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Abstract: In this work we present measurements
of quantum turbulence generated by an oscillating
quartz tuning fork submerged in superfluid 4He at var-
ious temperatures under Tλ = 2.17K. The observed
turbulent mode is quantitatively characterized by a
vortex line density L, which was indirectly measured
by the attenuation of second sound.
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1 Introduction to Superfluidity

As the temperature approaches absolute zero, macro-
scopic fluid properties can be affected by quantum
phenomena. The zero temperature limit is usually fol-
lowed by a solidification, but in the case of 3He and
4He the fluids remain in liquid state instead, which
are then called quantum fluids.

1.1 Superfluid Helium as a Bose-
Einstein Condensate

Among all basic chemical substances, helium keeps
its liquid state even at absolute zero, which makes
its quantum behaviour noticeable. In particular, at
Tλ = 2.17K a second-order phase transition occurs
and helium becomes superfluid, commonly called
He-II. Due to the core composition of 4He (the com-
mon helium isotope), the resulting nuclear spin equals
zero. 4He gas is therefore classified as a weak-
interacting Bose gas. Using Bose-Einstein quantum
statistics[1] can be shown that below the certain tem-
perature (≈ 3.15K for ideal BEC and ≈ 2.17K for
helium) a macroscopic number of bosons occupies
the lowest single quantum state.

Comparing with a classical fluid, the superfluid it-
self has several remarkable properties, like more than
thousand times higher thermal conductivity or almost
zero viscosity[2] when flowing through narrow cap-
illaries.
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In 1941 L.D. Landau proposed[3] the full phe-
nomenological microscopic theory of thermal exci-
tations from which the macroscopic theory (two-fluid
model) of superfluid hydrodynamics can be derived.

1.2 Two-fluid Model and Second Sound

The experimental facts led Landau [4] to postulate
his own theory, that under Tλ the whole helium fluid
is composed of two different, almost independently
behaving fluids. We recognise them as a pure su-
perfluid component, which has zero viscosity, and
normal component, obeying classical hydrodynamic
laws.

These two inter-penetrating fluids are moving with
their own velocity fields, denoting vs and vn, and
corresponding densities ρs, ρn. The total density ρ is
then

ρ = ρs +ρn (1)

and the total mass flux j of both components

j = ρsvs +ρnvn . (2)

According to experimental data and Landau’s micro-
scopic theory, the dependence of fractional densi-
ties on temperature is sketched below in Figure 1.

Figure 1: Temperature dependence of the normal (red) and
superfluid (blue) component. The total density ρ varies only
weakly with temperature.
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The four principal hydrodynamic equations for the
two-fluid model are the laws of conservation. Assign-
ing P as pressure, T as temperature and s as entropy
per unit mass, one can derive[4] the conservation of
mass, entropy and momentum for both components,
respectively:

∂ρ

∂ t
+∇ · (ρsvs +ρnvn) = 0 , (3)

∂ (sρ)

∂ t
+∇ · (sρvn) = 0 , (4)

∂vs

∂ t
+

∇P
ρ
− s∇T = 0 , (5)

∂vn

∂ t
+

∇P
ρ

+
ρs

ρn
s∇T = 0 . (6)

This set of equations lead[5] to two wave equa-
tions. The first one for a pressure-density wave and
the second one for an entropy-temperature wave:

∂ 2ρ

∂ t2 = u2
1∇

2
ρ

∂ 2s
∂ t2 = u2

2∇
2s , (7)

in which u1, u2 are corresponding velocities of wave
propagation

u1 =

(
∂P
∂ρ

)1/2

s
u2 =

(
ρs

ρn

T s2

Cp

)1/2

, (8)

where Cp is the specific heat. The first wave equa-
tion on the left in (7) represents ordinary sound, when
both fluids oscillate identically (vs = vn). On the con-
trary, the other wave equation in (7) describes what is
commonly called as second sound, the new wave pro-
cess specific for 4He, where the components oscillate
in antiphase (ρsvs =−ρnvn). According to the conti-
nuity equation (3), for a given point the total density
ρ is constant.

1.3 Quantum Effects

Since the superfluid component flows wihout dissi-
pation, there is an analogy with electron currents in
atoms. By this we have that all the superfluid atoms
are connected via the macroscopic wave function of
the form Ψ =

√
ρs/m4 eiφ(r,t), where m4 is 4He core

mass and φ(r, t) is a scalar function (phase) of coordi-
nates and time. By applying the momentum operator
p̂ it can be shown that the velocity field of superfluid
component cannot make any vortices:

rotv = ∇× p̂|Ψ〉
m4|Ψ〉

=
h̄

m4
∇×∇φ(r, t) = 0 (9)

However, there is still one allowed form of ro-
tational motion. A thin (≈ 10−10 m wide) vor-
tex line, whose circulation and energy density
are quantized in multiples of κ ≈ 10−7 m2 /s and
ε0 ≈ 100eV/m respectively. In the early work
of Osborne[6], the basic properties of quantum
vortices were studied in rotating container filled
with superfluid 4He. In this case, the vortices
are fully polarized and form hexagonal structure.

Figure 2: A numeric simula-
tion of randomly distributed vor-
tex lines.

Generally in consid-
erably complex sit-
uations, the vortices
may be disordered
and unpolarized.
Thus for an isotropic
and homogeneous
distribution one can
define L as the total
length of vortex
lines located in unit
volume.

2 Quantum Turbulence

The two-fluid nature of superfluid 4He definitely pro-
vides a more general form of motion of quantum
fluids. Consequently, the understanding of such a
remarkable physical system as quantum turbulence
(QT), may turn to a deeper understanding of turbu-
lence in classical fluids, which is, till this day, far from
complete.

2.1 Effect of QT on Attenuation of
Propagating Second Sound Wave

Strictly speaking, it is not true that the superfluid
and normal components act independently of each
other. They are connected (due to the weak interaction
between helium atoms) through the mutual friction
force. A formula for this force was derived by Vinen
and Hall, based on experimental data[7]

Fsn = B
ρnρs

ρ
Ω̂× [Ω× (vn−vs)]

+B′
ρnρs

ρ
[Ω× (vn−vs)] , (10)

where Ω stands for the local vorticity of normal com-
ponent, Ω̂ for its normalised vector and B,B′ are tem-
perature dependent coefficients.
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From equation (10), it is clear that when the sec-
ond sound wave vns = vn−vs is passing through the
system of quantum vortices, the first force term with
B would suppress it. This leads to linear resistance
and therefore to an exponential attenuation of second
sound amplitude. The second term with B′ is perpen-
dicular to vns, so there is no dissipation of energy.

If we choose the z-axis as the direction of propagat-
ing second sound wave, using the formula for mutual
friction force (10) the corresponding wave equation
takes the form [8]

∂ 2vns

∂ 2z
− BκL

3u2
2

∂vns

∂ t
− 1

u2
2

∂ 2vns

∂ 2t
= 0 . (11)

Here we find the solution in the expected form of
exponentially attenuated wave vns ∝ exp(−αz) with
the attenuation constant α = BκL/6u2.

Of course, mutual friction force is not the only
dissipative effect. While any amount of normal com-
ponent is still present, classical viscous damping acts
even if no QT is created. Thus the resonance peak of
second sound signal generated in a finite system (res-
onator) has a non-zero width ∆ f0 when no vortices
are present. As we start to produce QT, the peak will
broaden and the amplitude will decrease.

Measuring the initial peak height A0, initial reso-
nance width ∆ f0 and decreased height A provides a
sufficient amount of information to determine[8] the
vortex line density L, in particular

L =
6π∆ f0

Bκ

(
A0

A
−1
)
. (12)

Figure 3: An example of observed attenuated second sound
signal. Data source:[9].

3 Experimental Setup

The whole system consisting of QT generator and
two second sound sensors was placed into a cylin-
drical resonator cavity of diameter d = 10mm and
height H = 54mm, as shown in Figure 4. One
of the second sound sensors (speaker) is connected
to the waveform generator and the other one (re-
ceiver) to a SR-830 lock-in amplifier. A more de-
tailed description is presented later in this chapter.

Figure 4: Photo of the resonator
used in experiment.

Generation of QT is
ensured by an oscil-
lating quartz tuning
fork, located in the
middle of the res-
onator. Two sec-
ond sound sensors
(source and detec-
tor) have been imple-
mented at the ends
of the resonator, fac-
ing each other. The
resonator itself is not
enclosed entirely - a
small 1mm thin hole
is drilled through the body, connecting the cavity to
the open superfluid helium bath.

Figure 5: Electrical schematics of the setup.

3.1 Quartz Tuning Fork

In general, quartz tuning forks are well-known com-
mercially produced piezoelectric oscillators because
of their wide application as a frequency standards in
watches. In our work we used an unconventional
fork with fundamental resonance at 6.5kHz (in vac-
uum). Geometry of the fork is sketched in Figure 6.
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Figure 6: Sketch of
quartz tuning fork.

The fork’s size is given by
prong length L = 35mm,
prong width W = 75µm,
thickness T = 90µm and
the distance between prongs
D = 90µm. The fork was
driven by an amplified al-
ternating voltage U ∝ eiωt ,
causing the anti-phase lat-
eral oscillation of fork’s
prongs. The first flexural
overtone can be found at
the frequency f1 = 40 kHz.
Two other important proper-
ties of the fork are the effec-
tive mass of one prong meff and a fork constant a. For
our case, we can estimate them (using formulas and
data from [10, 11]) as:

meff =
1
4

LTV ρq = 1.52 ·10−8 kg ,

afund = 3.61 ·10−7 Cm−1 ,

aover = 1.38 ·10−6 Cm−1 ,

where ρq = 2650kg/m3 is the quartz density. Values
of the fork constants were taken from[11], where tun-
ing forks of the same parameters and from the same
series were used.

It was also shown[10] that by applying AC voltage
with amplitude UA results in a driving force acting on
the fork’s prongs of magnitude F = 1

2 aU . Moreover,
by measuring the current response I we can deter-
mine the velocity at the tip of the prongs as v = I/a.
Knowledge of these parameters is crucial for all mea-
surements related with superfluid hydrodynamics.

3.2 Second Sound Source and Detector

Second sound is a wave of temperature and entropy,
but can be produced purely mechanically. In par-
ticular, when a semi-permeable membrane with sub-
micron pores is oscillating in He-II, the superfluid
component can flow through the pores much easier
than the normal component (due to the lack of viscos-
ity). Thus, its oscillation will push only the normal
component and consequently, this creates (due to con-
tinuity equations) a local oscillation of densities ρn,
ρs and hence, a longitudinal wave of second sound.
At the right frequency of oscillation, this results in a
resonant second-sound standing wave in the experi-
mental cylindrical cavity.

In our experiment we used two identical sensor de-
vices to produce and also detect the second sound.
The sensor itself is essentially a capacitor where one
electrode consists of the membrane with a 100 nm
thick gold layer above the surface and the other elec-
trode is made of brass. The full sketch and photo can
be seen in Figure 7.

The gold electrode is electrically connected with
the resonator body while the other electrode to the
wave generator or lock-in amplifier (depends whether
the device is set as a speaker or receiver). Together,
these electrodes form a capacitor of ≈ 60− 100pF
and applying an AC voltage (units of Volts) superim-
posed on a 90 V DC bias causes the oscillation of the
membrane and therefore production of second sound.

Figure 7: Left: Technical sketch showing the parts of the second
sound sensor. Right: A photograph of our construction.

Because of finite distance between the sensors H,
we observe many harmonic resonance modes. The
resonance frequency can be estimated from the equa-
tion for standing waves: f = u2

λ
= u2

2H n, where n is a
positive integer.

3.3 Reaching Low Temperatures

The resonator with all important devices were put
into a vessel, designed for working with cryogenic
fluids. At the top, the cryostat allows access into the
helium bath, but at the same time, the cryostat must
be well-insulated from external heat fluxes.

After the cryostat was pre-cooled to liquid nitrogen
(LN2) temperature (≈ 77K), we continued precool-
ing with helium vapour and finally transferred liquid
helium (LHe) at (≈ 4.2K) from a transport dewar.
Vapours from the rapidly evaporating LHe were im-
mediately pumped by a set of Roots-pumps so that
the inner pressure above the LHe surface was further
decreased. Reducing the saturated vapour pressure
provided the cooling even below Tλ . This method
works efficiently until the minimum temperature of
≈ 1.25K is reached.
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Figure 8: Photograph of the experimental setup - Left: cryostat,
pipes where helium gas is flowing out of the system. Right:
Roots-pump.

During the measurements it was crucial to have
the temperature stabilized minimal deviations. Two
methods have been used for measuring the tempera-
ture. The first was a direct resistance measurement of
a miniature semiconductor thermometer (Germanium
thin film on GaAs substrate) placed in the helium bath,
with calibration known from previous experiments.
The second method was a simple conversion between
saturated vapour pressure and temperature based on
[12]. The pressure was regulated (both manually and
electronically) by manipulating the pump valve.

To summarize, we prepared a cooling system able
to reach any temperature above ≈ 1.25K .

Figure 9: Record of the temperature inside the cryostat. Due
to strong evaporation of superfluid helium and relatively long
durations of the measurements at each temperature, we had to
refill the cryostat three times.

Overall, we did systematic measurements at 6 dif-
ferent temperatures: 2.15K, 2.05K, 1.95K, 1.80K,
1.55K, 1.35K. Although our total experimental tem-
perature range is less than 1K, there are dramatical
changes in the composition of LHe within this inter-
val. One can recall (graph in Figure 1) that at 2.15K
there is only about 5% of the superfluid component,
but at 1.35K it is more than 90%.

Figure 9 shows the time trace of the temperature
inside the cell. Temperatures below ≈ 1.30K were
not stable, so the lowest fixed value was set to 1.35K.

4 Measurement Methods

The distance between the speaker and receiver is
H = 54mm and the second sound velocity is approx-
imately u2 ≈ 20m/s within the range of temperatures
(1.35K−1.95K). In frequency sweep mode the sec-
ond sound speaker was oscillating with a frequency
that was changing along some chosen range. This
was important for characterizing the modes of reso-
nance with thee frequencies f n

0 , widths ∆ f n, signal
amplitude U0 and background signal (offset) Uoff.

The observed 1stresonance mode frequency was
found to be≈ 200Hz. Additionally, this mode is most
sensitive in the middle of resonator, where the fork
is located. Therefore, all the measurements including
second sound were made at the 1st mode.
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Figure 10: 1st harmonic mode of second sound. Peak height
A0 and width ∆ f0 are important parameters when inferring the
vortex line density.

The fitted full line is a Lorentzian curve with the
general formula from [10]:

U(ω) =Uoff +U0
(∆ω)2ω2

(ω2−ω2
0 )

2 +(∆ω)2ω2 . (13)

Next, in constant drive mode, the second sound
ran continuously on its 1st resonance mode whilst the
fork oscillated also at its resonance (fundamental or
overtone). It has already been shown that an object
oscillating with sufficient velocity can produce quan-
tized vortices in superfluid helium. For this purpose,
we used the tuning fork mounted in the second sound
resonator. Our measurement protocol is given in the
following steps:

1) First, after the desired temperature in the cryostat
has been reached, we run the frequency sweep
on tuning fork and second sound independently.
The tuning fork frequency sweeps are repeated
at different drive levels. This gives us the nec-
essary information about the resonance frequen-
cies and widths.

2) Next we set up the second sound sensors in con-
stant drive mode at its fundamental resonance
and allow up to 3 minutes for stabilization.

3) When this time has passed, we also run the tun-
ing fork in constant drive mode at its resonance
(fundamental or overtone) with a given voltage
amplitude U0 for 3 minutes.

4) The tuning fork is subsequently turned off and
the second sound is again left to stabilize for 2
minutes.

5) The values of A and A0 were taken as averages
of the periods when the tuning fork was on and
off, respectively (see Figure 11).

The five aforementioned steps were repeated for sev-
eral values of voltage applied across the tuning fork,
for both fundamental and overtone mode at all six
temperatures. We have always proceeded from low
values of driving voltage to higher ones gradually, so
that it is clear, at which point any measurable amount
of quantum vortices appears.
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Figure 11: An example of second sound attenuation due to the
presence of quantized vortices, produced by an oscillating tuning
fork at various velocities. ”ON” and ”OFF” labels describe the
state of the tuning fork. The time on the x-axis is measured
from the beginning of each particular run. Values shown in this
graph are taken at the temperature T = 1.95K. The measurement
at the velocity of 0.29m/s corresponds to a vortex line density
L0 = 3× 106 m−2 and is taken as an estimate of the sensitivity
threshold of our measurement technique.

By collecting datasets of A, A0 and ∆ f0 we could
estimate the vortex line density L:

L =
6π∆ f0

Bκ

(
A0

A
−1
)
, (14)

and the fork tip velocity v = I/a, where I is current
response and a the fork constant. The resulting plot
(Figure 12) is shown in the next page.

We should point out that the results for L as derived
in Section 2.1 are valid only for homogeneously
and isotropically distributed vortices. The amount
of quantized vortices is expected to be higher near
the fork than further away from it. Since we utilized
the 1st second sound resonant mode, we have, in fact,
measured the 1st Fourier component of the vortex line
density spatial distribution[13]. This is sufficient for
the purposes of (roughly) estimating the quantities
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of quantized vortices produced, but the true values
of L near the tuning fork may differ by some factor
and could be obtained only by measurements using
several additional second sound resonant modes.

5 Results

Here we present the experimental data obtained from
the measurements of quantum turbulence. The tun-
ing fork has been immersed in superfluid 4He and
forced to oscillate at two, geometrically different (in
the sense of different velocity profile along the fork’s
prongs) modes - fundamental [6380Hz] and overtone
[40000Hz]. This chapter is focused on the measure-
ment of vortex line density L (total length of vortices
in unit volume) using the second sound attenuation
technique. We will try to find the conditions for pro-
duction of quantized vortices and also, quantify their
amount.

From Figure 12 we observe that no significant
amounts of vortex lines are produced before a cer-
tain critical velocity is exceeded. Furthermore, we
find that the amount of quantized vortices produced
is temperature-independent and scales only with the
velocity of the tuning fork.

Figure 12: Vortex line density L against the (logarithmically
scaled) peak velocity of the tuning fork v. The blue dotted line
marks the threshold level L0 ≈ 3 · 106 m−2 introduced in Fig-
ure 3.2, above which the measured vortex line density can be
regarded as reliable.

Plotting L on a logarithmic scale we observe
(see Figure 13) that the critical velocities, above
which the quantum vortices are produced in much

larger amounts, are also independent of tempera-
ture. Bearing in mind the sensitivity threshold, we
estimate these critical velocities for the fundamen-
tal and overtone modes to be vf

c = 0.3± 0.1m/s,
and vo

c = 0.7±0.2m/s, respectively. Moreover, the
critical velocity is expected to scale with frequency
as ∝

√
κω[14], where ω is angular frequency and κ

the circulation quantum. From our results we get

vf
c/vo

c ·
√

f o
0 / f f

0
.
= 1.06, which is consistent with the

given scaling.

Figure 13: Log-log graph of the vortex line density L against
the peak velocity of the tuning fork (the same data as in Figure
11). This graph better illustrates the position of threshold L0 ≈
3 ·106 m−2 (blue dashed lines) and the temperature-independent
critical velocities (grey dashed lines). The tuning fork peak
velocity is determined with an uncertainty of about 10% that
arises from the electrical calibration procedure. The vortex line
density is affected by a systematic error that is mainly due to the
assumption of a homogeneous isotropic tangle in deriving (14)
that obviously does not correspond to the vortex tangle produced
in the vicinity of the tuning fork.

Increasing the sensitivity of the second sound
measurement (and thus lowering the threshold
level) would allow determining the critical veloci-
ties with better accuracy and reduce the scatter in
the observed data. Although the design of the sec-
ond sound resonator and sensors is far from perfect,
the current sensitivity is sufficient for a qualitative
discussion of the relationship between the obtained
vortex line densities and the drag forces acting on
the tuning fork.
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6 Conclusions

In this work, we have shown data reflecting the
tuning fork oscillations in superfluid 4He bath (at
six different velocities - 1.35K, 1.55K, 1.80K,
1.95K, 2.05K, 2.15K - as well as the second sound
waves propagating through the resonator. The
method of second sound attenuation showed that
the only relevant parameter related with produc-
tion of quantized vortices is the velocity amplitude
of the fork tip and the (high enough) frequency
of oscillation. We estimated the critical veloci-
ties for the fundamental and overtone modes to
be vf

c = 0.3± 0.1m/s, and vo
c = 0.7± 0.2m/s, re-

spectively, which should scale with the frequency
as ∝

√
κω. We also confirmed that this scaling is

consistent with the obtained critical velocities.
The results contained within this work could be

used in further research of quantum hydrodynamics
where the fork’s data would be studied more pre-
cisely. Till these days, it is not yet clear if the quan-
tum turbulence of superfluid component is some-
how connected with the classical turbulence of nor-
mal component. During this experiment we mea-
sured a large quantity of data characterising the be-
haviour of the tuning fork through the applied force
and resulting velocity. The most general assump-
tion is the existence of two critical velocities, one
for classical turbulence and second for QT. Compar-
ing the data calculated for the vortex line density
in this work with the hydrodynamic data hidden in
measured forces and velocities could help to find
the final answer.
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