright cores is related
to the mutual distance d, apex angle α and the wavelength λ. If we assume the value
of α = 2◦ and λ = 633, the first minimum k = 1 occurs at the distance d ≈ 28.5µm
and the second k = 2 at the distance d ≈ 65.4µm. However, if we concede larger
apex angle 20◦, the resolution increase ten times and the first minimum appears at
the distance of d ≈ 2.85µm. The number of minimums influences overall image, then
it is quite easy to distinguish its number and thus, the transversal distance with the
precision equals to Λf .
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Figure 2.29: Simulation of tips offset of two interfering Bessel beams a) tips distance
20µm b) tips distance 50µm c) tips offset 100µm in both directions

2.5.2 Combination of misalignments

Relative phase shift + Angular misalignment

Relative phase shift with an angular misalignment leads to a fringe pattern moving
such as in the case of plane - plane interaction.

Figure 2.30: Simulation of the combination of angular misalignment and relative
phase shift.

Relative phase shift + Cone tips offset

Combining relative phase shift with a cone tips offset we get pattern periodically
changing its shape with a period equal to λ. When the relative phase shift equals
to λ/2 the intensity pattern has an inverse composition and the bright cores are at
minimums. Point intensity value has the same property of sinusoidal profile as in
the case of plane - plane interference.

Angular misalignment + Cone tips offset

By the tips offset the pattern loose its symmetry in one direction. Therefore, we
obtain different results when directions of cone axis aim away from or to each other.
The first direction "from" results in the open fringe pattern Fig.2.32a), the second
while axis are aiming "to" each other fringes are closed Fig.2.32d). By inducing
a tilt into second dimension we obtain spiral-like shape pattern Fig.2.32b),e). The
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Figure 2.31: Simulation of the combination of tips offset and relative phase shift.

fringe pattern periodicity depends on the mutual angle Fig.2.32b),c). The number
of fringes between bright cores, which then creates closed or open fringes, is given
only by their distance (not by the mutual angle)Fig.2.32f).

Figure 2.32: Simulation of the combination of tips offset and angular misalignment.

Angular misalignment + Cone tips offset + Relative Phase shift

By moving with all three degrees of freedoms we got the superposition of above-
shown patterns. This interaction stores all previously noted information which does
not influence each other: relative phase shift, mutual tilt and the distance of the
bright cores.

Figure 2.33: Simulation of the combination of tips offset, angular misalignment and
relative phase shift.
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2.5.3 Experiment

Experiment with two Bessel beams interference was performed by the Twymann -
Green set-up modified by the axicon placed at the input. By positioning and tilting
of mirrors we can obtain above described situations Fig.2.34.

Figure 2.34: Experiment of the interference of two Bessel beams.

2.5.4 Model situation of absolute distance measurement

In the previous section, we referred on properties of two Bessel beams interference.
In the following we will propose the model situation of utilisation above stated as-
sumptions for precise positioning or alignment. The interferometry in conventional
arrangement yields only relative distance measurements. Consequently, it cannot
provide answers for the distance between the arbitrary datum to a point. How-
ever, that kind of information is reachable by the absolute length interferometry.
Currently, the problem is still seen as highly specialist and with high demands on
environmental conditions or with the responsibility of maintaining length standards.
The state of the art methods uses synthetic wavelength approach or the frequency
scanning interferometry [21]. Both are suffering some limitations such as sensitiv-
ity to distortions, the speed of the measurement or a dynamic range of measurable
distances. Every advancement which can provide sub-millimetre precision over the
distance up to tens of centimetre is desirable.

Our solution consists of using simple geometry, which is the principle to a certain
extent prevented to the Gaussian beam. Since the Gaussian beam does not keep its
width while propagates it is not predetermined for a very precise tracking. Further,
while two Gaussian beams interfere, we can distinguish only the mutual tilt or
relative phase delay, not the mutual offset over the transversal plane.
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Concept

The concept is based on the previously noted behaviour of two interfering Bessel
beams. Thanks to the thin filament of Bessel beams we are able to trace the direction
of the beam much more precisely than in the case of conventional beams. Further,
we can simultaneously profit information from the wave interference properties. On
the following figure is the scheme of our concept Fig.2.35.

Figure 2.35: Concept of absolute distance z measurement with two interfering Bessel
beams

Two mutually tilted off axis Bessel beams are intersecting at the datum point. Before
the datum point, the intensity pattern appears with distanced cores and closed
fringes raising from minimums between; just in the point cores merge and fringes
are straight with periodicity related to their mutual tilt θ; after the datum point
cores are separated again and fringes are open. That provides us with the information
about the position of the datum point with the precision related to the distance z1min

where the first minimum occurs between two separated cores Sec.2.5.1.

First, minimum occurs at d = 2J0(k1, x) its position z1min is the factor related to
the mutual tilt θ, the radius of the central core J0(k1, x) so the apex angle of Bessel
beams α and the wavelength λ (from Eq.1.25). The distance can be revealed by
trigonometric functions.

z1min =
J0(k1, x)

tan(θ/2)
(2.8)

Bessel beams with larger apex angle exhibit smaller central core and thus the res-
olution is better. However, their dynamic range is limited by the relatively smaller
depth of focus zmax. Better resolution can be achieved by Bessel beams directed
from larger angle θ, which leads to faster z1min appearance. On the other hand
angles larger than 3◦ leads to the fringe pattern with the period smaller than the
resolution limit of a standard camera and thus we might loose the advantage of wave
properties.

With the axicon angle of α = 2◦ we can reach the resolution up to 1mm while beams
enclose angle θ = 2◦. Simulation of the pattern envelopment is proposed at Fig.2.37.
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Figure 2.36: The position of the first minimum z1min related to the axicon angle α
of Bessel beams and their mutual propagation angle θ.

Figure 2.37: Simulation of absolute distance z measurement with two interfering
Bessel beams.
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2.6 Structured field + Plane interference

Bessel beams are not only fields which yield special phase property. The constant
phase with the phase shifts is characteristic for fields that arise from the interfer-
ence of constantly tilted waves. For example, simple interference pattern made by
two waves gives rise to slices in space where adjacent fringes are shifted by π. Or
the interference of four waves creates a chessboard-like transversal pattern where
adjacent blocks yield the π phase delay Fig.2.38.

It is not that surprising that while we add another dimension into our measurement
that we obtain more precision. However, while we increase the angle of interfering
beams to the value when the pattern period is smaller than the resolution limit of
a detector, we might start to assume the dual phase character as the 1D property
of the field.

Figure 2.38: Interference of structured fields with plane wave.
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Chapter 3

Long range non-diffracting beams

The property of non-diffracting spreading over the long distances is without doubt
very promising for many applications in free-space optics. Beam spreading disqual-
ifies optical approach in long distance positioning or alignment which is the subject
of vivid study for precise alignment of long-distance experiments in CERN.

Conventional generators of Bessel beams, based on an annular slit or an axicon, offers
a range of existence usually up to a few metre or less. The limitation comes from an
origin of a generation - the geometrical property and the finiteness of participating
waves. Thus, there has been a call for novel approaches overcoming these issues and
enabling generation of the narrow beam over the long distances.

3.1 Long range non-diffracting beam generation

3.1.1 Axicon generalization

The first idea of conical axicon reflects consideration of providing conical k-vector
spectrum. It is consideration coming purely from the concept of geometrical optics
and it results in a Bessel beam of non-homogeneous intensity distribution over the
axis of propagation (even in the perfect case). A different point of view was given by
Sochacki and Kotodziejczyk [23] who developed a theory based on the assumption
of energy conversion. Physically, their equation reflects that the two-dimensional
power density of incoming beam is being transformed into the one-dimensional axis
density. That leads to the definition of more general axicons which can perform
unified intensity over the beam existence by setting out conditions on surface ge-
ometry. It also initiated more complex view of non-diffracting beams creation by an
architecture of generator in order to design output wavefront [24] [25]. The effort of
these circles was more concerned about the production of a Bessel beam in short dis-
tances equivalently to that produced by axicons. However, the stated theory could
also serve as description of long range non-diffracting beams [26] [27] [28].
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3.1.2 Non-diffracting beams generated by a spherical aber-
ration

Independently on previously noted studies there was published work on the genera-
tion of the beam keeping its narrow width while propagates over large distances [29]
[30]. Proposed solution implements negative spherical aberration into Galilean type
telescope Fig.3.1.(Positive spherical aberration means peripheral rays are bent too
much. Negative spherical aberration means peripheral rays are not bent enough.)
An important feature of the non-diffracting beam existence is the radial symmetry
of contributing beams and the constant angle relative to the axis of propagation.
The first condition is fulfilled thanks to the radial symmetry of spherical aberra-
tion; the second condition is reached in the area, where rays from the outer part of
distorted wavefront converge to the optical axis. Results proposed in [30] promises
beam which maintain its width of 20 cm over the distance up to ten kilometres!

Figure 3.1: Concept of the long range non diffracting beam generation

3.2 Design of long range non-diffracting beam gen-
erator

3.2.1 Phase function of ND generator

We can state the proper phase function Θ(ρ) for the element generating non-diffracting
beam over the desired distance with a linear increasing intensity (such as a case of
the axicon we examined in the previous chapter). Assuming a plane wave input to
the element we can write [23]:

Θ(ρ) = −

[(
1− z22−z21

R2

)
r2 + z2

2

]1/2

1− z22−z21
R2

(3.1)

where ρ is the distance from the optical axis, R is the radius of element,z1 and z2

gives the range of non-diffracting beam existence. The equation is evaluated on the
Fig.3.2 for values z1 = 0, z2 = 50cm, R = 13.2.

It shows the ideal phase retardation function for the generator with radius R =
13.2 mm which create the non-diffracting beam of the same width at the range
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Figure 3.2: Phase retardation function of the non-diffracting beam generator for
constant width beam in 0− 50 cm.(rendered in MATLAB)

z1 = 0cm, z2 = 50 cm. The character of the function will not change with the
range, even for the range 100 − 200 m we would obtain the function similar to
Fig.3.2 only with the different range of values. For further distances function yields
a smaller range of values which reflects the condition under which non-diffracting
beam exist - rays must be convergent toward the optical axis and while we assume
rays are directed perpendicularly to the retardation function, then for long ranges
the sample influence has to yield small angles.

Realisation of such function has some limits. For short distances, the range of values
is in the order of millimetres, however with increasing distance the range decrease
as fast. For hundreds of metres, we would need a function on micrometre scale with
the precision up to the fraction of λ. Thus, it is more convenient to use holographic
approach, graded-index (GRIN) lenses or, as was pointed before in Sec.3.1.2, the
effect of aberrations.

3.2.2 Wavefront distortion described by Zernike polynomials

Often, it is convenient to characterise wavefront data in polynomials. Zernike poly-
nomials have been often used for this purpose since they have a form similar to
distortions made by the real optical systems [31]. They form a complete set, they
are orthogonal over the continuous unit circle and all their derivatives are continu-
ous. They also yield rotational symmetry and thus they can be fully characterised
by two numbers describing radial and angular symmetry.

Analysis of the wavefront consists of an assignment of weight coefficient [λ] to poly-
nomials. By the sum of polynomials with the relevant coefficients, we can reconstruct
the wavefront. This analysis is very convenient as it simplify the wavefront charac-
terization and it might serve as a useful tool for non-diffracting generator design.

Spherical aberration and Defocus

Aberrations with rotational symmetry are of particular importance for the genera-
tion of non-diffracting beams. Spherical aberration occurs as the different refraction
of rays near an edge of optical element than those at the centre. The effect is pro-
portional to the fourth power of the diameter and inversely proportional to the third
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Figure 3.3:
Z0 Piston, Z1 x-tilt, Z2 y-tilt, Z3 Astigmatism, Z4 Defocus, Z5 Astigmatism, Z6

Trefoil, Z7 Coma, Z8 Coma, Z9 Trefoil, Z10 Quadroil, Z11 4th order Astigmatism, Z12

Spherical Aberration, Z13 4th order Astigmatism, Z14 Quadroil, Z15 Pentafoil,
(rendered in MATLAB)

power of the focal length [31]. Fig.3.4 shows the evaluation of low-order aberrations
with the radial symmetry which are the most significant case in a simple element.

Figure 3.4: Zernike polynomials with the rotational symmetry, (rendered in MAT-
LAB).

A choice of suitable aberration and its weight can be guided by Eq.3.1 where we got
an equation giving into relation curve of phase delay with the distance of ND beam
existence. We could assume that highly curved parts of functions will be responsible
for the beam closer to the generator; on the other hand, these with a lower angle to
the axis will create the further part of the beam.
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Figure 3.5: Scheme of long range non diffracting beam generator

Figure 3.6: Wavefront outgoing from the non-diffracting beam generator.

3.3 Long range non-diffracting beam generator

The most common wave distortion induced by a spherical lens can be described as a
combination of defocus and negative spherical aberration. Long range non-diffracting
beam generator actually collimates and enlarge distorted wavefront to a diameter
D. Parameters of the generator can be then characterised by coefficients of Zernike
polynomials describing wavefront distortion and the diameter D of the whole field
(not a bright core).

Diameter D is given by collimating lens which we assume as the aberration-free
sample. Induced distortion can be experimentally measured by a wavefront sensor
such as Shack-Hartmann. Further, we can also make a simulation (or get one straight
from a vendor) and find out coefficients virtually.

3.3.1 Simulation

Evaluation of the first sample

The simulation of optical elements with keeping its wave character is still compu-
tationally demanding task. However, once we evaluate Zernike coefficients of the
wavefront outgoing from the sample, we might be able to simulate the whole beam
in a fraction of the time. From the model of the thick spherical lens available in our
lab we obtained result shown in Fig.3.6. As we expected, the highest coefficients are
of radially symmetrical aberrations: defocus and first order spherical.
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Figure 3.7: Long range non-diffracting beam simulation

Propagation of the beam with distorted wavefront

With knowledge of the wavefront, we can define its behaviour during propagation
Fig.3.7. The bright core first occurs at the distance of approximately 30 m which
corresponds to contributions of outer parts. Then the beam is "fed" by the milder
central part and thanks to that we might be able to observe the central bright core
which keeps its width less than 5 mm in 200 m!

3.3.2 Experiment

We performed experiments with the generator of the non-diffracting beam with
sufficient results coinciding with simulations. It was measured a diameter of less
than 5 mm in the long corridor at the distance of approximately 200 m.

We captured an image of the non-diffracting beam from the defocused generator
(which illustrate faster envelopment of the beam) and profile of the Gaussian beam
over the same distance Fig.3.8. It is clearly visible that even with significant mis-
alignment of the system our beam is much less divergent than the casual one.

3.4 Long range non-diffracting beams conclusion

Currently, there are known several ways how to generate beams which are subject to
much less spreading than casual Gaussian beams. Such property has been used for
a free space optics communication, however, it has not aroused too much attention.
We believe, this beams might bring advantage to any field where the beam spreading
is limiting. For example, increasing the width of a Gaussian beam stand in a way of
long distance light position tracking which plays a huge role in physical experiments
where the high precision over the entire experiment is needed, such as in particle
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Figure 3.8: Camera image showing long range non-diffracting beam in comparison
with Gaussian beam

accelerators. With a price of outer rings, we can produce a bright core propagating
with a diameter less than 5 mm over the hundreds of metres, which is a great
achievement compared to casual beams. Further, outer rings may serve for a more
accurate determination of the centre and so it may be a great tool for direction
tracking.
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Conclusion

Submitted thesis analyses possibilities of the novel shape of light beams in optical
metrology. We referred on a few unconventional properties which were physically
explained and investigated by simulations in the software VirtualLab Fusion and
supported by experiments.

In the first chapter we built up the theoretical background based on current knowl-
edge in the field. We demonstrated the interesting property of non-divergent propa-
gation of the Bessel beam by putting him side by side with the conventional Gaussian
beam.

The second chapter investigate very little explored field of non-diffracting beams
interference. We revealed special phase characteristic of Bessel beams which plays a
significant role in the interference phenomena.

• Bessel - Gauss interference: For the interaction of a Bessel beam with
a Plane wave (or Gaussian beam) we found out, that the periodicity of
intensity changes is half compared to ordinary plane-plane interference.
This is the interesting approach to increase of precision by factor of two without
using any dynamical method.

• Bessel - Bessel interference: Due to the central symmetry of Bessel beams
we can profit from another degree of freedom - central part offset. We
made simulations showing the transversal intensity pattern behaviour within
changing of all degrees of freedom. We proposed how to use this additional
information in absolute distance measurement.

The last chapter is devoted to long-range non-diffracting beams. It is very desirable
to find a way how to produce beam with properties of Bessel beams over the long
distances. One of the proposed methods is by means of spherical aberration of a
collimating system. We investigate such generators with the theory well established
in the field of optical imaging using wavefront description by Zernike polynomials.
This method proved to be very helpful for its simplification and physical insight.
It also brings significant improvement for the beam simulation.
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