Bottom quark charge identification using muons in jets

Lukas Novotny

FNSPE CTU

27. 09. 2017

1 CP Violation

- CP Violation in $B_s \rightarrow J/\psi \phi$
- Flavour Tagging

2 $B^{\pm} \rightarrow J/\psi K^{\pm}$ Tagging

- B^{\pm} Mass Fit
- Tagging Variables
- Single Muon Tagging
 - 4 Cone Charge Tagging
 - **5** B^+ Tag Probability

27. 09. 2017

2 / 24

CP Violation

- Discrete symmetries: Parity, Charge conjugation, Time reversal
- Parity violated (⁶⁰Co decay, Wu, 1956)
- CP also violated (K_S^0 and K_L^0)
 - CP violation in decay
 - CP violation in mixing
 - CP violation in interference of mixing and decay

CP Violation

- Discrete symmetries: Parity, Charge conjugation, Time reversal
- Parity violated (⁶⁰Co decay, Wu, 1956)
- CP also violated $(K_S^0 \text{ and } K_L^0)$
 - CP violation in decay
 - CP violation in mixing
 - CP violation in interference of mixing and decay
- CKM triangle with angle

$$\beta_{s} = \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right)$$

- sensitive to CP violation
- Weak phase (PDG value)

$$\phi_s = -2\beta_s = -0.0363^{+0.0016}_{-0.0015}$$

CP Violation in $B_s \rightarrow J/\psi \phi$

• Differential decay rate with combination of time-dependent and angular terms

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\mathrm{d}\Omega} = \sum_{k=1}^{10} \mathcal{O}^{k}(t)g^{k}(\theta_{T},\psi_{T},\phi_{T})$$

CP Violation in $B_s \rightarrow J/\psi \phi$

• Differential decay rate with combination of time-dependent and angular terms

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\mathrm{d}\Omega} = \sum_{k=1}^{10} \mathcal{O}^{k}(t)g^{k}(\theta_{T},\psi_{T},\phi_{T})$$

k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\right]$	$\sin^2\psi_T(1-\sin^2 heta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\mathrm{H}}^{(s)}t}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}-s\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$\left[(1 - \cos\phi_s) e^{-\Gamma_{\mathrm{L}}^{(o)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\mathrm{H}}^{(o)}t} \right]$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)\midM\mid$

Flavour Tagging

- Opposite side tagging
 - b quarks produced in $b\bar{b}$ pair
 - the initial state of the B_s^0 determined by the flavour tagging
 - $b \rightarrow \mu$ (*b* flavour given by the muon charge)
 - $b
 ightarrow c
 ightarrow \mu$ dilute the tagging

- Opposite side tagging
 - b quarks produced in $b\bar{b}$ pair
 - the initial state of the B_s^0 determined by the flavour tagging
 - $b
 ightarrow \mu$ (b flavour given by the muon charge)
 - $b
 ightarrow c
 ightarrow \mu$ dilute the tagging
- Calibration channel $B^{\pm} \rightarrow J/\psi K^{\pm}$
 - Charge of B meson is provided by the kaon charge

 $\bar{B}_{u,d,s}$

27. 09. 2017

5 / 24

• Give the probability of correct tagging

CP Violation in $B_s \rightarrow J/\psi \phi$ with Flavour Tagging

• With flavour tagging, ϕ_s (and δ_s) gains sensitivity in the differential decay rate

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\mathrm{d}\Omega} = \sum_{k=1}^{10} \mathcal{O}^{k}(t)g^{k}(\theta_{T},\psi_{T},\phi_{T})$$

\boldsymbol{k}	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel} $	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2\theta_T \sin 2\phi_T$
	$(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t}$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{ })\sin\phi_s$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2} A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S}) = \sum_{j=1}^{r_{s}(j)} (1-\cos(j))e^{-\sum_{j=1}^{r_{s}(j)}t}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$ [1 - \cos \varphi_s] c \sim - \tau (1 - \cos \varphi_s) c = n $ $ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_s $	$\frac{4}{3}\sqrt{3}\cos\psi_T \left(1-\sin^2\theta_T\cos^2\phi_T\right) \stackrel{\text{AD}}{\overset{\text{MENT}}{\overset{MENT}}{$
		200

CP Violation in $B_s \rightarrow J/\psi \phi$ with Flavour Tagging

• With flavour tagging, ϕ_s (and δ_s) gains sensitivity in the differential decay rate

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\mathrm{d}\Omega} = \sum_{k=1}^{10} \mathcal{O}^{k}(t)g^{k}(\theta_{T},\psi_{T},\phi_{T})$$

$_{k}$	$\mathcal{O}^{(k)}(t) \qquad \qquad \pm \to B_s/\bar{B}_s$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos \phi_s) e^{-\Gamma_L^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta r) \right]$	$n_s t \sin \phi_s = 2\cos^2 \psi_T (1 - \sin^2 \theta_T \cos^2 \phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta r)\right]$	$n_s t \sin \phi_s \sin \phi_T \sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta t)\right]$	$m_s t \sin \phi_s \sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta t) \right]$	$m_s t) \sin \phi_s$
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{ })\sin\phi_{s}$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s s$	$\sin(\Delta m_s t))]$
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^* \cdot t} - e^{-\Gamma_{\rm H}^* \cdot t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-i_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s s$	$\sin(\Delta m_s t))]$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta t)\right]$	$m_s t \sin \phi_s \bigg] = \frac{2}{3} \left(1 - \sin^2 \theta_T \cos^2 \phi_T \right)$
8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s s$	$sin(\Delta m_s t))]$
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$(1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta t)$	$m_s t) \sin \phi_s$
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s s$	$\sin(\Delta m_s t))]$

- data: main stream 2016 whole year
- GRL: All_Good/data16_13TeV._periodAllYear_HEAD_DQDefects-00-02-04_PHYS_StandardGRL_All_Good.xml

- data: main stream 2016 whole year
- GRL: All_Good/data16_13TeV._periodAllYear_HEAD_DQDefects-00-02-04_PHYS_StandardGRL_All_Good.xml

B^{\pm}

- Invariant mass between 5.0 and 5.6 GeV
- $|\eta| < 2.5$
- Lifetime $\tau > 0.2 \text{ ps}$

- data: main stream 2016 whole year
- GRL: All_Good/data16_13TeV._periodAllYear_HEAD_DQDefects-00-02-04_PHYS_StandardGRL_All_Good.xml

B^{\pm}

- Invariant mass between 5.0 and 5.6 GeV
- $|\eta| < 2.5$
- Lifetime $\tau > 0.2$ ps

 J/ψ

- Two muons with opposite charge sign
- Invariant mass between 2.8 and 3.4 GeV
- Muon $p_{\mathrm{T}} >$ 4 GeV and $|\eta| <$ 2.5

- data: main stream 2016 whole year
- GRL: All_Good/data16_13TeV._periodAllYear_HEAD_DQDefects-00-02-04_PHYS_StandardGRL_All_Good.xml

B^{\pm}

- Invariant mass between 5.0 and 5.6 GeV
- $|\eta| < 2.5$
- Lifetime $\tau > 0.2$ ps

 J/ψ

- Two muons with opposite charge sign
- Invariant mass between 2.8 and 3.4 GeV
- Muon $p_{\mathrm{T}} >$ 4 GeV and $|\eta| <$ 2.5

B^{\pm} Mass Fit

Fit Model

$$\begin{aligned} \text{PDF} = & f_{sig}[f_{gauss}G_1(\mu,\sigma_1) + (1 - f_{gauss})G_2(\mu,\sigma_2)] + \\ & + (1 - f_{sig})[f_{bck1}E(\lambda) + f_{bck2}C + (1 - f_{bck1} - f_{bck2})AT(sc, of)], \end{aligned}$$

Sideband Subtraction and sPlot

Methods, how to remove background contribution of variable (muon charge) with unknown background and signal distribution

Sideband Subtraction and sPlot

Methods, how to remove background contribution of variable (muon charge) with unknown background and signal distribution

Sideband subtraction

 Background under signal peak approximated by background in sidebands

$$H_{final} = H1 - \frac{Nbg_{sigreg}}{Nbg_{LSB} + Nbg_{RSB}} (H2 + H3)$$

27. 09. 2017

9 / 24

Sideband Subtraction and sPlot

Methods, how to remove background contribution of variable (muon charge) with unknown background and signal distribution

Sideband subtraction

 Background under signal peak approximated by background in sidebands

$$H_{final} = H1 - \frac{Nbg_{sigreg}}{Nbg_{LSB} + Nbg_{RSB}} (H2 + H3)$$

*s*Plot

- Discriminating variables
 - Signal and background distributions known
 - Particular weight (signal or background type) calculated
- Control variables
 - Weights applied on control variables, signal and background distributions obtained

Tagging Variables

• N_r correctly and N_w incorrectly tagged muons, N_B B candidates

Efficiency

• The ratio of the events used for tagging over the total number of events

$$\epsilon_{tag} = \frac{N_r + N_w}{N_B}$$

• N_r correctly and N_w incorrectly tagged muons, N_B B candidates

Efficiency

• The ratio of the events used for tagging over the total number of events

$$\epsilon_{tag} = \frac{N_r + N_w}{N_B}$$

27. 09. 2017

10 / 24

Dilution

• Dilution describes the purity of the tagging

$$D_{tag} = rac{N_r - N_w}{N_r + N_w} = 1 - 2w_{tag}$$

• N_r correctly and N_w incorrectly tagged muons, N_B B candidates

Efficiency

• The ratio of the events used for tagging over the total number of events

$$\epsilon_{tag} = \frac{N_r + N_w}{N_B}$$

Dilution

• Dilution describes the purity of the tagging

$$D_{tag} = rac{N_r - N_w}{N_r + N_w} = 1 - 2w_{tag}$$

Tag power

• Combining the efficiency and dilution

Image: A math a math

$$P_{tag} = \epsilon D^2 = \sum_{i} \epsilon_i D_i^2$$

27. 09. 2017

10 / 24

Single Muon Tagging

Different Selection Criteria Order

- $|\Delta z| < 5$ mm applied in order to remove pile-up
- Muons divided into group according their qualities in each event, only best group selected
- ullet Then, the highest p_{T} muon candidate from this group used

Single Muon Tagging

Different Selection Criteria Order

- $|\Delta z| < 5$ mm applied in order to remove pile-up
- Muons divided into group according their qualities in each event, only best group selected
- ullet Then, the highest p_{T} muon candidate from this group used
- ATLAS analysis software release has been upgraded from version 20.7 to version 21 better reconstruction of muons

Single Muon Tagging

Different Selection Criteria Order

- $|\Delta z| < 5$ mm applied in order to remove pile-up
- Muons divided into group according their qualities in each event, only best group selected
- ullet Then, the highest p_{T} muon candidate from this group used
- ATLAS analysis software release has been upgraded from version 20.7 to version 21 better reconstruction of muons

Release 21 with Δz Cut, sPlot Method

	ϵ_{tag} (%)	D _{tag}	w _{tag}	P_{tag} (%)
tight	6.50	0.451	0.275	1.32
medium	2.41	0.253	0.373	0.15
loose	0.98	0.175	0.413	0.03
very loose	17.7	0.062	0.469	0.07

Cone Charge

- Cone $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.5$
- Tracks in cone $\Delta R < 0.5$ around B candidate excluded
- \bullet Tracks with $|\Delta z| > 3$ mm from B candidate excluded

Cone Charge

• Cone
$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.5$$

• Tracks in cone $\Delta R < 0.5$ around B candidate excluded

$$Q_{\mu} = \frac{\sum_{i}^{Ntracks} q_{i} \left(p_{\mathrm{T}}\right)^{\kappa}}{\sum_{i}^{Ntracks} \left(p_{\mathrm{T}}\right)^{\kappa}}$$

• $\kappa = 1.1$

• Tracks with $|\Delta z| > 3$ mm from B candidate excluded

Tag Power

- All cuts applied
- The tag power is

$$P_{tag} = \sum_{i} (\epsilon_{tag})_i \left(2P_i(B^+|Q_i) - 1 \right)^2,$$

•
$$P_i(B^+|Q_i)$$
 is the cone charge for B^+

Tag Power

- All cuts applied
- The tag power is

$$P_{tag} = \sum_{i} (\epsilon_{tag})_i \left(2P_i(B^+|Q_i) - 1 \right)^2,$$

•
$$P_i(B^+|Q_i)$$
 is the cone charge for B^+

Tag Power - Result
$$P_{tag} = (1.42 \pm 0.02)\%$$

27. 09. 2017

13 / 24

B^+ Tag Probability

$$P(B|Q) = rac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

•
$$P(\bar{B}|Q) = 1 - P(B|Q)$$

• Produced separately for muons with tracks in a cone and single muons

B^+ Tag Probability

$$P(B|Q) = rac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

•
$$P(\bar{B}|Q) = 1 - P(B|Q)$$

- Produced separately for muons with tracks in a cone and single muons
- Fit: two constant functions (single muons), 4th order polynomial function (cone charge)

Summary and Plans

Summary

• Tag power for cone charge calculated

$$\mathsf{P}_{\mathsf{tag}} = (1.42 \pm 0.02)\,\%$$

- Significantly higher than in Run1: $P_{tag} = (0.92 \pm 0.02)$ %
- B^+ tag probability distributions produced and fitted
- B_s^0 cone charge and tag probability distributions produced

Plans

- Fit the B_s^0 cone charge and tag probability distributions
- Produce Punzi terms for the main fit of the differential decay rate

27. 09. 2017

15 / 24

Back-up Slides

Fit Model

$$\begin{aligned} \text{PDF} = & f_{sig}[f_{gauss}G_1(\mu,\sigma_1) + (1 - f_{gauss})G_2(\mu,\sigma_2)] + \\ & + (1 - f_{sig})[f_{bck1}E(\lambda) + f_{bck2}C + (1 - f_{bck1} - f_{bck2})AT(sc, of)], \end{aligned}$$

	μ	σ_1	σ_2	λ	SC	of	f _{sig}	f _{gauss}	f _{bck1}	f _{bck2}
value	5279.38	24.5	58.8	-0.00360	-0.042	5133.9	0.331	0.506	0.282	0.627
uncertainty	0.06	0.2	0.5	0.00006	0.002	0.79	0.001	0.006	0.006	0.004
value	5279.45	23.9	56.5	-0.00340	-0.043	5133.4	0.325	0.481	0.311	0.605
uncertainty	0.06	0.2	0.5	0.00007	0.003	0.9	0.001	0.006	0.009	0.005

1

・ロト ・ 日 ト ・ 日 ト ・

590

- The left table shows results for order of selection criteria, where higher $p_{\rm T}$ has higher priority than muon quality
- The right table shows results selection criteria, where muon quality has higher priority than higher $p_{\rm T}$

	ϵ_{tag} (%)	Dtag	w _{tag}	P _{tag} (%)	ϵ_{tag} (%)	Dtag	w _{tag}	P _{tag} (%)
tight	3.016	0.392	0.304	0.463	4.18	0.355	0.323	0.526
medium	0.158	0.143	0.429	0.003	0.21	0.114	0.443	0.003
loose	0.121	0.091	0.455	0.001	0.17	0.088	0.456	0.001
very loose	6.017	0.031	0.485	0.006	7.93	0.028	0.486	0.006
	ϵ_{tag} (%)	Dtag	w _{tag}	P _{tag} (%)	ϵ_{tag} (%)	Dtag	w _{tag}	P _{tag} (%)
combined	5.270	0.244	0.378	0.313	7.44	0.219	0.391	0.356
segmentTag	0.512	0.044	0.478	0.001	0.75	0.037	0.482	0.001
caloTag	3.531	0.026	0.487	0.002	4.30	0.021	0.490	0.002

• Tables are produced using the sPlot

- Left table contains results using the sPlot method
- Right table shows results obtained using the sideband subtraction method

	ϵ_{tag} (%)	D _{tag}	w _{tag}	P _{tag} (%)	ϵ_{tag} (%)	D _{tag}	w _{tag}	P _{tag} (%)
combined	7.44	0.219	0.391	0.356	7.88	0.215	0.393	0.366
segmentTag	0.75	0.037	0.482	0.001	0.80	0.030	0.484	0.001
caloTag	4.30	0.021	0.490	0.002	4.40	0.025	0.488	0.003

27. 09. 2017

19 / 24

Single Muon Tagging - $|\Delta z|$ cut

- with applied Δz cut, sPlot method
- Left table for release 20.7
- Right table for release 21

	ϵ_{tag} (%)	Dtag	Wtag	P _{tag} (%)	ϵ_{tag} (%)	Dtag	Wtag	P _{tag} (%)
tight	7.75	0.358	0.32	0.996	6.50	0.451	0.275	1.32
medium	0.47	0.122	0.44	0.007	2.41	0.253	0.373	0.15
loose	0.35	0.093	0.45	0.003	0.98	0.175	0.413	0.03
very loose	12.52	0.044	0.48	0.024	17.7	0.062	0.469	0.07

B^+ Tag Probability

• Fit: two constant functions (single muons), 4th order polynomial function (cone charge)

	<i>c</i> ₁	<i>c</i> ₂	<i>p</i> 0	p_1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4
value	0.18	0.82	0.4970	0.520	-0.02	-0.221	0.02
uncertainty	0.03	0.03	0.0005	0.006	0.01	0.008	0.01

B_{S}^{0} Tag Value (Cone Charge)

• peaks with cone charge $Q = \pm 1$ were removed, they will by applied in the B_s^0 main fit in different way

B_S^0 Tag Probability)

• High number of B_s^0 candidates with high and low tagging probability (approximately 0.8 and 0.2) will has assistant role during the main fit of the diferential decay rate, because the untagged B_s^0 candidates has default tag probability 0.5 and it is unknown, whether it is B_s^0 or \bar{B}_s^0

