Underlying event na 13 TeV

Andy Buckley, Deepak Kar, Oldřich Kepka, Roman Lysák, Matouš Vozák

Fakulta jaderná a fyzikálně inženýrská FJFI

24.5. 2016

7. Česko-Slovenská studentská vědecká konference ve fyzice (ČSSVK7),

Průběh prezentace

- pp srážky na LHC
- Underlying event
- ATLAS analýza underlying eventu na 13 TeV
- Výsledké distribuce
- Závěr

Proton-protonové srážky

- LHC pp srážky
- Kompozitní struktura protonu \rightarrow **partony**.

Figure: Vnitřní struktura protonu [3]

- Tvrdé interakce (velký přenos hybnosti) 2→2 produkce zajímavých částic W,Z, H
- Mnohem rušnější prostředí

Figure: Diagram $qq \rightarrow qq$ [2]

Underlying event

- Tvrdý proces
- Partonové spršky (počáteční/finální)
- Multi-partonové interakce
- Pozůstatky protonu
- PS + MPI + PP = UE

Figure: Typický průběh události při pp srážce [1]

Underlying event

- Přítomnost UE způsobuje zvýšení aktivity a tedy možnou kontaminaci jistých měření (nízkoenergetické jety, ...)→ nutnost studie okolní aktivity.
- UE obsahuje příspěvky tvrdých i měkkých interakcí \rightarrow použití MC generátorů (volné parametry ladění).

MOTIVACE?

- Pochopení chování UE v pp srážkách.
- UE měření zpracováno na 900 GeV a 7 TeV [5] jak to vypadá na nové těžišťové energii 13 TeV?
- Kontrola nastavení volných parametrů.

Analýza UE

- Zavedení regionů v rovině kolmé k svazkové trubici.
- Využití "čelní" částice.
- Regiony $\Delta \phi = \phi \phi_{wrtlead}$
 - Opředný region
 - Odvrácený region
 - Solmý region
 - Kolmý max/min/diff

$$\begin{split} |\Delta\phi| &< \pi/3 \\ 2\pi/3 < |\Delta\phi| \\ \pi/3 &< |\Delta\phi| < 2\pi/3 \end{split}$$

Analýza UE

- Studium pozorovatelných citlivých na UE.
 - $\textcircled{O}~\langle d^2 N_{ch}/d\eta d\phi \rangle$ jako funkce $\mathsf{p}_T^{lead}~$, $\Delta \phi$

 - **3** $\langle p_T \rangle$ jako funkce p_T^{lead} , N_{ch}
- Celkově přibližně 30 distribucí.
- Selekce
 - Události: $p_T^{lead} > 1$ GeV, ...
 - Cásticové stopy: kinematika, zásahy ve vrstvách detektoru, ...
 - 3 ...
- Korekce
 - Effektivity rekonstrukce: částicových stop, vrcholků, ...
 - BOM: Snaha opravit pozorovatelné na efekty spojené s reorientací.

(pouze malá ochutnávka)

Výsledky částicových hustot

- Oproti dopřednému regionu je hustota částic v kolmém regionu téměř konstantní (p $_T^{lead}$ >5 GeV). \rightarrow UE plošina.
- Lepší popis dat pomocí MC až zhruba od 7 GeV.

Porovnání se 7 TeV analýzou

- Nárust aktivity o přibližně 20 % .
- Mnohem lepší porovnání s MC.

- Analýza UE, který leží na pozadí tvrdých srážek.
- Znalost jeho chování napomáhá k porozumění procesům na pozadí (MPI, PS, PP) při pp srážkách.
- Studium pomocí pozorovatelných citlivých na UE v definovaných regionech.
- Korekce na efekty detektoru a využití HBOM metody.
- S rostoucím p_T^{lead} je příspěvek hustoty částic v kolmém regionu konstantní.
- Relativně dobrý popis dat až na nižší hodnoty p_T^{lead} .
- Zhruba 20% nárust aktivity oproti měření ze 7 TeV.

Reference

John Baez, October diary 2015 http://math.ucr.edu/home/baez/diary/october_2015.html

Ann Heinson, Useful diagrams of Top signals and backgrounds http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_feynman_diagrams.html

ATLAS collaboration, Measurement of underlying event characteristics using charged particles in pp collisions at $\sqrt{s} = 900$ GeV and 7 TeV with the ATLAS detector, PhysRevD.83.112001

Oldřich Kepka, Deepak Kar, Matouš Vozák, Leading Track Underlying Event at 13 TeV, (2015), https://cds.cern.ch/record/2030164

BACKUP

Výsledky $|\Delta \phi|$ distribucí

- Náhled na topologii eventů.
- Dopředný a odvrácený region zvýšenou aktivitu oproti kolmému, která se ještě více projevuje pro vyšší transversální hybnosti čelní částice p^{lead}.
- Popis dat MC generátory se zlepšuje také s rostoucím p_T^{lead} (UE generátory).

Results

<u>Results</u>

Selection

Data selection

- Using low PU runs 267358-9 (after GRL and Trigger 10855221 events) with $L=170\mu b^{-1}$
- Trigger HLT_noalg_MBTS_1 (one hit on either sides of MBTS)

Event selection

- Primary vertex (no additional with $n_{tracks} \ge 4$)
- Leading track with $p_T^{lead}>1$ GeV (60.88 %)

Track selection

- $p_T > 500$ MeV, $|\eta| < 2.5$
- ≥ 1 pixel hit, hit in IBL if expected, or otherwise hit in next layer if expected
- $\geq 6~{\rm SCT}$ hits
- cut on impact parameters: $|d_0| < 1.5$ mm, $|z_0| \cdot \sin \theta < 1.5$ mm
- χ^2 probability > 0.01 for tracks with $p_T > 10 \text{ GeV}$

Correction to particle level

- Two step correction
 - O Weighting \rightarrow account for vertex, trigger (negligible) and track efficiency of reconstruction
 - O HBOM \rightarrow account for change of event topology due to loss of leading track

Weighting

- ϵ_{trk} effectivity of track reconstruction
- f_{okr} fraction of tracks out of kinematic region
- f_{npr} fraction of non-primary tracks
- $f_{strangebar}$ fraction of strange baryons

$$w_{ev} = \frac{1}{\epsilon_{trig}(N_{sel}^{BL})} \frac{1}{\epsilon_{vtx}(N_{sel}^{BL}, \eta)}$$
(1)

$$w_{trk} = \frac{1}{\epsilon_{trk}(p_T, \eta)} \cdot \left(1 - f_{okr}(p_T, \eta) - f_{npr}(p_T, \eta) - f_{strangebar}(p_T)\right)$$
(2)

- Applied to $\Sigma p_T, N_{ch}$ and $\langle p_T \rangle$ wrt p_T^{lead} distribution
- $\Sigma p_T \to \Sigma_l p_{T_l} w_l$, $N_{ch} \to \Sigma_l w_l$, $\langle p_T \rangle \to \Sigma_l p_{T_l} w_l / \Sigma_l w_l$, $w_l = w_{ev} w_{trk_l}$
- Correction of particle multiplicity $n_{\mathit{sel}} \rightarrow N_{\mathit{ch}}$ using track weights is not sufficient due to large fluctuations in multiplicity

Correction to particle level

Reorientation correction

- Hit backspace once more (HBOM) \rightarrow In this case randomly loosing tracks according to the track reconstruction efficiency (parametrized by η , p_T)
- Parametrization of k-th iteration by polynom of n degree (default 6 iteration and pol. of 2nd degree)
- Extrapolation to -1

M Vozák

- Reweighting of survived tracks by $1/\epsilon_{trk}$ in each iteration
- Different seed for each iteration (uncorrelated iteration)
- Error of the method determined as 68% interval of unfolded values from toy experiments

- Non-closure around 2 % in first bins for Σp_T and N_{ch} wrt p_T^{lead}
- 1 % Non closure in $\Delta \phi$
- TrDiff arround 10 % in first bins \rightarrow Possible exclusion from final results.
- Application non closure (from Pythia 8) as correction for data (mainly only $_{_{\rm M.\,Vozák}}$ in first bins and max 2.5 %) $_{_{\rm page 20}}$

Systematic uncertainties

- Dominant systematics from material modeling and contribution of non-primaries (applied)
- Non closure systematic (applied)
- Data-driven correction of tracking efficiency (small effect) (applied)
- Number of iteration k and polynomial degree n (applied for some)

Statistic and systematic uncertainties

- Uncertainty of hbom method is taken as statistic uncertainty (blow up \rightarrow 6 iteration)
- Smoothing of $\Delta\phi$

M. VerákNon closure systematic for $\langle p_T \rangle$ vs N_{ch} set up by hand on 0.5 % Page 22

Trigger

- For now HLT mb noalg L1 MBTS1
- Leading track trigger \rightarrow HLT mb sptrk pt8 L1MBTS1

Trigger

• Reduction of statistic uncertainty in higher p_T^{lead} by 20-30 %

4 vs 6 hbom iteration

Statistic and systematic errors

<mean p_> [GeV], Away

