Produkcia mezónu J/ψ v centrálnych zrážkach U+U na experimente STAR

Jana Fodorová

Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

24. mája 2016

Jadro-jadrové zrážky - sonda QGP

• Kvarkovo-gluónová plazma (QGP)

- Vysoké teploty a hustoty energie: kvarky viazané v hadrónoch \rightarrow dekonfinovaná jadrová hmota
- Študovateľná v jadro-jadrových zrážkach \rightarrow sondy QGP

Motivácia pre štúdium J/ψ

- Potlačenie produkcie J/ψ v jadro-jadrových zrážkach - znak QGP
 - Tienenie $Q\bar{Q}$ potenciálu v QGP

$$V(r, T) \sim \frac{\alpha(T)}{r} e^{-r/r_D(T)}$$

- Postupné potlačenie stavov kvarkónií
 - Informácia o teplote horúcej hmoty

Obraz o potlačení

 Jadrový modifikačný faktor R_{AA} vyjadruje modifikáciu produkcie častíc

$$\mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{p}_\mathsf{T},\mathsf{y}) = \frac{1}{<\mathsf{N}_{\mathsf{bin}} > \sigma_{\mathsf{inel}}^{\mathsf{pp}}} \frac{\mathsf{d}^2\mathsf{N}_{\mathsf{A}\mathsf{A}}/\mathsf{d}\mathsf{p}_\mathsf{T}\mathsf{d}\mathsf{y}}{\mathsf{d}^2\sigma_{\mathsf{pp}}/\mathsf{d}\mathsf{p}_\mathsf{T}\mathsf{d}\mathsf{y}}$$

- Situácia nie je jednoduchá rôzne efekty ovplyvňujú produkciu J/ψ
 - Rekombinácia
 - Efekt uniknutia
 - Efekty studenej jadrovej hmoty

U+U - Súhra rôznych efektov

- Asymetrické jadrá
 → Rôzne energetické hustoty v
 systéme
- Centrálne zrážky U+U
 → Najvyššia hustota energie
 dosiahnutná na RHICu

 \rightarrow Sonda efektov horúcej hmoty

J/ψ v jadrových zrážkach na experimente STAR

- Zrážky Au+Au ($\sqrt{s_{NN}}=200~{\rm GeV})$ a U+U ($\sqrt{s_{NN}}=193~{\rm GeV})$, centralita 0-60%, 0-80%
- Podobné potlačenie pozorované v oboch zrážkových systémoch
- Súhra disociácie a rekombinácie ?

• Motivácia k štúdiu efektov jadrovej hmoty v centrálnych zrážkach

• Ako sa v nich uplatňujú efekty horúcej hmoty?

Analýza dát - experiment STAR

- $J/\psi \rightarrow e^+e^-$ (B.R. 5.971 ± 0.032%)
- Kroky analýzy:
 - Výber e⁺e⁻ kandidátov z rozpadu J/ψ
 - Konštrukcia spektra invariantnej hmoty e⁺e⁻ párov
 - 3 Štúdium hrubého výťažku J/ψ
 - 4 Korekcie signálu
 - Stanovenie invariantného výťažku J/ψ
 - 6 Stanovenie jadrového modifikačného faktoru J/ψ

- $J/\psi \rightarrow e^+e^-$ (B.R. 5.971 ± 0.032%)
- Kroky analýzy:
 - Výber e⁺e⁻ kandidátov z rozpadu J/ψ
 - Ø Konštrukcia spektra invariantnej hmoty e⁺e⁻ párov
 - 3 Štúdium hrubého výťažku J/ψ
 - 4 Korekcie signálu
 - Stanovenie invariantného výťažku J/ψ
 - 6 Stanovenie jadrového modifikačného faktoru J/ψ

- $J/\psi \rightarrow e^+e^-$ (B.R. 5.971 ± 0.032%)
- Kroky analýzy:
 - Výber e⁺e⁻ kandidátov z rozpadu J/ψ
 - Konštrukcia spektra invariantnej hmoty e⁺e⁻ párov
 - **3** Štúdium hrubého výťažku J/ ψ
 - 4 Korekcie signálu
 - Stanovenie invariantného výťažku J/ψ
 - 6 Stanovenie jadrového modifikačného faktoru J/ψ

- $J/\psi \rightarrow e^+e^-$ (B.R. 5.971 ± 0.032%)
- Kroky analýzy:
 - Výber e⁺e⁻ kandidátov z rozpadu J/ψ
 - 2 Konštrukcia spektra invariantnej hmoty e⁺e⁻ párov
 - 3 Štúdium hrubého výťažku J/ψ
 - 4 Korekcie signálu
 - Stanovenie invariantného výťažku J/ψ
 - 6 Stanovenie jadrového modifikačného faktoru J/ψ

- $J/\psi \rightarrow e^+e^-$ (B.R. 5.971 ± 0.032%)
- Kroky analýzy:
 - 1 Výber e^+e^- kandidátov z rozpadu J/ψ
 - 2 Konštrukcia spektra invariantnej hmoty e⁺e⁻ párov
 - 3 Štúdium hrubého výťažku J/ψ
 - 4 Korekcie signálu
 - Stanovenie invariantného výťažku J/ψ
 - 6 Stanovenie jadrového modifikačného faktoru J/ψ

$$B\frac{d^2N}{d\phi p_T dp_T dy} = \frac{1}{2\pi p_T \Delta p_T \Delta y} \frac{N_{J/\psi}}{\epsilon_{total}} \frac{1}{N_{ev}}$$

- $J/\psi \to e^+e^-$ (B.R. 5.971 ± 0.032%)
- Kroky analýzy:
 - 1 Výber e^+e^- kandidátov z rozpadu J/ψ
 - 2 Konštrukcia spektra invariantnej hmoty e⁺e⁻ párov
 - 3 Štúdium hrubého výťažku J/ψ
 - 4 Korekcie signálu
 - Stanovenie invariantného výťažku J/ψ
 - 6 Stanovenie jadrového modifikačného faktoru J/ψ

- Predstavenie štúdia modifikácie mezónu J/ψ v jadrových zrážkach
- Pozorované potlačenie v zrážkach Au+Au i U+U

Ďakujem za pozornosť !