Upsilon meson analysis at the STAR experiment

Bc. Oliver Matonoha

STAR

Supervisor: Ing. Olga Rusňáková, PhD.

Czech Technical University in Prague oliver.matonoha@fjfi.cvut.cz Research project 27/09/2017

- Heavy-ion collisions are used to study a novel state of matter, the quark-gluon plasma (QGP)
- Measurements of quarkonia (e.g. Υ) serve as an excellent probe of the QGP and its temperature
 - Heavy quarkonia as a QGP probe
 - The STAR experiment
 - 3 Analysis of $\Upsilon \rightarrow e^+e^-$ in Au+Au collisions

2

<u>Heavy quarkonia in QGP</u>

- J/ψ , Υ etc. are good candidates to probe QGP
 - $c\bar{c}$, $b\bar{b}$ pairs created mostly before the QGP formation
 - Production cross-section in p+p collisions can be calculated based on pQCD
- Dissociation by colour screening T. Matsui, H. Satz, PLB 178 (1986) 416
 - Quarkonium expected to *dissociate* when its radius exceeds the Debye radius: $r_{\text{Debye}} \propto 1/T$
- Sequential melting A. Mocsy, EPJ C61 (2009) 705
 - Dissociation depends on the quarkonium binding energy
 - Different states expected to melt at different temperatures
 - QGP thermometer

-Illustration: A. Bothkonf

Other effects also play a role

- Other phenomena complicate the measured quarkonium suppression
- Statistical recombination
 - Coalescence of deconfined quarks at QGP phase boundary
- Cold nuclear matter (CNM) effects
 - Initial state: shadowing, energy loss
 - Final state: inelastic interactions with hadrons
 - \rightarrow nuclear break-up
 - \rightarrow co-mover absorption
 - Can be studied in p+A collisions
- Feed-down

ndary		RHIC 200 GeV	LHC 2.76 TeV
	$\#c\bar{c}$ / event	13	115
	$\#b\overline{b}$ / event	0.1	3

For $\Upsilon's$ at RHIC $\sqrt{s_{NN}} = 200 \text{ GeV}$: • no recombination A. Emerick, X. Zhao, R. Rapp, EPJ A48 (2012) 72 • less co-mover absorption Z. Lin, C. Ko, PLB 503 (2001) 104

 \rightarrow cleaner probe!

I. Das, QM2015, https://indico.cern.ch/event/355454/contributions/838966

STAR experiment

RHIC (Relativistic Heavy Ion Collider)

RHIC

STAR

Upton, NY

STAR

BEMC

TPC

MTD

Magnet

Data and event selection

- Au+Au collisions $\sqrt{s_{NN}} = 200 \text{ GeV}$ from 2014
- 118.9 M high-tower-triggered events with BEMC (corresponds to integrated luminosity ~4.1 nb ⁻¹)
- Event cuts:
 - $|v_z^{TPC} v_z^{VPD}| < 4 \text{ cm}$
 - $|v_z^{TPC}| < 30 \text{ cm}$
- + Monte Carlo dataset with embedded Υ's :
 - 900 K events with full GEANT-simulated detector response

Y reconstruction at STAR

- Reconstructed from the di-electron decay channel
 - Trigger on hard electrons
 - 2. Find electron tracks in TPC
 - 3. Match tracks with BEMC-clusters
 - 4. Further PID
 - 5. Make Υ 's from e^+e^- pairs
 - + reconstruction efficiencies (in progress)

- TPC:
 - tracking, momentum measurement
 - PID with energy loss dE/dx

• energy deposit in clusters

BEMC:

• PID with E/p, cluster shape

Signal extraction

- Limited statistics + contributions from background complicate the Υ yield extraction

D 80

70 60

50

- Signal shape:
 - $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$ peaks fitted from embedding
 - Crystal-Ball function
- Combinatorial background
 - Like-sign: sum of e^+e^+ and e^-e^- spectra
 - Event-mixing: e^+e^- from different events
- Physical background:
 - Drell-Yan, $B\overline{B}$ semi-leptonic decays
 - Monte Carlo simulations (Pythia, Herwig)

Mass spectrum

- Di-electron invariant mass spectrum with Υ signal
- Composite fit including the signal peaks, combinatorial & physical background

<u>Summary</u>

- Y successfully reconstructed from Au+Au data of $\sqrt{s_{NN}} = 200$ GeV from 2014 via the dielectron decay channel
- Some reconstruction efficiencies were studied
- Signal extraction from the mass spectra was done by carefully analysing the major contributions in Monte Carlo simulations

<u>Outlook</u>

- Improve the fit result by e.g. including the Drell-Yan background
- Finish the determination of the total reconstruction efficiency
- Construct the nuclear modification factor R_{AA} as a function of N_{part} and p_T

Thank you for your attention!

Cuts used in the analysis

<u>PID:</u>

 Leading electron: pMomentum > 4.5 GeV

- TPC cuts
 - Primary tracks
 - nHitsFit >= 25
 - nHitsDedx >= 10 Pair cuts
 - nHitsRatio >= 0.52
- Pair_Pt < 10 GeV
- |Pair_y| < 1
- DCA < 1.5 cm
- $-1.5 < n\sigma_{electron} < 3$
- EMC cuts
 - 0.3 < E/p < 1.8 (cluster)
 - |zDist| < 5
 - |phiDist| < 0.05
- Kinematics
 - |eta| < 1
 - Low electron: pMomentum > 3.5 GeV

Event selection:

- |vzTPC| < 30
- |vzDiff| < 4
- isTrigger(450202) || isTrigger(450212)

Research project, *Y* production at STAR

$n\sigma^{e}$ cut efficiency

- Important part of total reconstruction efficiency
- 1) studied with identified single electrons:

 \rightarrow too many pions! results not too stable

Need to study with photonic $m_{ee} < 100$ MeV electrons:

Research project, Y production at STAR

Invariant mass spectra

$$\square \quad m_{ee}^2 = (E_{(1)} + E_{(2)})^2 - (\boldsymbol{p}_{(1)} + \boldsymbol{p}_{(2)})^2$$

□ divided in 3 centrality intervals

Oliver Matonoha (CTU)

Results from p+p and p+Au collisions

• **p+p** : precise baseline for comparison with Au+Au collisions

→ improved precision: $\sigma = 64 \pm 10$ (stat.) ± 14 (syst.) pb $\rightarrow 81 \pm 5$ (stat.) ± 8 (syst.) pb

 \rightarrow consistent with the Colour Evaporation Model (CEM) prediction

A.Frawley, T.Ullrich, R.Vogt, PR 462 (2008) 125

• **p+Au**: quantification of CNM effects with $R_{pAu} = 0.82 \pm 0.10$ (stat.) $^{-0.07}_{+0.08}$ (syst.) ± 0.10 (global)

-

Signal in Au+Au collisions

→ combinatorial background (estimated as $N_{l^+l^+} + N_{l^-l^-}$)

→ Drell-Yan di-leptons, $B\overline{B}$ semi-leptonic decays

Research project, Y production at STAR

Results from Au+Au collisions

• Nuclear modification factor

 $R_{\rm AA} = \frac{\sigma_{\rm inel}}{\langle N_{\rm coll} \rangle} \frac{{\rm d}^2 N_{\rm AA}/dp_{\rm T} dy}{{\rm d}^2 \sigma_{\rm pp}/dp_{\rm T} dy} \quad \text{as a function of}$

mean number of participants N_{part}

- \bigstar is a combination of \bigstar results
- **Di-muon** and **di-electron** results consistent with each other within the uncertainties

 \rightarrow results combined for increased statistical precision

• $\Upsilon(2S), \Upsilon(3S)$ states **more suppressed** than $\Upsilon(1S)$ in central collisions

Compare RHIC with LHC

- $\Upsilon(2S), \Upsilon(3S)$ states **more suppressed** than $\Upsilon(1S)$ in central collisions
- Comparison with LHC: CMS, PRL 109 (2012)
 - \rightarrow solid consistency for $\Upsilon(1S)$

→ hint of **less suppression** for $\Upsilon(2S)$, $\Upsilon(3S)$ at RHIC than at LHC

Oliver Matonoha (CTU)

Suppression vs $p_{\rm T}$

- Consistent for $\Upsilon(1S)$
- Signs of **less suppression** at high- $p_{\rm T}$ for $\Upsilon(2S), \Upsilon(3S)$

Comparison with models

- Strickland, Bazov : NPA 879 (2012) 25
 - No CNM, no regeneration
 - SBS (Strongly Binding Scenario): fast dissociation–potential based on internal energy
 - WBS (Weakly Binding Scenario): slow dissociation-potential based on free energy
- Liu, Chen, Xu, Zhang : PLB 697 (2011) 32
 - No CNM
 - Dissociation only for excited states, suppression of ground state due to feed-down
- Emerick, Zhao, Rapp : EPJ A48 (2012) 72
 - Includes CNM, SBS case

 \rightarrow SBS models favoured by the data

Results from p+p

Research project, Y production at STAR

22/10

<u>Results from p+Au</u>

160₁

Excited-to-ground-state ratio

