Three-body Interactions in Mean-Field Model of Nuclei and Hypernuclei

Jan Pokorný

FNSPE CTU in Prague, NPI CAS in Řež

27.9.2017

Motivation

- in my bachelor thesis, the NN potential was corrected by a phenomenological term – simulation of NNN interactions
- the NNN interactions have great influence on nuclear ground-state energies and charge radii [A. Günther et al. PRC 82, 024319 (2010).]
- aim of the research project study of the effect of the NNN interactions in the mean-field model of nuclei and hypernuclei

Figure: Document of the effect of the *NNN* interactions on the radial density distributions.

Three-body Interactions

- baryon-baryon potentials in the low-energy scale can be described by Chiral Perturbation Theory (ChPT)
- ChPT effective field theory with consistent hierarchy of two-, three-, four-, ..., and many-baryon forces
- three-body interactions emerge at the next-to-next-to leading order of perturbation

Figure: Hierarchy of nuclear forces in ChPT [R. Machleidt, arXiv:1308.0103].

- mean field (hyper)nuclear potential self-consistently generated from interactions between all constituents (nucleons or nucleons + Λ)
- \blacksquare protons, neutrons, and Λ are considered to be different particles placed in different potential wells

Hartree-Fock method

- traditionally based on phenomenological two-body NN interactions
- our approach formalism with NN, NNN, ΛN , ΛNN interactions
- employed chiral potential NNLO_{sat} [A. Ekström et al., PRC 91, 051301(R) (2015)] realistic NN and NNN interactions
- computations only with NN, NNN interactions (nuclei); NN, NNN, AN interactions (hypernuclei)

The Hartree-Fock Method

• the starting point of this method is the hypernuclear Hamiltonian

$$\widehat{\mathbf{H}} = \widehat{\mathbf{T}}_{\mathbf{N}} + \widehat{\mathbf{T}}_{\mathbf{\Lambda}} + \widehat{\mathbf{V}}^{\mathbf{NN}} + \widehat{\mathbf{V}}^{\mathbf{\Lambda N}} + \widehat{\mathbf{V}}^{\mathbf{NNN}} + \widehat{V}^{\mathbf{\Lambda NN}} - \widehat{\mathbf{T}}_{\mathbf{CM}},$$
(1)

$$\widehat{T}_{N}, \widehat{T}_{\Lambda} \dots \text{ kinetic terms}$$

$$\widehat{V}^{NN}, \widehat{V}^{\Lambda N} \dots \text{ two-body terms}$$

$$\widehat{V}^{NNN}, \widehat{V}^{\Lambda NN} \dots \text{ three-body terms}$$

$$\widehat{T}_{CM} \dots \text{ center-of-mass kinetic term}$$

$$\widehat{T}_{CM} = \frac{1}{2M(A+0.19)} \left(\sum_{a=1}^{A} \widehat{\vec{P}}_{a}^{2} + 2 \sum_{a < b} \widehat{\vec{P}}_{a} \cdot \widehat{\vec{P}}_{b} \right)$$
(2)

- $M \approx 938$ MeV ... nucleon mass, A ... baryon number, $\hat{\vec{P}}_a$... *a*-th particle momentum
- we derive formalism of the HF method for Hamiltonian (1)
- we implement only \widehat{T}_N , \widehat{T}_Λ , \widehat{V}^{NN} , \widehat{V}^{NNN} , $\widehat{V}^{\Lambda N}$ tests on ⁴⁰Ca, ¹⁶O, ⁴¹_{\Lambda}Ca, ¹⁷_{\Lambda}O

The Wave Function of the Ground State

 the ground-state wave function is a product of proton and neutron Slater determinants (fermions, antisymmetrization) and one single-particle wave function of the Λ particle

$$|\Psi_{0}\rangle = |\Psi_{0}\rangle_{\mathrm{p}} \otimes |\Psi_{0}\rangle_{\mathrm{n}} \otimes |\Psi_{0}\rangle_{\Lambda}$$
 (1)

we introduce the HF method in the formalism of the second quantization,
 i.e. in terms of creation, annihilation operators (a[†], a for protons, b[†], b for neutrons, c[†], c for Λ)

$$|\Psi_{0}\rangle_{\mathrm{p}} = \prod_{i=1}^{Z} a_{i}^{\dagger} |0\rangle, \quad |\Psi_{0}\rangle_{\mathrm{n}} = \prod_{i=1}^{N} b_{i}^{\dagger} |0\rangle, \quad |\Psi_{0}\rangle_{\Lambda} = c_{1}^{\dagger} |0\rangle$$
(2)

Z ... proton number, N ... neutron number, products run over states lowest in energy

The HF Equations for Protons, Neutrons, and the Λ Hyperon

$$t_{ij}^{p} + \sum_{kl} V_{ikjl}^{pp} \rho_{lk}^{p} + \sum_{kl} V_{ikjl}^{pn} \rho_{lk}^{n} + \sum_{kl} V_{ikjl}^{p\Lambda} \rho_{lk}^{\Lambda} + \frac{1}{2} \sum_{klmn} V_{ikljmn}^{ppp} \rho_{mk}^{p} \rho_{nl}^{p} + \frac{1}{2} \sum_{klmn} V_{ikljmn}^{pnn} \rho_{mk}^{n} \rho_{nl}^{n} + \sum_{klmn} V_{ikljmn}^{ppn} \rho_{mk}^{p} \rho_{nl}^{n} + \sum_{klmn} V_{ikljmn}^{pp\Lambda} \rho_{mk}^{p} \rho_{nl}^{\Lambda} + \sum_{klmn} V_{ijklmn}^{pn\Lambda} \rho_{mk}^{\Lambda} \rho_{nl}^{\Lambda} = \underline{\underline{\varepsilon_{i}}}^{p} \delta_{ij}.$$
(1)

$$t_{ij}^{n} + \sum_{kl} V_{ikjl}^{nn} \rho_{lk}^{n} + \sum_{kl} V_{kilj}^{pn} \rho_{lk}^{p} + \sum_{kl} V_{ikjl}^{n\Lambda} \rho_{lk}^{\Lambda} + \frac{1}{2} \sum_{klmn} V_{ikljmn}^{nnn} \rho_{mk}^{n} \rho_{nl}^{n} + \frac{1}{2} \sum_{klmn} V_{klimnj}^{pnn} \rho_{mk}^{p} \rho_{nl}^{n} + \sum_{klmn} V_{klimnj}^{pnn} \rho_{mk}^{n} \rho_{nl}^{n} + \sum_{klmn} V_{klimnj}^{nn\Lambda} \rho_{mk}^{n} \rho_{nl}^{\Lambda} + \sum_{klmn} V_{klimnj}^{pn\Lambda} \rho_{mk}^{p} \rho_{nl}^{\Lambda} = \underbrace{\underline{\varepsilon_{i}}}_{i} \delta_{ij}.$$
(2)

$$t_{ij}^{\Lambda} + \sum_{kl} V_{kilj}^{p\Lambda} \rho_{lk}^{p} + \sum_{kl} V_{kilj}^{n\Lambda} \rho_{lk}^{n} + \frac{1}{2} \sum_{klmn} V_{klimnj}^{pP\Lambda} \rho_{mk}^{p} \rho_{nl}^{p} + \frac{1}{2} \sum_{klmn} V_{klimnj}^{nn\Lambda} \rho_{mk}^{n} \rho_{nl}^{n} + \sum_{klmn} V_{klimnj}^{pn\Lambda} \rho_{mk}^{p} \rho_{nl}^{n} = \underbrace{\underline{\varepsilon_{i}^{\Lambda}}}_{\underline{\omega}} \delta_{ij}.$$
 (3)

7/16

- we implement the extension of the HF code which has been used in the study of multipole response in neutron-rich nuclei [D. Bianco et al., NPP 41, 025109 (2014).]
- we employ chiral potential NNLO_{sat} [A. Ekström et al., PRC 91, 051301(R) (2015)]
 - includes NN and NNN interactions
- chiral LO AN interaction [H. Polinder et al., NPA 779, 244 (2006).]
 - explicit linear dependence on the cut-off parameter
 - this interaction was derived without counter terms
 - we implement cut-off 550 MeV
- the terms with ΛNN interactions are not taken into account

Results

- studied nuclei: ¹⁶O, ⁴⁰Ca doubly magic and spherically symmetric
- studied hypernuclei: $^{17}_{\Lambda}$ O, $^{41}_{\Lambda}$ Ca
- small configuration space truncation: $N_{\rm max} = 4$, $N_{\rm max}^{(12)} = 8$, $N_{\rm max}^{(123)} = 12$
- documentation of the qualitative effect of the NNN interactions
 - radial density distributions
 - charge radii
 - neutron single particle spectra (the same effect applies to proton s.p. spectra)
 - ∧ s.p. spectra
- comparison of calculations done purely with the NN interactions to the ones done with the NN and the NNN interactions
 - (2B) vs. (2B + 3B)

Radial nuclear density distributions of the ⁴⁰Ca and the ¹⁶O

Figure: Radial density distribution of ⁴⁰Ca and ¹⁶O calculated only with *NN* interactions (2B – dashed blue line), radial density distribution of ⁴⁰Ca and ¹⁶O calculated with *NN* and *NNN* interactions (2B + 3B – dash-dotted red line), realistic radial density distribution of ⁴⁰Ca and ¹⁶O calculated with RMF model (RMF – full green line).

calculations with NNN interactions (2B+3B) are closer to the realistic density distributions

Table: The charge radii r_{ch} of the 40 Ca and the 16 O calculated with the *NN* interactions (2B) and the charge radii of the 40 Ca and the 16 O calculated with the *NN* + *NNN* interactions (2B+3B) compared to the experimental data (exp) taken from [I. Angeli, ADNDT 87, 185 (2004)].

r _{ch} [fm]								
АX	2B	2B+3B	exp					
⁴⁰ Ca	2.58	3.18	3.48					
¹⁶ O	2.23	2.67	2.70					

charge radii calculated with the NNN interactions (2B+3B) are realistic

configuration space too small for ⁴⁰Ca

The Neutron Single-Particle Spectra in the ⁴⁰Ca and in the ¹⁶O

Figure: The neutron single-particle energies ε^n in ⁴⁰Ca and ¹⁶O calculated with only two-body *NN* interactions (2B) and with two-body *NN* plus three-body *NNN* interactions (2B+3B) compared to the empirical values (exp) [V.I. Isakov et al., PJA 14, 29-36 (2002)].

- the NNN interactions (2B+3B) quenche the gaps between major shells and the gaps within the shells
- the results for the sd- shells in 40 Ca are not realistic small config. space

The Λ Single-Particle Spectra in the $^{41}_{\Lambda}$ Ca and in the $^{17}_{\Lambda}$ O

Figure: The Λ single-particle energies ε^{Λ} in $_{\Lambda}^{41}$ Ca and $_{\Lambda}^{17}$ O calculated with only two-body *NN* interactions (2B) and with two-body *NN* plus three-body *NNN* interactions (2B+3B) compared to the experimental data (exp) [M. Agnello et al., PLB 698, 219 (2011), R. E. Chrien, NPA 478, 705c (1998)].

- sd- shells in $^{41}_{\Lambda}$ Ca not realistic not taken into account
- the NNN interactions shrink the gaps between the s- and p- shells
- spectra shifted upwards in energy cut-off dependence of the ΛN interaction
- spin-orbit splitting in p- levels

Table: Single-particle energies of the Λ hyperon in $^{41}_{\Lambda}Ca$ and $^{17}_{\Lambda}O$ calculated with *NN* interactions (2B) and with *NN* + *NNN* interactions (2B+3B) compared to the experimental data (exp) – $^{41}_{\Lambda}Ca$ [R.E. Chrien, NPA 478, 705c (1998)], $^{17}_{\Lambda}O$ [M. Agnello et al., PLB 698, 219 (2011)].

ε^{Λ} [MeV]								
		$^{41}_{\Lambda}$ Ca			¹⁷ ΛΟ			
sp. level	2B	2B+3B	exp	2B	2B+3B	exp		
$0s_{1/2}$	-33.561	-15.820	$\textbf{-20.0} \pm \textbf{1.0}$	-18.203	-9.055	$\textbf{-13.5}\pm0.4$		
0p _{3/2}	-14.095	-5.016	$\textbf{-11.0} \pm \textbf{1.0}$	1.076	3.090	$\textbf{-2.4}\pm0.4$		
0p _{1/2}	-13.958	-4.987	$\textbf{-11.0}\pm\textbf{1.0}$	0.805	3.005	$\textbf{-2.4}\pm0.4$		

- the NNN interactions give realistic gaps between s- and p- shells
- standard ordering of levels in the p- shell: $0p_{3/2}$, $0p_{1/2}$
- good results for ${}^{41}_{\Lambda}$ Ca, opposite ordering in the p- shell in the ${}^{17}_{\Lambda}$ O
- property of the employed ΛN interaction, not the model!!
 - weak tensor term

- derivation of the formalism of the HF method which includes NNN and ANN potentials
- \blacksquare implementation of the NN and NNN interactions in the chiral potential $\mathsf{NNLO}_{\mathrm{sat}}$ in the HF code
- test calculations the *NNN* interactions flatten the density distributions, extend the charge radii, shrink gaps between the major shells in neutron s.p. spectra, shrink gaps between the major shells in \land s.p. spectra
- employed $\wedge N$ interaction is strongly cut-off dependent
 - opposite ordering of p- levels in the $^{17}_{\Lambda}O$ possibly weak tensor term

- systematics dependence of the spectra (proton, neutron, Λ) on the size of the configuration space
- derivation of the tensor part of the AN interaction phenomenological tensor term, study of spin-orbit splitting of the p- shell
- implementation of the ΛNN interaction
- beyond mean-field calculations (TDA)