

Pomalý pixelový simulátor D[±] v 2014 Au+Au 200 GeV datech

Jakub Kvapil

Školitel: Mgr. Jaroslav Bielčík, PhD. Konzultant: Ing. Miroslav Šimko

> Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Obsah

- RHIC, STAR, HFT motivace
- Pomalý pixelový simulátor- DIGMAPS
 - Výsledky z kosmických dat
 - Testování na datech s nízkou luminozitou
- D[±] rekonstrukce
 - Výběrová kritéria
 - Rozdíl mezi SL15c a SL16d
 - D[±] invariantní hmota a signifikance, p_T biny

Relativistic Heavy Ion Collider

- ↑p+↑p, p+Al, p+Au, d+Au, He³+Au, Cu+Cu,
 Cu+Au, Au+Au, U+U
- 9,2 200 GeV (500 GeV pro protony)
- STAR, PHENIX QGP, QCD fázový diagram hmoty, spin protonu

STAR detektor

STAR Detektor

Heavy Flavor Tracker

Se všemi vrstvami detektoru DCA rozlišení je lepší než 30 µm

HFT Motivace

 HFT se používá ke studiu částic obsahující těžký kvark měřením rozpadových vrcholů

D⁰ cτ ≈ 120 μm Λ_c^+ cτ ≈ 60 μm B mesony cτ ≈ 500 μm

 $D^{0} \rightarrow K^{-}\pi^{+}$ $D^{\pm} \rightarrow K^{+}\pi^{\pm}\pi^{\pm}\pi^{\pm}$ $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ $B \rightarrow J/\psi X$

(STAR HFT TDR)

První výsledky s HFT

Výhoda monoliticky aktivních pixelových senzorů

- První MAPS použitý v částicových experimentech
- První 2 vrstvy HFT jsou MAPS PXL
- Monolitický 1 vrstva křemíku vs Hybrid více spojených vrstev
 - + menší, méně objemu, kapacity a šumu
 - + Lze měřit větší hustotu částic –> blíže interakčnímu bodu
 - Zapotřebí různých vlastností křemíku pro detektor a elektroniku
 - Nižší radiační odolnost

Řez monolitickým aktivním pixelovým senzorem

Řez hybridním pixelovým senzorem

Sběr náboje:

•MAPS: Difůze náboje k elektrodě

•Hybrid: Drift náboje k nejbližší kuličce a transfer na elektroniku

Obhajoba výzkumného úkolu

Difůze elektronů

Pixelový simulátor

- DIGITIZET tool for MAPS (A. Besson, Strasbourg)
- Pomalý simulátor pro MAPS pixelový senzor
 - Vstupní parametry, např. rozteč, ionizační energie, tloušťka epitaxialní vrstvy, ADC práh
- Využití
 - Schopnost popsat odezvu detektoru včetně šumu na úrovni jednotlivých pixelů
 - Poskytnutí simulací potřebných pro určení efektivity detektoru

Princip simulace

- 1. Generace částice
 - Úhlová závislost
- 2. Předání energie generace náboje
 - Landau zákon (MPV = 80 e-/μm)
- Transport náboje k N-well diodám
 - Aproximace Lorentzian + Gaus
- 4. Nulové potlačení a shlukování
 - Separace zásahů

A. Besson, DIGMAPS: a standalone tool to study digitization an overview of a digitizer strategy for CMOS/MAPS sensors

Testování na kosmických datech

Simulátor byl vyladěn na kosmických datech na detektoru STAR

Testování na datech s nízkou luminozitou

- DIGMAPS simulátor je vyladěn na minimálně ionizující částice
- Testování, zda-li je použitelný i na ostatní druhy částic
 Pokud ano, přidání DIGMAPSu do STAR softwaru
- Jak to uděláme?
 - Použijeme Au+Au surová data o nízké luminozitě
 - Zrekonstruujeme dráhy
 - Porovnáme velikost shluků v HFT
 - Většina z nich budou falešné zásahy o velikosti shluku 1-2
 - Aplikujeme selekční kritéria pro potlačení falešných zásahů, očekávána velikost shluků je 3-4
 - Porovnání s výstupem z DIGMAPS

Selekční kritéria

- 2014, Au+Au 200 GeV, nízká luminozita
- PXL a IST bylo použito v sledování drah
- Požadován přesně jeden zásah v každé vrstvě HFT
- Identifikace částic pro protony (2σ v TPC), kaony (2σ v TPC) a piony (1σ v TPC)
- Selekční kritéria aplikovaná na dráhy
 - Alespoň jeden shluk v IST 2σ-širokém okně (4 x 1 mm²)
 - Přesně 1 shluk ve vnitřním PXL v 2σširokém okně (6 x 6 μm²)
 - Přesně 1 shluk ve vnějším PXL v 2σširokém okně(8 x 8 μm²)
 - Pouze primární dráhy

Shluky s identifikací částic

Cluster size: data and DIGMAPS comparison

Chování je skvěle popsáno ADC práh: 6.2mV ve větších shlukách pixelů

D[±] rekonstrukce

- 2014 Au+Au 200 GeV
- Snaha zreprodukovat STAR výsledky (SL15c)
- Přepsat kód do nové verze knihovny kde je opravený HFT (SL16d)

- Něco o D mezonu
 - $D^+ = c\bar{d}$, $D^- = d\bar{c}$
 - m = (1869.6±0.1) MeV
 - $c\tau = 311.8 \,\mu m$
 - $D^{\pm} \rightarrow K^{\mp} 2 \pi^{\pm}$ B.R. 9.13%

Výtěžek D^{+/-} v rovině a mimo rovinu. (M. Lomnitz, QM15)

Cuts

- 2014 Au+Au 200 GeV, SL15c: 1.6G, SL16d: 150M
- Selekční kritéria na události: (1.6G->1.1B events)(150M->112M eventy)
 - $|V_{z}(reco.)| < 6 cm$
 - |V_z(VPD)-V_z(reco.)| < 3 cm
- Selekční kritéria na dráhy:
 - Zásah v HFT: PXL₁, PXL₂, IST, SST
 - Zásah v TPC: N_{TPC} > 15
- Topologická selekční kritéria
 - DCA mezi dceřinými částicemi (ππ, πK, Kπ): DCA_{XY} < 80 μm
 - Směřující úhel: cos(θ)>0.998
 - D[±] rozpadová délka: $30 \mu m < c\tau < 2000 \mu m$ (150M triplety) (788M triplety)
 - $-\Delta_{max} < 200 \ \mu m$
 - DCA dceřiné částice k primárnímu vrcholu: DCA_π > 100 μm, DCA_K > 80 μm (27k triplety, D[±] 7k) (19k triplety, D[±] 5k)
- Identifikace částic
 - pion $p_T > 0.8$ GeV, kaon $p_T > 0.6$ GeV
 - TPC: $|n\sigma| < 3.0$ pro K and π
 - TOF: $|1/\beta 1/\beta_{\kappa}| < 0.05$, $|1/\beta 1/\beta_{\pi}| < 0.06$ (added)

 K^{\exists}

 π^{\pm}

 D^{\pm}

Selekční kritéria na události

SL15c

SL16d

Nábojová kombinace tripletů

SL15c

SL16d

DCA dceřiných částic, $p_T a dE/dx$

Signál a pozadí metodou špatného znaménka

SL15c

SL16d

vstupy: 7k

vstupy: 5k

Po odečtení pozadí

SL15c

SL16d

D⁺ a D⁻ signifikance (SL16d)

D⁺ corrected background Counts [-] 300 250 Counts [-] 250 300 200 200 150 150 Au+Au VS_{NN} = 200 GeV 100 Yield: 370±30 100 Significance: 11.1 D[±] mass: (1.87±0.03) GeV 50 50 0 -50 -50 2.05 2.10 1.70 1.75 1.80 1.85 1.90 1.95 2.00 M_{D⁺} [GeV] 1.70 1.75 1.80 1.85 1.90

D corrected background

Au+Au √S_{NN} = 200 GeV

D mass: (1.87±0.03) GeV

Yield: 460±30

1.95

Significance: 14.1

2.00

2.05

2.10 M_D [GeV]

Výtěžek: 370±30 Signifikance: 11.1

Výtěžek: 460±30 Signifikance: 14.1

Signifikance D[±] p_T binů (SL16d)

Výhled do budoucna a shrnutí

- HFT může být použit pro studium částic obsahující těžký kvark přesným měřením sekundárních rozpadových vrcholů
- HFT byl úspěšně nainstalován na STAR. První MAPS použitý v částicovém experimentu. První výsledky jsou již dostupné
- DIGMAPS byl vyvinut pro simulování pixelového detektoru
- DIGMAPS byl vyladěn na kosmických datech a otestován na datech s nízkou luminozitou
- Úspěšná rekonstrukce D[±] na datech před (SL15c) a po korekci HFT (SL16d)
 - Pozoruhodné zvýšení signifikance
 - Zvýšení signifikance i v ostatních tří-částicových měřeních
- Korekce na geometrické přijetí detektoru a rekonstrukční efektivitu
- Optimalizace výběrových kritérií pro D[±] signál
 - Multivariate Data Analysis a strojového učení
- D[±] R_{AA} spektrum

Děkuji za pozornost