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Abstract

Loop homotopy Lie algebras, which appear in closed string field theory, are a generalization
of homotopy Lie algebras. For a loop homotopy Lie algebra, we transfer its structure on its
homology and prove that the transferred structure is again a loop homotopy algebra. Moreover,
we show that the homological perturbation lemma can be regarded as a path integral, integrating
out the degrees of freedom which are not in the homology. The transferred action then can be
interpreted as an effective action in the Batalin-Vilkovisky formalism.

A review of necessary results from Batalin-Vilkovisky formalism and homotopy algebras is
included as well.
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Introduction
In this work, we describe a connection between BV formalism, homological perturbation lemma and
loop homotopy algebras. The Batalin-Vilkovisky formalism [1] is a powerful method in quantum field
theory for quantizing gauge theories. A central identity to BV formalism is the quantum master
equation

2~∆S + {S, S} = 0

for an action S, which is a condition on the gauge invariance of the theory. Among other situations,
a BV action was constructed for closed string field theory in [2] by Zwiebach.

It was already known that the tree level of a closed string field theory has a structure (its inter-
action vertices, to be precise) of a L∞ algebra, an example of homotopy algebra. In the general case,
the algebraic structure was named loop homotopy Lie algebra by Markl in [3]. The BV formalism,
which can be defined for a loop homotopy algebra, then encodes its main axioms in the quantum
master equation constructed from the algebra operations.

A homological perturbation lemma is a computational tool for transferring differentials along
homotopy equivalences of chain complexes. For homotopy algebras, it was used for construction of
minimal models (see references in [4]), new homotopy algebras defined on a homology of the original
algebra.

The aim of this work was to repeat a similar transfer of algebra structure on the homology for a
loop homotopy Lie algebra. However, because these algebras are intricately connected with physics,
the homological perturbation lemma should have a physical counterpart. This turns out to be a
construction of effective S-matrix, using the path integral to integrate out the degrees of freedom
not in the homology. This gives a striking interpretation of the various formulas that appear in
homological perturbation lemma – they are just summarizing the Feynman diagram expansion of
path integral.

This physical interpretation of homological perturbation theory appears e.g. in works of P. Mnev
[5], K. Costello and O. Gwilliam [6, 7] and H. Kajiura [4] and notably in a presentation C. Albert’s
[8] from Cargèse conference 2009. The general case for algebras over modular operads was considered
by Chuang and Lazarev [9].

Disclaimer: This work is an abridged version of the author’s master thesis S-matrix and homo-
logical perturbation lemma. This work was done under supervision of Branislav Jurčo, in the research
group of B. Jurčo, M. Doubek, L. Peksová and J. Vysoký.
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Notation
Notation

4 and � denote the end of definition and example, respectively.

V # is a linear dual of V , for graded vector spaces see appendix A. All vector
spaces are assumed to be finite-dimensional, all graded vector spaces are
degree-wise finite-dimensional.

d,Q usually denote differentials. We will work in the cohomological conven-
tion, that is with differentials of degree +1.

Sn is the permutation group of n elements.

1 is used to denote identity morphisms.

k is a field of characteristic 0, we always have real or complex numbers on
mind.

◦, ◦i ◦ is a composition of maps, f ◦j g is defined as

f ◦
(

1⊗(j−1) ⊗ g ⊗ 1⊗(n−j)
)

for f with n arguments.
∂R
∂φ ,

∂L
∂φ are the right and left derivative.

aiφ
i means

∑
i aiφ

i, i.e. we use the Einstein summation convention.

Abbreviations

RHS and LHS are short for right hand side and left hand side.

BV stands for Batalin-Vilkovisky.

BRST stands for Becchi, Rouet, Stora and Tyutin.
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1 Batalin-Vilkovisky formalism
The Batalin-Vilkovisky formalism (BV henceforth) will allow us to connect quantum field theory and
homotopy algebras. This chapter aims to explain its origin from physics, describe its geometrical
interpretation and collect necessary results. The connection to the homotopy algebras is then made
clear in chapter 2.

The quantum field part of the explanation follows closely the first chapter of textbook [10] by S.
Weinberg. See also [11] for a thorough physical treatment.

1.1 BV formalism and path integral
A basic physical object we will be studying is the path integral. As is well known, the path integral
itself is not well defined, but allows a diagrammatical description for its expansion in powers of
coupling constants. Naive application of these Feynman rules doesn’t give a right answer in the case
of gauge theories (i.e. the computed S-matrix is not unitary).

Faddeev–Poppov procedure and BRST incorporate the gauge invariance by adding more fields
to the theory: ghosts c, antighosts b (with ghost numbers equal to 1 and -1, respectively) and also
Lautrup–Nakanishi field h. We will assume that the statistics of a field is equal to its ghost number
mod 2. This allows us to mention only one grading, the ghost grading.

Intuitively, the additional ghosts and antighosts cancel the superficial integration over the gauge
redundant degrees of freedom; technically, they are used to “lift” a determinant factor to the expo-
nential, so that we can treat it using the standard diagrammatic techniques. They are called ghosts
because they don’t obey the spin-statistics theorem, i.e. usually they are anticommuting (that is
fermionic) scalars.

The BRST formalism, a predecessor of BV, introduces a nilpotent BRST transformation s. One
then shows that the actions and observables belong to the cohomology classes of s. Choosing a
gauge then reduces to choosing a representative of a cohomology class of the action.

BV formalism introduces new field χ‡ for every field χ of BRST, called antifield. These antifields
have opposite statistics and ghost number equal such that ghχ+ ghχ‡ = −1. In contrast to BRST,
we do not integrate over these new fields, but rather fix a subspace of fields and antifields to integrate
over.

Let us illustrate it on the case of Yang Mills theory. After BRST, one arrives at an action that
can be written in the form

SBRST[φ, b, c, h] = SYM[φ] + sΨ[φ, b, c, h] .

Here, φ is just the original YM gauge field, b and c are ghosts and antighosts and h is the Launtrup-
Nakanishi field. The operator s is the nilpotent BRST differential. The fermionic functional Ψ with
gh Ψ = −1 is called a gauge fixing fermion. It can be shown that the physical matrix elements
(i.e. matrix elements of gauge invariant observables between physical states) are independent of
the choice of Ψ. Moreover, thanks to gauge invariance of SYM, sSBRST = 0. The path integral,
computing the expectation value of observable X[φ] is in this case

〈X〉 =

∫
DφDbDcDh X[φ]eSYM[φ]+sΨ[φ,b,c,h] .

Now, in BV formalism, we add the antifields χ‡ (note that antighost b and antifield for ghost c‡ are
two different fields) and extend the Yang Mills action as

S[χ, χ‡] = SYM[φ] + (sχ)nχ‡n ,

where the index n represents the discrete (representation vector space indices) and the continu-
ous (spacetime) degrees of freedom. Integration and sum is implied by the Einstein summation
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convention, e.g.

(sχ)nχ‡n ≡
∑
i

∫
dx4(sχ)i(x)χ‡i (x) .

This action now satisfies a classical master equation

δRS

δχ‡n

δLS

δχn
= 0 ,

because
δRS

δχ‡n
= (sχ)n

and the master equation gives

(sφ)n
δLSYM

δφn
+ (sχ)m

δL(sχ)n

δχm
χ‡m = 0 .

The term without antifields is just sSYM, while the term with antifields gives s2χm. The first term
is zero by gauge invariance of SYM and the second by nilpotency of s

When integrating, we prescribe a definite value to the antifields by the formula1

χ‡n =
δΨ[χ]

δχn
,

which gives an action

S

[
χ,
δΨ[χ]

δχn

]
= SYM[φ] + (sχn)

δΨ[χ]

δχn
= SYM[φ] + sΨ[χ] ,

exactly as the BRST procedure.

This action can be generalized to theories where the action is now no longer linear in antifields.
We construct the general action such that it is bosonic and has ghost number 0. Again, we integrate
by setting χ‡n = δΨ[χ]/δχn and we want the result to be independent of the gauge fixing fermion
Ψ[χ] (with ghost number -1), which generalizes the gauge invariance of the Yang Mills theory.

How do we ensure this gauge invariance? Choosing a general functional H[χ, χ‡], we want the
path integral ∫

DχH

[
χ,
δΨ[χ]

δχ

]
(1)

to be independent of Ψ[χ]. If we deform Ψ[χ] by a small functional ε[χ], the above integral 1 changes
(to the first order) by ∫

Dχ
δRH

δχ‡n

δLε

δχn
,

where we write the right derivative of H because the other term from the chain rule comes to the
right of it. The derivative of ε can be left or right, since ε is fermionic. Using integration by parts,
we obtain ∫

Dχ (−1)|H||χ
n|+1 δL

δχn
δRH

δχ‡n
ε .

1 We do not specify if the functional derivative is left or right, since both cases are the same:

δRΨ

δχn
= (−1)(|Ψ|−|χn|)|χn| δLΨ

δχn
,

where the sign factor is +1 because |Ψ| = 1.
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Since ε is arbitrary, the invariance of the integral 1 is equivalent to the condition

∆H ≡ (−1)|H||χ
n|+1 δL

δχn
δRH

δχ‡n
= 0 . (2)

Note that this ∆ is different from operator ∆W of [10, equation 15.9.34], for bosonic H, this ∆W is
minus the ∆ from equation 2.2

Usually, we deal with H in the form eαS[χ,χ‡], where the factor α is usually ±i, i/~ or −1/~. A
simple calculation shows that (for bosonic action)

∆eαS[χ,χ‡] = α2eαS[χ,χ‡]

(
{S, S}+

2

α
∆S

)
!
= 0 ,

where we used antibracket
{F,G} ≡ δRF

δχn
δLG

δχ‡n
− δRF

δχ‡n

δLG

δχn
. (3)

Thus, if we want a gauge invariant theory, the action has to satisfy the quantum master equation

{S, S} − 2~∆S = 0 , (4)

where we have chosen α = −1/~.
Moreover, if we take an bosonic observable O[χ, χ‡], the expectation value is gauge independent

if
0 = ∆(O[χ, χ‡]eαS[χ,χ‡]) = (∆O + α{O, S}) eαS[χ,χ‡] , (5)

where we used the quantum master equation ∆eαS = 0. Usually, the observables do not depend on
antifields and we get a condition

{O, S} = 0 .

1.2 Geometrical interpretation
The geometric interpretation of BV formalism was started by a short paper by E. Witten [13],
where he interpreted the antifields as a multivector fields on the manifold of fields. More complete
treatment in the context of supermanifolds was given by A. Schwarz in well-known [14] and later

2 The ∆W from [10], defined as

∆W ≡
δR

δχ‡n

δL

δχn
=

δL

δχn
δR

δχ‡n
,

is problematic in few aspects, mostly in the overall minus sign: the master equation [10, equation 15.9.35] should
actually read (S, S) + 2i∆S = 0. This is, however, nonstandard, and authors usually choose a different ∆, which is S.
Weinberg’s −∆W on bosonic functionals: we e.g. Henneaux, Teitelboim [11, section 15.5.3].

In the original reference by Batalin, Vilkovisky [1, equation 16], the ∆ is defined with left derivative for the antifield
and right derivative for the field. See also physics SE discussion at [12], where the difference between S. Weinberg’s
and the original ∆ is discussed.

Generally, when working with BV algebras, one needs additional sign factor (−1)|H||χn| to make ∆ and the bracket
compatible: see section 1.3. Henneaux and Teitelboim have this sign, but their ∆HT behaves like a right derivative
[11, equation 18.5a]:

∆HT(FG) = F (∆HTG) + (−1)|G|(∆HTF )G+ (−1)|G|{F,G} .
In the section 1.3 will take our ∆our to be

∆ourH = (−1)|H|∆HTH ,

so that ∆our acts “from the left”.

One of the possible sources of confusion might be the derivation of the master equation: there are multiple choices
one can make for the left/right derivatives and at the end arrives at ∆H = 0, which admits additional sign factors
like −1 or (−1)|H|. Furthermore, H is usually eS , which is bosonic.
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by his student H. Khudaverdian [15], who used semidensities as natural integration objects on
Lagrangian submanifolds.

The basic idea presented in [13] is that although for finite dimensional manifolds, the differential
forms and multivector (i.e. antisymmetric vector) fields on a manifold are (non-canonically) isomor-
phic, this is no longer true for infinite dimension. Specifically, one does not have a volume form to
integrate against, but in the multivector picture, the volume form corresponds to functions, a more
manageable object.

Back in the finite dimension, the isomorphism between forms and multivectors can be defined by
taking a volume form α and giving the isomorphism by iα, which takes k-dimensional multivector
fields to (n − k)-dimensional forms, where n is the manifold dimension. Under this isomorphism,
the exterior derivative becomes

∆ =
∑
i

∂

∂ξi

∂

∂xi
,

where ξi are vector fields ∂/∂xi. This is (up to signs) the BV operator ∆ from previous section.
The condition ∆eS = 0 then says that the volume form eSα is closed, which is trivial for ordinary

manifolds. However, in field theory, some of the fields are fermionic and the relevant manifold is
supermanifold. This is the situation considered in the Schwarz’s paper [14], whose results for BV
geometry we will now present.

An SP -manifold M is a (n, n)-dimensional manifold with compatible P and S structures. The
P structure can be specified by a closed odd nondegenerate form ω – an odd symplectic form. The
S structure is given by a volume element ρ, meaning that it transforms with a Berezinian. These
two structures are compatible if one can find Darboux coordinates for the form where ρ is equal to
1.

The odd symplectic form allow us to define a bracket in coordinates zi

{F,G} =
∂RF

∂zi
ωij

∂LG

∂zj
,

where ωij is the inverse matrix to the coordinates expression of the odd symplectic form ω. Fur-
thermore, we can define operator ∆ on functions as

∆H = divKH ,

where div is the divergence associated with the density ρ and KH is the hamiltonian vector field
Ki
H = ωij ∂LH∂zj . In the Darboux coordinates with xi even and ξi odd and with ρ = 1, we get3

∆ =
∑
i

∂R
∂xa

∂L
∂ξa

.

Here, ∆2 = 0 and for general (i.e. not necessarily compatible) ω and ρ, the condition ∆2 = 0 implies
the compatibility of ρ and ω (see [14, theorem 5]).

This supermanifold M should be viewed as finite dimensional version of the space of fields and
antifields with ω giving their pairing. Thus, we don’t want to integrate over the whole manifold,
but over its Lagrangian submanifolds. These are manifolds L with ωL = 0, e.g. specified by
ξi = · · · = ξk = 0 and xk+1 = · · · = xn = 0 in Darboux coordinates. On such submanifold, we can
integrate over a volume form dx1 . . . dxkdξk+1 . . . dξn, in general coordinates the volume form on L
would be proportional to √ρ.

Schwarz proves two important theorems which explain the results known from the field theory.

3 This operator is defined without the signs, as in Weinberg [10], and suffers from the same problems as ∆W from
[10] – see previous section.
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Theorem 1.1 ([14, theorems 1, 2]). Let L0 and L1 be closed oriented Lagrangian submanifolds of an
orientable SP -manifold M . If the two manifolds can be connected with smooth family of Lagrangian
submanifolds Lt for 0 ≤ t ≤ 1, then ∫

L0

Hdλ0 =

∫
L1

Hdλ1 (6)

for every function H satisfying ∆H = 0. Moreover, if H = ∆K, then for every closed Lagrangian
manifold L ∫

L

Hdλ = 0 . (7)

Proof. See [14], we will only sketch the main ideas in the following.

1.3 BV algebras
We have seen multiple version of an operator ∆ similar to

∆H = (−1)|H||χ
n|+1 δL

δχn
δRH

δχ‡n
, (8)

and brackets
{F,G} =

δRF

δχn
δLG

δχ‡n
− δRF

δχ‡n

δLG

δχn
. (9)

The ∆ operator is a second order differential operator, which means it does not satisfy the Leibniz
rule. The failure of the Leibniz rule is precisely the bracket, as can be easily checked

∆(FG) = F∆G+ (−1)|G|(∆F )G+ (−1)|G|{F,G} . (10)

Furthermore, ∆ squares to 0, the bracket has a graded symmetry

{F,G} = −(−1)(|F |+1)(|G|+1){G,F}

and is a graded derivative in each of its arguments. These are a basis of definition BV algebra, but
the signs in the equation 10 are usually taken to be different, so that ∆ is a left, not right derivative.
This corresponds to redefinition

∆H → ∆ourH = (−1)|H|∆H .

This gives

∆ourH = (−1)|H||χ
n|+1+|H| δL

δχn
δRH

δχ‡n
= (−1)|H||χ

n| δR
δχn

δLH

δχ‡n
. (11)

With these signs, we can define BV algebras (see e.g. [16, section 4]).

Definition 1.2. A BV algebra is a graded commutative associative algebra on graded vector space
V with a bracket {, } : V ⊗2 → V of degree 1 that satisfies

{F,G} = −(−1)(|F |+1)(|G|+1){G,F} , (12)

{F, {G,H}} = {{F,G}, H}+ (−1)(|F |+1)(|G|+1){G, {F,H}} , (13)

{F,GH} = {F,G}H + (−1)(|F |+1)|G|G{F,H} (14)

and a square zero operator ∆ : V → V of degree one such that

∆(FG) = (∆F )G+ (−1)|F |F∆G+ (−1)|F |{F,G} . (15)

4
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If the vector space V comes with a differential d, we usually also postulate its compatibility with
∆ as in ∆d + d∆ = 0. For algebras with unit 1, we will take ∆(1) = 0.

Since the bracket can be defined using ∆, one can define a BV algebra without mentioning it.
The Poisson and Jacobi identities of the bracket are then encoded in so-called seven-term identity
for ∆

∆(FGH) =∆(FG)H + (−1)|G||H|∆(FH)G+ (−1)|F |(|G|+|H|)∆(GH)F

−∆(F )GH − (−1)|F |F∆(G)H − (−1)|F |+|G|FG∆(H) .
(16)

In the following, we will also use a compatibility between ∆ and {, } which can be derived from
∆2(FG) = 0

∆{F,G} = {∆F,G}+ (−1)|F |+1{F,∆G} . (17)

1.4 Flat BV geometry on SymV #

For us, a most important example of a BV algebra will be a BV algebra associated with a graded
vector space with odd symplectic form,

Definition 1.3. An odd symplectic structure on a vector space V is a nondegenerate graded
skewsymmetric bilinear map V ⊗ V → k of degree -1. This degree makes it honestly skewsym-
metric, i.e. ω(v1, v2) = −ω(v2, v1). 4

The vector space V should be thought of as combined space of fields and antifields, the symplectic
form being their pairing.

This is in fact a flat variant of BV algebra on a SP supermanifold of A. Schwarz: the P structure
is given by the odd symplectic form and the S structure is just the constant Lebesgue measure on
the vector space.

The definition of the BV ∆ operator will be different from the one from [14] by signs, see also
discussions in previous sections. Note that we now work with graded vector spaces, not super vector
spaces.

The following construction appears for example in P. Mnev’s [5, section 4.1] and in [17]. We
start by recalling some notions useful for discussion of symplectic vector spaces from the book by
McDuff and Salamon [18, chapter 2].

Definition 1.4. For ω a symplectic form on V , we define a symplectic complement of a subspace
W ⊂ V to be the set of vectors

Wω ≡ {v ∈ V | ω(v, w) = 0, ∀w ∈W}.

This complements satisfies dimW + dimWω = dimV and Wωω = W , see [18, lemma 2.2].

We can classify subspaces by the behaviour of their complement: we call W ⊂ V
isotropic if W ⊂Wω,
coisotropic if Wω ⊂W ,
symplectic if W ∩Wω = {0},
Lagrangian or maximally isotropic if W = Wω.

4

Let us take a graded vector space V and a symplectic form ω of degree −1. At first, we want
to define ω on the dual vector space. We can view ω as a map \ : V → V #. The ω# on the dual
vector space can be then defined as

ω#(α, β) = ω(\−1(α), \−1(β)) . (18)

We will describe everything in coordinates: choose a basis ei of V and a dual basis φi of V #. The
odd symplectic form in this coordinates is an antisymmetric matrix

ωij ≡ ω(ei, ej)

9



with block structure: ωij is nonzero only if |ei|+ |ej | = −|ω| = 1. The matrix of ω# is exactly the
inverse matrix of ωij , which we will denote ωij . It is again antisymmetric and has a similar block
structure: ωij is nonzero only for |ei|+ |ej | = 1, which can be seen from∑

j

ωijω
jk = δki ,

or from equation 18.
In the dual basis, this means that ωij is nonzero only for |φi| + |φj | = −1. We define a BV

operator ∆ : F(V )→ F(V ) as

∆(F ) =
1

2

∑
i,j

(−1)|φ
i|ωij

∂L
∂φi

∂L
∂φj

F . (19)

Since |φi| + |φj | = −1 for nonzero ωij , this operator removes covectors of total degree −1 and
therefore |∆| = 1. The factor (−1)|φ

i| counters the skew-symmetry of ωij , because without it we
would contract it with symmetric ∂L

∂φi
∂L
∂φj . The factor 1

2 is there exactly because of this symmetry.
twice.

Corresponding BV bracket is defined by

∆(FG) = (∆F )G+ (−1)|F |F∆G+ (−1)|F |{F,G}

and can be written as
{F,G} =

∑
i,j

ωij
∂RF

∂φi
∂LG

∂φj
.

These two operations together form a BV algebra in the sense of definition 1.2. This can be checked
by direct computation, or by comparing with previous examples.

1.4.1 Master equation and ~

To write down master equation with explicit ~, we add ~ as a formal parameter. This means
enlarging our functions F(V ) to F(V )[[~]] ≡ F(V ) ⊗ k[[~]], i.e. tensoring with formal power series
in ~. We will, however, abuse the notation slightly and write ~ as if it were another commutative
variable.

Then, we can write the master equation

2~∆S + {S, S} = 0 .

Note that Sclass the classical part of S, i.e. sum of terms with ~0, satisfies the classical master
equation

{Sclass, Sclass} = 0 .

Moreover, taking only the quadratic part of this equation and assuming that S has no linear terms,
we get that S0, the quadratic part of Sclass (which corresponds to the kinetic term) also satisfies
classical master equation

{S0, S0} = 0 .

Solutions of master equation give us yet another differential, given by twisting ∆ by eS/~, i.e. taking
a map F 7→ e−S/~∆(FeS/~). This always is a square zero map, but it has no constant component
only for S which is a solution of master equation. Direct calculation gives

e−S/~∆(FeS/~) = ∆F +
1

~
{S, F} .

We will move the constant ~ to the ∆ term and define

TSF ≡ ~∆F + {S, F} .

10



We can also compute T 2
S directly, which gives

T 2
S(F ) = ~∆(~∆F + {S, F}) + {S, ~∆F + {S, F}} = {~∆S +

1

2
{S, S}, F} .

We see that T 2
S is zero iff ~∆S + 1

2{S, S} is constant. However, because ∆ and {} have degree 1,
~∆S + 1

2{S, S} would have to be degree 1 constant, so it has to be 0. Thus, the condition T 2
S is

equivalent to the quantum master equation for S.

Expressing the BV algebra operations with antifields, we can write the master equation as

∂RS

∂χi
∂LS

∂χ‡i
+ ~

∂R
∂χi

∂L

∂χ‡i
S = 0 , (20)

which is useful when comparing with [2].

1.4.2 Differential on V

In our application, the graded vector space V will usually be equipped with a differential, which we
will now denote Q. This differential is also compatible with ω, in a sense that

ω(Q⊗ 1 + 1⊗ Q) = 0 ,

i.e. Q is self-adjoint with respect to ω. We are now going to consider a cohomology with respect
to this differential Q, which we denote HQ. With the projection operator [ ] : KerQ → HQ, we can
define a symplectic form on this cohomology as

ω̃([v], [w]) ≡ ω(v, w) . (21)

This does not depend on the representants v and w: adding exact terms gives

ω̃([v + Qx], [w + Qy]) = ω(v + Qx,w + Qy) = ω(v, w) + ω(v,Qy) + ω(Qx,w) + ω(Qx,Qy) .

Here, the last three terms are zero, since v and w are closed and we can move Q between the
arguments. Thus, we get

ω̃([v + Qx], [w + Qy]) = ω(v, w) = ω̃([v], [w]) .

This ω̃ is again antisymmetric and has degree −1, but is it non-degenerate? To prove that it is,
we will use the fact that homology is in fact a symplectic reduction, i.e. a quotient of coisotropic
subspace by its symplectic complement. We cite the following from [18].

Lemma 1.5 ([18, lemma 2.7.i]). Let (V, ω) be a symplectic vector space and W ⊂ V be a coisotropic
subspace. Then the quotient V ′ = W/Wω carries a natural symplectic structure ω̃, defined as
ω̃([v], [w]) = ω(v, w), where [ ] is the quotient map.

Note that this lemma also applies for our case, we can just forget about the grading on our vector
space.

Starting with KerQ, let’s look at its symplectic complement. For all v ∈ KerQ, the expression
ω(v, x) is zero for all x ∈ ImQ. Thus ImQ is a subspace of (KerQ)ω, but since it has the right
dimension, i.e. dim KerQ + dim ImQ = dimV , it has to be the symplectic complement. Thus, we
see that KerQ is a coisotropic subspace and

KerQ/(KerQ)ω = KerQ/ ImQ = HQ

inherits a nondegenerate symplectic form, defined exactly as we did in equation 21.
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With ω̃, we can define a BV algebra on the functions on homology F(HQ), which we will denote
∆′ and {}′.

Similarly, if we decompose the vector space V as V ′ ⊕ V ′′ such that (V ′)ω = V ′′, we get two
symplectic subspaces of V , both with non-degenerate symplectic forms. This means we can define a
BV algebra on both of this spaces, with operations ∆′, {}′ and ∆′′, {}′′ respectively. Moreover, the
operator ∆ on the total vector space is a sum of these two operators

∆ = ∆′ + ∆′′

and similarly for brackets
{} = {}′ + {}′′ .

This is because ω does not pair vectors (or covectors) from V ′ and V ′′, and therefore the sums in
definitions of ∆ and {} split into two parts, giving BV Laplacians on V ′ and V ′′.

If we choose this decomposition such that V ′ will be isomorphic to HQ, with the isomorphism
respecting the structures, 4 then we can view the algebra of functions F(HQ) as a part of the algebra
F(V ), with a decomposition of the BV algebra. This will be a starting point for a construction of
special deformation retract between F(V ) and F(HQ) in the following chapters.

4If we choose a injective map i : HQ → V such that its a symplectomorphism and a chain map, we immediately
have V = Im i ⊕ (Im i)ω . This is because the symplectic form ω on Im i is non-degenerate, and thus no vector from
(Im i)ω can also be in Im i. It is a general fact that dimV = dim Im i+ dim(Im i)ω , so the disjointedness of these two
subspaces gives the direct sum decomposition.
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2 Loop homotopy algebras
Loop homotopy algebras are a generalization of cyclic homotopy algebras, admitting maps with genus
higher than 0. They were first defined by M. Markl in [3] by axiomatizing the algebraic properties
of string products of closed string field theory [2]. We will only describe the generalization of cyclic
L∞ algebra, the loop homotopy Lie algebra.

We will be following the two original sources we mentioned, [2] and [3].

2.1 Closed string field theory
In [2], B. Zwiebach constructed string products and string functions. These operations take multiple
elements of a Hilbert space Hrel (a subspace of the Hilbert space H of the whole theory) and output
another state in Hrel and an complex number, respectively.

The string function, or a string field vertex is defined first, as an integral over a space of surfaces
associated to an interaction vertex. Such vertex is specified by the n, the number of incoming strings
and the genus g. For states B1, . . . , Bn, and a surface of genus g, Zwiebach constructs a form (for
details, see [2, sections 7.3, 7.4]) and integrates it over the mentioned space of surfaces, which gives
a number denoted by

{B1, . . . , Bn}g . (22)

This product is graded commutative and nonzero only on fields with total degree 5 −2n.

The Hilbert space is also equipped with a bilinear inner product, denoted

〈B1, B2〉 .

On the subspace Hrel of fields B, this product is nondegenerate, symmetric and has degree −5. The
nondegeneracy means it can be used to “lift one of the indices” of the multilinear string function.
This is done by choosing a two bases {Φs} and {Φr} of Hrel that satisfy

〈Φs,Φr〉 = (−1)|Φr|δrs .

Then we can define the string products [. . . ]g as

[B1, . . . , Bn]g =
∑
t

(−1)|Φt|Φt{Φt, B1, . . . , Bn}g .

The inverse of this relation is given by

{B0, B1, . . . , Bn}g = 〈B0, [B1, . . . , Bn]g〉 . (23)

These brackets then have a degree 3 − 2n and are graded symmetric. Moreover, as a consequence
of the the symmetry of the string functions, the brackets satisfy additional property: M. Markl
expresses this by saying that element [3, eq. 7]∑

s

Φs ⊗ [Φs, B1, . . . , Bn−1]g ∈ H⊗2
rel

is antisymmetric with respect to the switching morphism.
This is, however, not all the structure these operations have. Because the string vertices have

to generate the complete moduli space of Riemann surfaces, Zwiebach uses geometrical recursion
5Regarding the degrees, the Hilbert space has double grading, Z-grading by ghost number and Z2-grading by Grass-

manality. Because the strings are bosonic, the Grassmanality is equal to ghost number modulo 2 (see [ZwiebachBV,
see the paragraph Grassmanality in section 3.1])
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relations for the decomposition of surfaces to prove the main identity for the string products [2,
eq. 4.13]

0 =
∑

g1+g2=g
k+l=n

∑
σ∈Unsh(l,k)

ε(σ)[Bσ(1), . . . , Bσ(l), [Bσ(l+1), . . . , Bσ(l+k)]g2 ]g1

+
1

2

∑
s

(−1)|Ψs|[Ψs,Ψ
s, B1, . . . , Bn]g−1 , (24)

which should be satisfied for all n ≥ 0 and g ≥ 0, for which we set [. . . ]−1 equal to 0.
The string functions can be used to define an action S. We take a string field Ψ and define

S(Ψ) =
1

κ2

∑
g≥0

(~κ2)g
∑
n≥0

κn

n!
{Ψ, . . . ,Ψ}g . (25)

where the Ψ is inserted n times into the string function {. . . }g with n arguments. We see that the
parameter ~ just tracks the genus of the string function and κ is equal to 2(g− 1) +n. This κ is the
closed string field coupling constant, which we will ignore. As a consequence of the main identity,
this action then satisfies a quantum master equation [2, equation 4.69]

∂RS

∂ψs
∂LS

∂ψ∗s
+ ~

∂R
∂ψs

∂LS

∂ψ∗s
= 0 ,

where the fields ψs and antifields ψ∗s correspond to regraded elements of dual Hilbert space (see [2,
equation 3.33] and also [4, definition 3.2]).

2.2 Loop homotopy Lie algebras
The genus zero products of this theory have a structure L∞, as was already know before Zwiebach
(see [2, section 4.5]). Furthermore, with the bilinear form, we get a cyclic L∞ algebra.

In [3], Markl coined a name loop homotopy Lie algebra for the full structure with g 6= 0 operations.
To relate it to the usual definition of L∞ algebra, which in turn is usually defined to agree with the
dg Lie algebra, one has to shift the degree: instead of looking at Hrel, we consider U ≡ r(↓ Hrel). On
this vector space, operations lgn : U⊗n → U are defined with a Koszul sign coming from commuting
graded elements and the operator ↓, which has degree 1:

lgn ≡ (−1)(n−1)|v1|+(n−2)|v2|+···+vn−1r ↓ [↑ r(v1), . . . , ↑ r(vn)]g (26)

for vi ∈ U . This shift and sign then makes these lgn antisymmetric, with degree n− 2.
On U , we define a graded symmetric (which is, due to its degree, symmetric) form B, which

comes from the inner product 〈−,−〉. Here, Markl does not use a “Koszul” sign, but defines

B(u, v) ≡ 〈↑ r(u), ↑ r(v)〉 .

The following definition is almost verbatim [3, definition 2.1].

Definition 2.1. A loop homotopy Lie algebra consists of

1. A Z-graded vector space U ,

2. a graded symmetric nondegenerate bilinear degree 3 form B : U ⊗ U → k

3. a set {lgn}n,g≥0 of degree n− 2 multilinear graded antisymmetric operations lgn : U⊗n → U ,

satisfying these two conditions:
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1. For any n, g ≥ 0, for vectors v1, . . . , vn ∈ U , we have the main identity

0 =
∑

k,l,g1,g2≥0
k+l=n+1
g1+g2=g

∑
σ∈unsh(l,n−l)

χ(σ)(−1)l(k−1)lg1k (lg2l (vσ(1), . . . , vσ(l)), vσ(l+1), . . . , vσ(n))

+
1

2

∑
s

(−1)hs+nlg−1
n+2(hs, h

s, v1, . . . , vn) .

The map lgn with g = −1 is taken to be 0. Vectors {hs} and {hs} form two bases of the vector
space dual in the sense of the form B

B(hs, ht) = δst .

2. For any n, g ≥ 0 and v1, . . . , vn−1 ∈ U , the element∑
s

(−1)n+1hs ⊗ lgn(hs, v1, . . . , vn−1) ∈ U ⊗ U (27)

is symmetric (with respect to the action of the switching map τ on U ⊗ U).

4

The g = 0 operations determine a so-called L∞ algebra (see e.g. [4]) Moreover, the bilinear form
makes this into a cyclic L∞ algebra.

A special case of the main identity, for n = 1 and g = 0, is a condition (lg=0
n=1)2 = 0, which means

that the vector space is naturally endowed with a differential. Moreover, the second condition tells
us that this differential is compatible with the bilinear form; see the next section.

2.3 Loop homotopy Lie algebras and master equation
We have seen that on V ≡↓↓Hrel, the string products have degree 1. Moreover, the string functions
{ }g have degree 0 and the symmetric bilinear form 〈, 〉 has product −1. If we, however, define

ω(v, w) ≡ (−1)|v|〈↑↑v, ↑↑w〉 , (28)

we have

ω(w, v) = (−1)|w|〈↑↑w, ↑↑v〉 = (−1)|w|〈↑↑v, ↑↑w〉 = (−1)|w|+|v|ω(v, w) = −ω(v, w) ,

i.e. an odd symplectic form on V .
We also denote

sgn(v1, . . . , vn) ≡ {↑↑v1, . . . , ↑↑vn}g
and

λgn(v1, . . . , vn) ≡↓↓ [↑↑v1, . . . , ↑↑vn]g .

the shifted versions of string functions and string products. They are related by

sgn+1(v0, . . . vn) = (−1)|v0|ω(v0, λ
g
n(v1, . . . , vn)) ,

with the sign (−1)|v0| making the functions s graded symmetric in all of its arguments.
The shifted string functions sgn can now be considered as degree 0 elements of F(V ). Adding the

~ as a formal parameter (see section 1.4.1), we can also consider the action

S(v) ≡
∑
n,g≥0

~g

n!
{↑↑v, . . . , ↑↑v}g =

∑
n,g≥0

~g

n!
sgn(v, . . . , v)
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as a degree 0 element of F(V )[[~]].
The master equation for this action

2~∆S + {S, S} = 0

is in fact equivalent to the main identity 24. Zwiebach proves this, see [2, equation 4.69]. Note that
the factorial factors from the action S correspond to the factorials one gets in the main identity 24
from the sum over unshuffles, because all arguments are the same.

Because sgn are graded symmetric and have degree 0, we have

sg2(v, w) = (−1)|w|sg2(w, v) ,

which implies
(−1)|v|ω(v, λg1(w)) = ω(w, λg1(v)) .

If we denote Q the differential λ0
1, we can write this as

ω(Qv, w) + (−1)|v|ω(v,Qw) = ω ◦ (Q⊗ 1 + 1⊗ Q)(v, w) = 0 .

Another useful identity is the relation between the action and the multilinear operations λgn via
the bracket. We can view {S,−} as a left derivative of degree 1, which means it is completely
specified by its action on covectors φk

{S, φk} =
∑
g,n

~g

n!
{sgn, φk} .

Looking at just the component sgn, we have (see A for the convention regarding duals)

{sgn, φk} =
∂Rs

g
n

∂φi
ωik = nsgn(−, . . . ,−, ei)ωik

= (−1)|ei|nωiksgn(ei,−, . . . ,−)

= nωikω(ei, λ
g
n−1(−, . . . ,−))

= nωikωilφ
l ◦ λgn−1

= −nφk ◦ λgn−1

= (−1)|φ
k|n (λgn−1)#(φk) .

This allows us to convert between the action and the loop homotopy algebra operations. A special
case of this formula is for n = 2 and g = 0. This is the quadratic ~0 component of the action, for
which we have

{S0,−} = {1

2
s0

2,−} = Q
# ◦ (−1)|−| ≡ Q̂

# (29)

If we extend the dual of Q on F(V )[[~]] using the Leibniz rule, this equality holds also on this space.
We introduced Q̂

#

Q̂
#(φk) = (−1)|φ

k|
Q

#(φk) .

This is just for our convenience, so that we can write {S0,−} = Q̂
# on V #. After extending this as

a derivative, we will use notation {S0,−} = Q̂.
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3 Effective action and minimal model
In this chapter, we will construct a loop homotopy algebra on the homology of the vector space V .
We will present two approaches to do so, heuristic path integral and a use of homological perturbation
lemma. We will also (heuristically) prove their equivalence.

Underlying ideas for some of these constructions can be found in P. Mnev’s [5] and H. Kajiura’s
[4].

3.1 Homological perturbation lemma for F(V )

Homological perturbation lemma is a useful tool of homological algebra, giving explicit formulas for
differential transferred from one chain complex to another using a homotopy equivalence between
them. This is exactly the situation we have: we will transfer the differential given by the solution
of master equation to the homology with respect to Q.

Very nice exposition to the homological perturbation lemma is a paper by Crainic [19]. We will
now recall its statement to fix notation.

Definition 3.1. A homotopy equivalence is given by the following data

(V,dV ) (W, dW )h
p

i
, (30)

where (V,dV ) and (W, dW ) are chain complexes, p, i are quasi-isomorphisms and

i ◦ p = 1 + dV ◦ h+ h ◦ dV . (31)

Homotopy equivalence for which p ◦ i = 1 on W is called deformation retract and a deformation
retract for which the following annihilation conditions

h ◦ i = 0, p ◦ h = 0, h ◦ h = 0 ,

hold is called special deformation retract, or SDR.
4

The equation 31 tells us that on homology, the maps i◦p is homotopic to identity, with homotopy
given by h. The annihilation conditions give a decomposition of V into three subspaces, given by
projectors i ◦ p, −dV ◦ h and −h ◦ dV .

We can now state the perturbation lemma.

Lemma 3.2. [19, lemmas 2.4, 3.2] Given homotopy equivalence as in equation 30 and a map
δ : V → V such that |dV | = |δ| and (dV + δ)2 = 0, and such that (1 − δh) is invertible, there is a
new homotopy equivalence (with the same vector spaces)

(V,dV + δ) (W, d′W )h′
p′

i′
, (32)

where the maps are given by

h′ ≡ h+ h(1− δh)−1δh , (33)

p′ ≡ p+ p(1− δh)−1δh , (34)

i′ ≡ i+ h(1− δh)−1δi , (35)

d′W ≡ dW + p(1− δh)−1δi . (36)

Moreover, if the initial data were a special deformation retract, the perturbed homotopy equivalence
is also a special deformation retract.
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Proof. Proof is done by explicitly checking the homotopy equivalence conditions for the perturbed
maps, see [19].

3.1.1 Decomposition of odd symplectic space

In previous chapter, we have seen that associated with a loop homotopy algebra is a vector space V
with odd symplectic structure ω and a solution of quantum master equation S. Specially, this gives
us a differential Q that is compatible with ω

ω ◦ (Q⊗ 1 + 1⊗ Q) = 0 .

We want to construct a special deformation retract between this space V and HQ, the homology
with respect to Q. This amounts to choosing a decomposition V into subspaces as

V = H̃Q ⊕ ImQ⊕ C ,

where H̃Q ⊕ ImQ = KerQ. For simplicity, we will take H̃Q to be the cohomology with respect to Q

and denote it HQ. We can do this because H̃Q and HQ are isomorphic by an isomorphism that is
also a chain map and a symplectomorphism.

The differential Q is then an isomorphism of vector space ImQ and C, so the homotopy h is
minus of its inverse. The projector onto homology p is now an isomorphism between H̃Q and HQ

and i will be its inverse. The differential on HQ is zero.

To work with this decomposition on the BV algebra on F(V ), we want to put additional conditions
to this decomposition. Specifically, we will also ask for the compatibility of h with the odd symplectic
form, namely

ω ◦ (h⊗ 1− 1⊗ h) = 0 .

Existence of such decomposition follows from [20, theorem 2.7], where it is called harmonious Hodge
decomposition. From definition 2.1 ibid., we see that such harmonious decomposition for (V,Q, ω) is
given by a operator s : V → V such that

s2 = 0 ,

ω(sv, w) = (−1)|v|ω(v, sw) ,

sQs = s ,

QsQ = Q .

Then we define (following proposition 2.5 ibid.)

H̃Q ≡ Im t ≡ Im(1− sQ− Qs) ,

C ≡ Im s ,

which gives
V = H̃Q ⊕ ImQ⊕ C

with H̃Q ' HQ and H̃ω
Q = ImQ⊕ C (this is [20, proposition 2.5]).

Finally, we discuss how the symplectic form pairs the subspaces:

• The subspace H̃Q is a symplectic subspace, meaning that the symplectic form on it is non-
degenerate. Equivalently, its symplectic complement is ImQ ⊕ C. Thus, we have a situation
described in section 1.4.2 and the BV algebra decomposes into operations on F(H̃Q) and on
F(ImQ⊕ C). We denote these by ∆′, {}′ and ∆′′, {}′′, respectively.

• The subspace ImQ has a symplectic complement (ImQ)ω = KerQ = ImQ⊕ H̃Q, thanks to the
compatibility with Q. This means that for v ∈ ImQ, the expression ω(v, w) is nozero only for
w ∈ C.
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• For C, let’s choose a nonzero vector hv ∈ C = Imh. Then

ω(hv,w) = ±ω(v, hw)

and we see that Kerh ⊂ Cω. However, since it has the right dimension, we know they are
equal Cω = Kerh = H̃Q ⊕C. Together with the previous point, we see that on ImQ⊕C, the
nondegenerate form ω pairs only vectors between C and ImQ.

To get a deformation retract, set h = −s, denote p : V → HQ the projection onto a direct summand
and i : HQ → V its inverse, the inclusion. This gives i ◦ p = t = 1 − sQ − Qs = 1 + hQ + Qh. The
annihilation conditions are met because the vector space is decomposed as a direct sum. Thus we
have a special deformation retract

(V,Q) (HQ, 0)h
p

i
. (37)

3.1.2 Decomposition of F(V )

The next step is a construction of deformation retract between F(V ) and F(HQ). First, we have to
dualize the SDR 37

(V #,Q#) (H#
Q , 0)h#

i#

p#
. (38)

Since the dualization switches the projection and the inclusion, all the conditions on special defor-
mation retract remain satisfied. For example, the equation i ◦ p = 1 + Q ◦ h+ h ◦ Q becomes

p# ◦ i# = 1 + Q
# ◦ h# + h# ◦ Q# , (39)

which is what we want, because p# is the new inclusion and vice versa.

Next, we replace Q# by Q̂
# (recall equation 29), so that we can write the differential as {S0,−}.

This can be done, because the new operator differs only by a sign on homogeneous elements. It
means its kernel and image are the same and it the maps p# and i# are still chain maps. To satisfy
the equation 39, we also redefine h#. Since

Q̂
# ≡ Q

# ◦ (−1)|−| ,

we define
ĥ# ≡ (−1)|−| ◦ h# .

Finally, we extend to symmetric power algebras. We use capital letters to denote maps in this
case:

(F V, Q̂) (F(HQ), 0)Ĥ
P

I
. (40)

All these operators are linear, so we will only define them on monomials of degree n. For the
projection and inclusion, the extension is given by the tensor powers of the dual operators. For
Q̂ = {S0,−}, we use the Leibniz rule. The extension of the homology is more involved and sometimes
goes by the name tensor trick.

• The differential Q̂ extended with graded Leibniz rule. With Koszul sign convention, we can
write this as Q̂ =

∑n−1
j=0 1⊗j ⊗ Q̂

# ⊗ 1⊗(n−j−1).

• Since i and p both have different domain and codomain, the most natural way to define them
is P = (i#)⊗n and I = (p#)⊗n.
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• We will define Ĥ drawing an inspiration from [21, section XI.5], where they extend the de-
formation retract (contracting homotopy in their terminology) on the second tensor power by
h2 = h⊗1+ip⊗h. Going to third tensor power, one would get h3 = h⊗1⊗1+ip⊗(h⊗1+ip⊗h).
The pattern is that there is always one operator h, and the rest is filled with 1 and ip. Thus,
we define

Ĥ(i) ≡ 1⊗i ⊗ ĥ# ⊗ (p# ◦ i#)⊗(n−i−1)

and

Ĥu ≡
n−1∑
i=0

Ĥ(i) .

Since we want the result of Ĥ to be symmetric, we also have to symmetrize, so we define

Ĥ ≡
∑
σ∈Sn

1

n!
σr ◦ Ĥu = σn ◦ Ĥu .

Where we used the projector σn =
∑
σ∈Sn

σr. Similar formula also appears in [22, theorem 1.4].

Now, we compute Q̂ ◦ Ĥ + Ĥ ◦ Q̂ on monomial of degree n. At first, note that because
Ĥ = σn ◦ Ĥu, this is equal to

Q̂ ◦ Ĥ + Ĥ ◦ Q̂ = Q̂ ◦ σn ◦ Ĥu + σn ◦ Ĥu ◦ Q̂

and using the fact that the differential commutes with the symmetric action, we get

Q̂ ◦ Ĥ + Ĥ ◦ Q̂ = σn ◦ (Q̂ ◦ Ĥu + Ĥu ◦ Q̂) .

Because Ĥu is a sum of operators Ĥ(i), we calculate Q̂ ◦ Ĥ(i) + Ĥ(i) ◦ Q̂. Even further, only
taking 1⊗j ⊗ Q̂

# ⊗ 1⊗(n−j−1) from Q̂, we get(
1⊗j ⊗ Q̂

# ⊗ 1⊗(n−j−1)
)
◦
(

1⊗i ⊗ ĥ# ⊗ (p# ◦ i#)⊗(n−i−1)
)

+
(

1⊗i ⊗ ĥ# ⊗ (p# ◦ i#)⊗(n−i−1)
)
◦
(

1⊗j ⊗ Q̂
# ⊗ 1⊗(n−j−1)

)
.

If i 6= j, in one of the terms ĥ# commutes with Q̂
# and in the other term it does not, so these

terms subtract. If i = j, we get

1⊗i ⊗ (Q̂# ◦ ĥ# + ĥ# ◦ Q̂#)⊗ (p# ◦ i#)n−i−1

= 1⊗i ⊗ (p# ◦ i# − 1)⊗ (p# ◦ i#)n−i−1

= 1⊗i ⊗ (p# ◦ i#)⊗(n−i) − 1⊗(i+1) ⊗ (p# ◦ i#)⊗(n−i−1) .

We can therefore write

Q̂ ◦ Ĥ(i) + Ĥ(i) ◦ Q̂ = 1⊗i ⊗ (p# ◦ i#)⊗(n−i) − 1⊗(i+1) ⊗ (p# ◦ i#)⊗(n−i−1) ,

since there is exactly one term with i = j in Q̂. This is very good, because summing these
terms from i = 0 to n− 1 results in a telescopic cancellation, leaving only

Q̂ ◦ Ĥu + Ĥu ◦ Q̂ = (p# ◦ i#)⊗n − 1⊗n .

This is symmetric, so for

Ĥ =
1

n!
σn ◦

(
n−1∑
i=0

1⊗i ⊗ ĥ# ⊗ (p# ◦ i#)⊗(n−i−1)

)
we have

Q̂ ◦ Ĥ + Ĥ ◦ Q̂ = (p# ◦ i#)⊗n − 1⊗n = IP − 1 ,

where the last identity morphism is on F(V ).
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For a special deformation retract, the identities Ĥ ◦ I = 0 and P ◦ Ĥ = 0 are obviously satisfied.
The identity

Ĥ2 = 0

follows from h2 = 0, from the Koszul sign −1 when from commuting operators ĥ#, and from the
annihilation conditions for ĥ#, p# and i#.

3.1.3 A special basis

For the practical purposes of calculations, we choose bases of the three subspaces of V . We will
denote the basis elements of HQ to be ai, the basis of ImQ to be bi and the basis of C to be ci. We
also diagonalize the isomorphisms h and Q of Im d and C, so that

Q(ci) = −bi and h(bi) = ci .

The corresponding dual elements of V # are denoted with αi ∈ H#
Q , βi ∈ (ImQ)# and γi ∈ C#.

The dual morphisms Q# and h# exchange their domain and codomain, so that

Q̂
#(βi) = γi and ĥ#(γi) = βi .

This is because Q#(βi) = (−1)|β
i|(−1)|β

i|+1βi ◦ Q, which is equal to δij on cj and similarly for ĥ#.
We formally can write these maps on V # as

Q̂
# =

∑
i

γi
∂

∂βi

and
ĥ# =

∑
i

βi
∂

∂γi
.

We denote the elements of F (V ) by the same symbols as for V #. With the partial derivative
obeying the Leibniz rule, we can concisely write

Q =
∑
i

γi
∂L
∂βi

,

because the Leibniz rule is implied in the left derivative.

For P , we have p(ai) = ai and i(ai) = ai. Thus, the operator P is identity on all monomials
composed of covectors αi, and zero on monomials containing at least one β or γ. The I is formally
an identity, but goes from F(HQ) to F(V ).

One can notice that the symmetrization of Ĥ looks like the Leibniz rule, but with p# ◦ i# instead
of 1. However, these are projectors, so in the basis we just defined they are either zero on a element,
or leave it unchanged. The symmetrization determines the number of unchanged elements, which
after nontrivial manipulation gives a combinatorial factor

Ĥ =
1

η̂

∑
i

βi
∂L
∂γi

,

where η̂ is the number of βs and γs in the monomial Ĥ is acting on. For example,

Ĥ(αβiγj) =
1

2
(−1)|α|+|β

i|αβiβj

Q̂ ◦ Ĥ(αβiγj) =
1

2
(−1)|β

i|αγiβj +
1

2
αβiγj

Q̂(αβiγj) = (−1)|α|αγiγj

Ĥ ◦ Q̂(αβiγj) =
1

2
αβiγj +

1

2
(−1)|γ

i|αγiβj .
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and because the degree of βi and γi are opposite, we get

(Ĥ ◦ Q̂+ Q̂ ◦ Ĥ)(αβiγj) = αβiγj

The origin of the factor 1
η̂ can be easily seen from computing Ĥ ◦ Q̂+ Q̂ ◦ Ĥ

Ĥ ◦ Q̂+ Q̂ ◦ Ĥ =
1

η̂

∑
i

βi
∂L
∂γi

∑
j

γj
∂L
∂βj

+
1

η̂

∑
i

βi
∂L
∂γi

∑
j

γj
∂L
∂βj

=
1

η̂

∑
i

(
βi

∂L
∂βi

+ γi
∂L
∂γi

)
This is a projector on variables β and γ extended like a derivative, which is why we have to divide
by their total number.

3.2 Perturbing by master action
Recall from section 1.4.1 that both Q̂ = {S0,−} and TS = ~∆ + {S,−} are differentials. We
constructed a special deformation retract from the first differential using {S0,−} as the differential
on F(V )[[~]]. It is natural to consider the full differential TS as

TS = {S0,−}+ ~∆ + {S − S0,−} ≡ Q̂+ δ ,

i.e. to view the full differential as a deformation of {S0,−}.
Is this perturbation small? Yes, because ~∆ + {S − S0,−} either adds a power of ~, or adds the

polynomial degree, because we removed S0, which is quadratic and has no ~. In the homological
perturbation lemma, we need to compute (1− δĤ)−1δ. Expanding

(1− δĤ)−1δ = δ + δĤδ + δĤδĤδ + . . .

we see that for fixed power of ~ and polynomial degree, we get contribution from a finite number of
terms.

The homological perturbation lemma gives us a special deformation retract

(
F(V )[[~]], Q̂+ δ

)
(F(HQ)[[~]], D′) .

Ĥ′

P ′

I′
(41)

Let us look at the transferred differential D′. By lemma 3.2, we have

D′ = P (1− δĤ)−1δI = P (δ + δĤδ + . . . ) .

The first term of this expansion is P (~∆ + {S − S0,−})I. Evaluating this on a function F ∈
F(HQ)[[~]], we get

P~∆F + P{S − S0, F} ,

where we do not write the inclusion I, thinking of α ∈ H#
Q and α ∈ V # as same objects.

In first term, only ∆′ survives, since there are no coordinates β and γ for it to act.
The second term, where we denote S′ ≡ S − S0, also has only the primed operation {, }′.

Furthermore, all the terms of S′ with variables β and γ survive this primed bracket {, }′ and are
annihilated by P . Thus, only the terms of S′ without β and γ can play a role, which we can write
as

D′(F ) = ~∆′F + {P (S′), F}′ + . . . .
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We conjecture that this is in fact a general form of this differential, i.e.

D′(F ) = ~∆′F + {W,F}′ (42)

for some W ∈ F(HQ)[[~]]. This then implies, because (D′)2 = 0, that

2~∆′W + {W,W}′ = 0 , (43)

i.e. W would determine a loop homotopy algebra on HQ. We will show that D′ indeed has a form
~∆′ + {W,−}, but first we make it seem plausible using BV formalism.

3.2.1 Effective action W

There is in fact a physical construction leading to this W , given by integrating out the variables β
and γ. Such integration is physically motivated by the construction of physical states, which are
the homology of the differential Q̂. The states in ImQ are then called trivial and states in C, that is
not in KerQ, are called unphysical. Integrating out these degrees of freedom results in an effective
action that is a functional of the physical states.

We therefore define the effective action W ∈ F(HQ)[[~]] as (see [17] for similar calculation)

eW/~ ≡
∫
L′′
eS/~ . (44)

This is the BV formalism integral, which means we have to integrate over Lagrangian submanifold
L′′ in the space ImQ⊕ C. Note that W depends on the choice L′′, but we don’t denote it.

This effective action satisfies the master equation in BV algebra on F(HQ)[[~]], which can be
easily proven

∆′eW/~ = ∆′
∫
L′′
eS/~ =

∫
L′′

∆′eS/~ =

∫
L′′

(∆−∆′′)eS/~ .

Here, we moved ∆′ under the integral because ∆′ and the integral act on different variables. This
is equal to zero, because ∆eS/~ = 0 by master equation and

∫
L′′

∆′′(. . . ) = 0 by the theorem 1.1.
We also define a normalized effective observable, given by integrating a functional F ∈ F(V )[[~]]

with weight eS/~

PL′′(F ) ≡
∫
L′′
FeS/~∫

L′′
eS/~

= e−W/~
∫
L′′
FeS/~ ,

and we aim to find a Lagrangian subspace L′′ such that this map is the projector P ′ from equation
41. At first, we show that it is a chain map between the natural differentials on our spaces,

TS = ~e−S/~∆(− · eS/~) = ~∆ + {S,−} ,

acting on F(V )[[~]], and

TW = ~e−W/~∆(− · eW/~) = ~∆′ + {W,−}′ ,
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acting on F(HQ)[[~]]. To see that PL′′ is a chain map, we compute

TW ◦ PL′′(F ) = ~e−W/~∆′
(
PL′′(F ) · eW/~

)
= ~e−W/~∆′

(∫
L′′
FeS/~

)
= ~e−W/~

∫
L′′

∆′
(
FeS/~

)
= ~e−W/~

∫
L′′

(∆−∆′′)
(
FeS/~

)
= ~e−W/~

∫
L′′

∆
(
FeS/~

)
= ~e−W/~

∫
L′′
eS/~ · e−S/~ ·∆

(
FeS/~

)
= e−W/~

∫
L′′
eS/~ · TS(F )

= PL′′ ◦ TS(F ) . (45)

Now we show how PL′′ and P ′ relate, starting from an equation

I ′ ◦ P ′ − 1 = H ′ ◦ TS + TS ◦H ′ ,

which holds because 41 is a SDR. We evaluate this on F ∈ F(V )[[~]] and integrate with weight eS/~,
obtaining∫

L′′
I ′ ◦ P ′(F ) · eS/~ −

∫
L′′
FeS/~ =

∫
L′′
H ′ ◦ TS(F ) · eS/~ +

∫
L′′
TS ◦H ′(F ) · eS/~ .

We know that Ĥ = 1/η̂βi ∂L∂γi , meaning that either Ĥ(G) leaves at least one covector β in Ĥ(G), or
Ĥ(G) = 0. Furthermore, we know H ′ = Ĥ ◦ (1 + (1 − δĤ)−1δĤ), so also H ′ leaves either nothing
or at least one covector βi. If we thus choose L′′ = C ⊂ Kerβi for all i, the term∫

L′′=C

H ′ ◦ TS(F ) · eS/~

is zero. The term ∫
C

TS ◦H ′(F ) · eS/~

can be written, using similar steps as in equation 45, as∫
C

TS(H ′(F )) · eS/~ = eW/~PC [TS(H ′(F ))]

= eW/~TW [PC(H ′(F ))] = ~∆′
∫
C

H ′(F ) = 0 .

Thus, we have ∫
C

I ′ ◦ P ′(F ) · eS/~ =

∫
C

FeS/~ .

We know that I ′ = I + Ĥ ◦ (1− δ ◦ Ĥ)−1 ◦ I and integral of Ĥ ◦ (1− δ ◦ Ĥ)−1 ◦ I is zero, so we have∫
C

I ◦ P ′(F ) · eS/~ =

∫
C

FeS/~ .

24



The function I ◦ P ′(F ) is only a function on HQ, which means we can take it out of the integral,
which integrates the variables β and γ

P ′(F )

∫
C

eS/~ =

∫
C

F · eS/~ .

Here, we don’t write I on the LHS, because we take take
∫
C
as taking values in F(HQ)[[~]]. Moving∫

C
eS/~ = eW/~ on the RHS, we get

P ′(F ) = PC(F ) . (46)

The projection P ′ intertwines differentials TS and D′, projection PC intertwines TS and TW , but
because these two projections are equal, we have

TW ◦ PC = PC ◦ TS = P ′ ◦ TS = D′ ◦ P ′ .

At last, precomposing with I ′, for which we have P ′ ◦ I ′ = 1, we get

TW = D′ ,

which holds if we choose the Lagrangian subspace of ImQ⊕C. Of course, other Lagrangian subspaces
give us different W which again solve a master equation. However, this change of W is only by a
gauge transformation (in the space of master actions) – see [5, section 4.3, statement 6].

This computation should be viewed as a heuristic argument for considering the homological
perturbation lemma for constructing new loop homotopy algebras. Mainly, we have not shown that
the path integral exists even in this finite-dimensional context.

3.2.2 Perturbed differential D′

Coming back to the perturbation lemma, we want to continue studying the formula for the perturbed
differential

D′ = P ◦ (1− δ ◦ Ĥ)−1 ◦ δ ◦ I = P ◦ (δ + δ ◦ Ĥ ◦ δ + . . . ) ◦ I ,

where
δ = ~∆ + {S′,−} .

We have already seen that the first term of expansion of D′ gives ~∆′+{P (S′),−}′. In this section,
we show that considering all terms, we get a differential in the correct form to define a loop homotopy
algebra on HQ

Theorem 3.3. There is a function W ∈ F(HQ)[[~]] such that

D′ = ~∆′ + {W,−}′ .

Proof. A typical term in the expansion of D′ looks like

P ◦ δ ◦ Ĥ ◦ · · · ◦ Ĥ ◦ δ ◦ I .

This term is nonzero only if, when applying it on a function F ∈ F(HQ), we get an expression
without any variables β or γ, because there is the projection P at the end.

Clearly, the rightmost δ operator, which acts only on a function only with variables α, reduces
to

δ ◦ I(F ) = ~∆′I(F ) + {S′, I(F )}′ ,

because the double-primed operations are zero on F . We will abuse the notation and write F for
I(F ), so we write

δ ◦ I(F ) = ~∆′F + {S′, F}′ .

Note that this holds even without projecting out on the homology (one could say off-shell).
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How could the statement that D′F = ~∆′F + {W,F}′ go wrong? Roughly, the operators acting
on F could be derivatives of order higher than one. Of course, one such order 2 derivative, ~∆′, is
there, but there can be no other if we want to write their action as a bracket with W . We now show
that there are no such higher order derivatives.

Lemma 3.4. There are functions Wi ∈ F(HQ)[[~]] such that we can write the perturbed differential
D as

D′F = ~∆′F +Wi ω
ij
α

∂LF

∂αj
, (47)

where ωijα is ωij for indices i, j corresponding to α.

Proof. (of the lemma) The proof is based on tracking the number of covectors β:

• The operator Ĥ = − 1
η̂β

i ∂L
∂γi removes one γ and adds one β.

• The operator ∆′′ removes one β and one γ.

• The bracket with S′ either removes β or γ, but can add more terms. Specifically, only {S′,−}′′
can remove β or γ.

We see that Ĥ always adds one β (or the result is zero) and δ might or might not remove a β, which
means that together they can only increase the number of covectors β. In a string of operators

P ◦ δ ◦ Ĥ ◦ · · · ◦ δ ◦ Ĥ ◦ δ(F ) , (48)

the first δ is only acting on the primed coordinates. Then the Ĥ adds one vector β. The next δ
must remove this vector β, because if it didn’t, the number of vectors β in this term would be at
least one. Such term would be projected to zero with P .

So, denoting δ = δ′+ δ′′ the decomposition of δ to primed and double-primed operators, we have
that the leftmost δ is always δ′ and the other operators δ are δ′′ in every nonzero term of equation
48.

Thus, in the string of operators

P ◦ δ′′ ◦ Ĥ ◦ · · · ◦ δ′′ ◦ Ĥ ◦ δ′(F ) ,

the first operator δ′ differentiates F , but the others never act on covectors α. The operator δ′ contains
~∆′, but all terms starting with ~∆′F followed by Ĥ are zero, and only the term P ◦ ~∆′ ◦ I(F )
survives.

For terms starting with {S′, F}′, we have (δ′′Ĥ)n acting on them. The operator δ′′ ◦ Ĥ only
affects the double-primed coordinates and therefore, they only act on S′ in {S′, F}′, determining
the factors Wi:

P ◦ (δ′′ ◦ Ĥ)n({S′, F}′) =

[
P ◦ (δ′′ ◦ Ĥ)n

(
∂RS

∂αi

)]
ωijα

∂LF

∂αj
. (49)

This result also gives some restrictions on S′: we see that only terms of S′ with no β dependence
can appear in Wi. This corresponds to the choice of the Lagrangian subspace as L′′ = C. Moreover,
the number of variables γ in S′ is also limited: in a string of operators 48, every δ′′ ◦H removes two
γ. The actions S′ thus have to have 2n covectors γ in term P ◦ (δ′′ ◦ Ĥ)n ◦ δ ◦ I.

For example, looking at P ◦ δ′′ ◦ Ĥ ◦ δ(F ), we get

P ◦ δ′′ ◦ Ĥ ◦ δ(F ) = P (~∆′′H({S′, F}′) + {S′, H({S′, F}′)}′′) .

Here, the term with ∆′′ can be written as

P{~∆′′H(S′), F}′ = {~P∆′′H(S′), F}′ ,
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because ∆′′ ◦H has an degree 0 and does not interact with the α-derivative of {, }′. Thus, only the
part of S′ with two operators γ and no β contributes.

The second term P{S′, Ĥ({S′, F}′)}′′ has exactly one γ in each of the actions S′, so that one is
removed by Ĥ and the other by {}′′.

What remains to be shown is that we can write Wi as

Wi =
∂RW

∂αi
,

for all i, so that

Wi ω
ij
α

∂LF

∂αj
= {W,F}′ .

We start by considering the relation
D′2(F ) = 0 .

Using the equation 47, we get (using a shorthand Wi ω
ij
α ≡W j)

D′2(F ) = ~∆′~∆′(F ) + ~∆′
(
W j ∂LF

∂αj

)
+W j ∂L

∂αj
(~∆′F ) +W i ∂L

∂αi

(
W j ∂LF

∂αj

)
. (50)

The first term of RHS is 0, because ∆′2 = 0. We can write the second term as

~∆′
(
W j ∂LF

∂αj

)
= ~∆′

(
W j
) ∂LF
∂αj

+ (−1)|W
j |W j~∆′

(
∂LF

∂αj

)
+ (−1)|W

j |{W j ,
∂LF

∂αj
}′
.

Because D′ has degree 1, we have |W i| − |αi| = 1. If we commute ∆′ with ∂L
∂αj in the middle term,

we get

(−1)|W
j |W j~∆′

(
∂LF

∂αj

)
= −W j ∂L

∂αj
~∆′F ,

which cancels with the third term in RHS of equation 50. In the last term of 50, we have

W i ∂L
∂αi

(
W j ∂LF

∂αj

)
= (−1)|W

i||αj |W iW j ∂L
∂αi

∂L
∂αj

+W i ∂LW
j

∂αi
∂LF

∂αj
.

Using the standard procedure, we show that the first term is zero

(−1)|W
i||αj |W iW j ∂L

∂αi
∂L
∂αj

= (−1)|W
i||αj |+|W i||W j |+|αi||αj |W jW i ∂L

∂αj
∂L
∂αi

= (−1)|W
j ||αi|+|W j ||W i|+|αj ||αi|W iW j ∂L

∂αi
∂L
∂αj

= −(−1)|W
i||αj |W iW j ∂L

∂αi
∂L
∂αj

after using |W i| − |αi| = 1.
Expanding the bracket {}′, we finally get

D′2(F ) = ~∆′
(
W j
) ∂LF
∂αj

+ (−1)|W
j |{W j ,

∂LF

∂αj
}′

+W i ∂LW
j

∂αi
∂LF

∂αj

= (−1)|W
j | ∂RW

j

∂αk
ωklα

∂L
∂αl

∂LF

∂αj
+ ~∆′

(
W j
) ∂LF
∂αj

+W i ∂LW
j

∂αi
∂LF

∂αj
.

Because this identity holds for all F , we have two identities, for the order 1 and order 2 differential
operators. We will see that these two identities encode the two identities from the definition of loop
homotopy algebra.
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The second order differential operator has to be zero

(−1)|W
j | ∂RW

j

∂αk
ωklα

∂L
∂αl

∂LF

∂αj
= 0 ,

which means that a (graded) symmetric part of (−1)|W
j | ∂RW j

∂αk ωklα with respect to indices l, j is zero:

0 = (−1)|W
j | ∂RW

j

∂αk
ωklα + (−1)|α

l||αj |(−1)|W
l| ∂RW

l

∂αk
ωkjα .

Reverting the substitution Wi ω
ij
α ≡W j , we can write

0 = (−1)|W
j | ∂RWi

∂αk
ωijα ω

kl
α + (−1)|α

l||αj |(−1)|W
l| ∂RWm

∂αk
ωmlα ωkjα .

Now we contract this with ωα,jp ωα,lq, the inverse matrices to ωijα . Using the degree of ω and
|W i| − |αi| = 1, the sign factors give

∂RWp

∂αq
= (−1)|α

p||αq| ∂RWq

∂αp
. (51)

This is the necessary condition for W to exist, because if it does, we have

∂RWp

∂αq
=

∂R
∂αq

∂RW

∂αp
= (−1)|α

p||αq| ∂R
∂αp

∂RW

∂αq
= (−1)|α

p||αq| ∂RWq

∂αp
.

Special case of relation 51 is following for p = q

∂RWp

∂αp
= (−1)|α

p| ∂RWp

∂αp
, (52)

which for fermionic αp implies that Wp contains no αp. This is important for us, because now we
can integrate W p.

Lemma 3.5. A function W defined as

W =
∑
i

(∫ 1

0

dtWi|α→tα
)
αi (53)

satisfies
∂RW

∂αk
= Wk .

This is just application of the homotopy operator for differential forms to the graded context – see
e.g. [23].

Proof. (of the lemma) Directly calculating, we get

∂RW

∂αk
=

∫ 1

0

dtWk|α→tα +
∑
i

(∫ 1

0

dt (−1)|α
i||αk| ∂RWi

∂αk
|α→tα · t

)
αi

=

∫ 1

0

dtWk|α→tα +
∑
i

(∫ 1

0

dt
∂RWk

∂αi
|α→tααi · t

)
=

∫ 1

0

dtWk|α→tα +

∫ 1

0

dt
d

dt
(Wk|α→tα) · t

=

∫ 1

0

dtWk|α→tα + [Wk|α→tα · t]t=1
t=0 −

∫ 1

0

dtWk|α→tα

= Wk .
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Because we proved that D′ = ~∆′ + {W,−}′ and D′2 = 0, we get (see section 1.4.1)

2~∆′W + {W,W}′ = 0,

which means that W determines a loop homotopy Lie algebra.

From Wi, we constructed the function W directly. An alternative proof would be defining loop
homotopy algebra operations using Wk. If we decompose Wk

∂L
∂αk into terms of homogeneous weight

and ~ power, by dualizing them we get the loop homotopy algebra operations λ̃gn : H⊗nQ → HQ. If
we then construct

s̃gn+1 ≡ ω ◦ (1⊗ λ̃gn) ,

the graded symmetry of these s̃ follows from equation 51. Then, we can use them to construct the
action W as in section 2.3, which is a solution of a quantum master equation and thus determines
a loop homotopy algebra on HQ.

It can be easily seen that this transferred action W determines trivial differential, i.e. it has no
quadratic ~0 part. The ~0 components of the action can come only from the {S′,−}′′ part of δ′′,
and each of these terms adds at least two covectors. So the lowest number of covectors in W can
come from the term P ◦ δ ◦ I of the expansion, i.e. P (S′), which is at least cubic.

This effective action thus (up to quantum corrections) determines the scattering completely, since
there is no propagator to form more complicated Feynman diagrams other than just vertices. This
suggests a name effective S-matrix for W .

Another characterization ofW can come from the theory of the homotopy algebras. For (classical)
homotopy algebras, one usually finds a minimal model of the algebra, which is a quasi-isomorphic
homotopy algebra defined on the homology of the original homotopy algebra (see [4] for details). This
is exactly what we did. A definition of a loop homotopy algebra morphism hasn’t explicitly appeared
in literature yet, but we can postulate that the transferred action W together with the perturbed
chain maps P ′ and I ′ are a minimal model. Note that dualizing the map P ′ = P +P (1− δĤ)−1δĤ,
one gets i+ h(. . . ), which is a symplectomorphism, as one would expect.

Definition 3.6. A minimal model of an loop homotopy Lie algebra is given by the transferred
action W and the perturbed morphisms P ′, I ′ of homological perturbation lemma. 4

In the general case of algebras over modular operads, the minimal model was found by a similar
diagrammatic expansion by Chuang and Lazarev [9].

The last point we make is connecting this calculation to the path integral. We have shown that
the effective action W can be computed using the path integral. Writing

W = ~ ln

∫
C

eS0/~eS
′/~ ,

the perturbative series obtained this way would consist of vertices coming from S′/~ paired by
edges coming from the inverse of S0, the propagator. The kinetic term is S0 = 1

2ω(1⊗ Q), thus its
inverse pairs two variables γ using h (inverse of Q). We see that this corresponds to the operator
(1− δ ◦ Ĥ)−1 ◦ δ from the perturbation lemma, with the terms of expansion of the inverse operator
corresponding to collecting all the Feynman graphs with definite number of edges.
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Appendix A On signs, degrees and factors
In this appendix, we summarize some conventions we use and also collect useful results connected
with these conventions.

A.1 Graded vector spaces
Throughout this paper, we use graded vector spaces Vn, see e.g. [24, section 1.5]. Specifically, we
use Koszul sign convention, e.g

(φ⊗ ψ)(v ⊗ w) ≡ (−1)|ψ||v|φ(v)⊗ ψ(w) .

Sometimes, we use (−1)|−| for the operator

v 7→ (−1)|v|v .

We define a dual of a graded vector space by (V #)n = (V−n)#. The transpose (or dual) of a
map φ : V →W is defined (for w ∈W#) as

φ#(w) = (−1)|w||φ|+1w ◦ φ ,

Note that the transpose map has the same degree as the original one.
The grading of will be also referred to as a ghost number.
On the (symmetric) tensor powers of V , there is another grading, by the tensor power. We will

call this grading weight.

A.1.1 Symmetric action

On n-fold tensor products of graded vector spaces we usually use the right Sn action, defined as

σr(v1 ⊗ · · · ⊗ vn) = ε(σ) vσ(1) ⊗ · · · ⊗ vσ(n) . (54)

The sign ε(σ) is defined as the sign coming from commuting graded elements. If all vi have even
degree, it is 1. We write χ(σ) for ε(σ) multiplied by the sign of the permutation. We choose the
right action mostly because it is shorter to write vσ(i) than vσ−1(i). We also define a projector

σn ≡
∑
σ∈Sn

1

n!
σr .

Unshuffles σ ∈ unsh(l, n− l) are permutations in Sn for which σ(1) < · · · < σ(l) and σ(l + 1) <
· · · < σ(n). Unshuffles from unsh(i1, i2, . . . , ik) with

∑
m im = n are defined analogously.

A.1.2 Suspensions etc

By a suspension of a graded vector space V , we mean a graded vector space (↑V )n = Vn−1, which
takes v ∈ Vn into ↑ v ∈ (↑V )n+1, i.e. it increases the degree by 1. Similarly, desuspension of V is
(↓V )n = Vn+1. A reflection of V is defined as (rV )n = V−n. We have r ◦↑=↓◦r and r ◦↓=↑◦ r.

For map φ : V ⊗n →W , we define maps

φ↑ : (↑V )⊗n →W as φ↑≡ φ ◦↓⊗n ,
φ↓ : (↓V )⊗n →W as φ↓≡ φ ◦↑⊗n ,
φ↑ : V ⊗n → (↑W ) as φ↑≡↑◦φ ,
φ↓ : V ⊗n → (↓W ) as φ↓≡↓◦φ .

Note that for the first two cases, we imply a Koszul sign when commuting vectors with ↑. What
happens with degrees of these maps?
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• For φ↑, the degree decreases by n, because now the map takes vectors of higher degree to
produce the same degree in results. Similarly, desuspending the vector space V increases the
degree of φ by n.

• For suspending and desuspending W , we simply have |φ↑| = |φ|+ 1 and |φ↓| = |φ| − 1.

• A special case that will be useful is when φ : V ⊗n → V and we suspend or desuspend the
arguments and results at the same time. In the case of suspension, the degree of φ decreases
by n− 1, for desuspension it increases by n− 1.

• Another special case is a map ω : V ⊗n → k. Since k as a graded vector space is concentrated
in degree 0, ω is nonzero only on vectors of total degree −|ω|. Again, suspending V decreases
the degree of ω by n and vice versa.

For general map φ : V ⊗n →W , the reflection of only arguments or results would not give a map of
definite degree. For φ : V ⊗n → V , we can define

φr ≡ r ◦ φ ◦ r⊗n .

which has degree equal to −|φ|. Similarly, for ω : V ⊗n → k, we can define

ωr ≡ ω ◦ r⊗n ,

which again has a degree opposite to that of ω. Of course, there is no Koszul sign for commuting
with r, since it has no well-defined degree.

A.2 Symmetric powers
We choose to represent the symmetric tensor power Symn(V ) as the subspace of V ⊗n of tensors
which are graded symmetric, i.e. for which T = σrT for all σ ∈ Sn. We define the an associative
symmetric product � as (see [25, section 4.5])

v1 � · · · � vn = σ[v1 ⊗ · · · ⊗ vn] .

With this convention
V �W = σ(V ⊗W ) .

We also sometimes omit � and write
v1v2 ≡ v1 � v2 .

A.2.1 Pairing with dual symmetric powers

For v1 � · · · � vn ∈ Symn V and φ1 � · · · � φn ∈ Symn V #, we define their pairing as

φ1 � · · · � φn(v1 � · · · � vn) ≡
∑
σ∈Sn

ε(σ)φ1(vσ(1)) . . . φ
n(vσ(n)) ,

i.e. without signs from commuting φ and v.
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