

Analýza O-C diagramov vybraných zákrytových dvojhviezd

Pavol Gajdoš

Prírodovedecká fakulta UPJŠ v Košiciach ČSŠVK - 24.5.2016

Obsah

2 Zákrytové dvojhviezdy a O-C diagramy

3 Analýza O-C diagramov

Analýza O-C diagramov vybraných zákrytových dvojhviezd

Úvod

Úvod

- určovanie presných časov miním zákrytových dvojhviezd \Rightarrow odhalenie rôznych fyzikálnych procesov v systéme
- nájdenie ďalších telies v sústave zákrytovej dvojhviezdy
- presný fyzikálny model zmien na O-C diagrame je pomerne komplikovaný a výrazne nelineárny
- použitie metód nelineárnej regresie je dosť problematické (presné štartovacie hodnoty)
- úplne nový postup fitovania O-C diagramov genetické algoritmy + Monte Carlo
- cieľ práce: fitovanie O-C diagramov, ktoré už boli vyriešené, a porovnanie riešenia získaného novou metódou s výsledkami publikovanými v literatúre

Zákrytové dvojhviezdy

- premenné hviezdy, pri ktorých dochádza k vzájomným zákrytom zložiek dvojhviezdy
- tvar svetelnej krivky daný hlavne rozmermi a teplotami zložiek a pomerom ich hmotností
- 3 základné typy:
 - Algol
 - β Lyrae
 - W Ursae Majoris

O-C diagramy

- O-C diagram rozdiel medzi napozorovaným časom (O) minima a predpovedaným časom (C)
- lineárny O-C diagram zle určená efemerida (T₀, P) dvojhviezdy

$$O-C=\Delta T_0+\Delta PE$$

• parabolický O-C diagram - prenos hmoty medzi zložkami

$$O-C = \Delta T_0 + \Delta PE + QE^2$$

sínusový O-C diagram - tretie teleso v systéme (LiTE - Irwin (1952))

$$O - C = \frac{a_{12}\sin i_3}{c} \left[\frac{1 - e_3^2}{1 + e_3\cos\nu_3}\sin(\nu_3 + \omega_3) + e_3\sin\omega_3 \right]$$

 kombinácia lineárneho / parabolického O-C diagramu s LiTE (+LiTE od štvrtého telesa)

Fitovanie O-C diagramov

- analyzované O-C diagramy zákrytových dvojhviezd z výrazným LiTE efektom
- časy miním použité v tejto práci boli získané zo stránky O-C brány Českej astronomickej spoločnosti¹
- váhovanie jednotlivých pozorovaní
- bežné metódy (lineárna regresia) sú v prípade modelu LiTE nepoužiteľné
- veľký počet voľných parametrov
- postup použitý v tejto práci:
 - 1 genetické algoritmy \Rightarrow prvotný odhad parametrov
 - $\textcircled{0} \quad \text{Monte Carlo} \Rightarrow \text{finalme hodnoty a chyby parametrov modelu}$

¹http://var2.astro.cz/ocgate/

Genetické algoritmy

- inšpirované biologickou evolúciou
- nedeterministické správanie
- široké uplatnenie pri riešení optimalizačných problémov

výhody	nevýhody
nelineárne problémy	veľký počet iterácii
veľký počet voľných parametrov	časovo a výpočtovo náročné
nájdenie globálneho riešenia	bez chýb parametrov
bez počiatočných hodnôt	

Monte Carlo

- stochastický algoritmus
- použitie v štatistickej fyzike, optimalizačných problémoch
- využitie Markovovho reťazca (Markov chain Monte Carlo MCMC)

výhody	nevýhody
nelineárne problémy	veľký počet iterácii
veľký počet voľných parametrov	veľmi časovo a výpočtovo náročné
generuje normálne rozdelenie	potrebné štartovacie hodnoty
reálne chyby parametrov	

AR Aur

- typ: Algol
- málo pozorovaných miním
- veľmi málo CCD pozorovaní
- veľká korelácia medzi τ_3 a $\omega_3 \Rightarrow$ veľké chyby týchto parametrov

AR Aur

Parameter	Albayrak et al. (2003)	Táto práca
T_0 [MHJD]	27887.7305 (21)	27887.7276 (4)
P [day]	4.1346657 (10)	4.1346662
τ_3 [MHJD]	30792 (45)	31624 (1081)
P_3 [year]	23.68 (17)	23.53 (28)
e ₃	0.20 (4)	0.15 (9)
ω_3 [deg]	32 (2)	58 (46)
<i>a</i> ₁₂ sin <i>i</i> ₃ [AU]	1.47 (4)	1.66 (7)
$f(M_3) [M_{\odot}]$	0.0057 (4)	0.0083 (10)
χ^2	253.7	188.6

TX Her

- typ: Algol
- ullet mierne väčšia χ^2 chyba
- chyby parametrov sú porovnateľné
- väčšia excentricita, perióda a funkcia hmotnosti tretieho telesa

TX Her

Parameter	Erdem et al.(2011)	Táto práca
T_0 [MHJD]	40008.36875 (36)	40008.36981 (56)
P [day]	2.059809743 (5)	2.05980944
τ_3 [MHJD]	44752 (263)	44777 (127)
P ₃ [year]	51.6 (7)	53.9 (9)
<i>e</i> ₃	0.66 (4)	0.76 (6)
ω_3 [deg]	49 (3)	39 (3)
<i>a</i> ₁₂ sin <i>i</i> ₃ [AU]	2.36 (9)	2.68 (27)
$f(M_3) [M_{\odot}]$	0.0049 (5)	0.0065 (19)
χ^2	219.4	222.6

U Oph

- typ: Algol
- dostatok CCD meraní
- veľký rozptyl vizuálnych pozorovaní
- výrazne väčšia excentricita

U Oph

Parameter	Wolf et al.(2002)	Táto práca
T_0 [MHJD]	44416.38565 (12)	44416.38526 (30)
P [day]	1.67734578 (4)	1.67734617
$ au_3$ [MHJD]	50530 (50)	52448 (150)
P3 [year]	37.60 (20)	37.84 (24)
<i>e</i> ₃	0.185 (5)	0.568 (53)
ω_3 [deg]	152 (1)	192 (5)
<i>a</i> ₁₂ sin <i>i</i> ₃ [AU]	1.78	2.13 (12)
$f(M_3) [M_{\odot}]$	0.0040	0.0068 (11)
χ^2	446.9	384.6

XY Leo

- typ: W UMa
- prenos hmoty medzi zložkami
- CCD merania tvoria väčšinu dát
- výrazné zlepšenie χ^2 chyby

XY Leo

Parameter	Yakut et al.(2003)	Táto práca
T_0 [MHJD]	45074.4649 (2)	45074.4781 (2)
P [day]	0.28410229 (1)	0.28410290
Q [day]	$1.04(1)\cdot 10^{-11}$	$8.55(26) \cdot 10^{-12}$
$ au_3$ [MHJD]	49298 (25)	49254 (69)
P ₃ [year]	19.59 (13)	19.39 (4)
e_3	0.12 (1)	0.06 (2)
ω_3 [deg]	356 (1)	357 (4)
a ₁₂ sin <i>i</i> ₃ [AU]	4.083 (5)	4.163 (31)
$f(M_3) [M_{\odot}]$	0.1770 (20)	0.1919 (43)
χ^2	692.0	408.6

Záver

- zvolený postup je veľmi vhodný na analýzu O-C diagramov metóda dáva relevantné výsledky zhodné s hodnotami uvedenými v literatúre
- bez nutnosti zadávať presné štartovacie hodnoty parametrov
- intervaly parametrov môžu byť pomerne veľké
- vhodné aj na poloautomatickú analýzu O-C diagramov
- relatívne veľká časová (cca 1,5 2 h) a výpočtová náročnosť

Ďakujem za pozornosť!