RadChem 2014

Contribution ID: 379

Type: Poster

90Y Cherenkov radiation measurement for 90Sr determination

Monday, 12 May 2014 17:15 (1h 30m)

Isotope of strontium ⁹⁰Sr (one of the nuclear fission products with half-life 28.9 years) is well known for its biochemical similarity with calcium and possible consequent incorporation into human body. Main risk presents its daughter product $\langle \sup \rangle 90 \langle \sup \rangle Y$ (half-life 64.1 hours), which is a high energy β emitter (E_{β ,max}=2.28 MeV). That is why the development of fast and effective method of ⁹⁰Sr determination or monitoring is ongoing last 50 years and it is still one of the important topics. Hence, current demands call for advanced and less time-consuming methods for ⁹⁰Sr determination. Main aim of this research was focused on the ⁹⁰Sr determination in simulant solutions of environmental samples without the necessity to wait for the equilibrium with ⁹⁰Y. This approach is crucial for the development of rapid method of ⁹⁰Sr determination in environmental samples. Activity of ⁹⁰Sr was measured through its daughter product ⁹⁰Y using Cherenkov counting on HIDEX 300 SL and TRIATHLER (both Hidex Oy, Finland) liquid scintillation counters. Two type of samples were used for measurement. The Cherenkov radiation was measured from samples containing equilibrium amount of ⁹⁰Y or from samples where ⁹⁰Y growth is observed. A set of solutions with different diffraction indexes and set with different wavelength shifters for increasing Cherenkov radiation yield/detection was studied. It was find out that composition of the solution strongly affects measured background and hence further optimization of the sample content and parameters measurement is necessary. The activity obtained via Cherenkov counting were compared and verified using liquid scintillation counting of ⁹⁰Sr, similar comparison was done between Triathler (1-photomultiplier) and HIDEX 300 SL (3-photomultipliers, TDCR) measurements.

Primary author: Mr NEUFUSS, Soběslav (CTU in Prague)

Co-author: Dr NĚMEC, Mojmír (CTU i Prague)

Presenter: Mr NEUFUSS, Soběslav (CTU in Prague)

Session Classification: Poster Session - Nuclear Analytical Methods

Track Classification: Nuclear Analytical Methods